CS482: Monte Carlo Ray Tracing:

Sung-Eui Yoon (윤성의)

http://sglab.kaist.ac.kr/~sungeui/ICG

Class Objectives

- Understand a basic structure of Monte Carlo ray tracing
 - Russian roulette for its termination
 - Path tracing

Rendering Equation

Value we want

@ Kavita Bala, Computer Science, Cornell University

$$L(x\rightarrow\Theta) = ?$$

Check for $L_e(x\rightarrow \Theta)$

Now add $L_r(x \rightarrow \Theta) =$

$$\int_{\Gamma_r} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos(\Psi, n_x) \cdot d\omega_{\Psi}$$

- Use Monte Carlo
- Generate random directions on hemisphere Ω_X using pdf p(Ψ)

$$L(x \to \Theta) = \int_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos(\Psi, n_x) \cdot d\omega_{\Psi}$$

$$\langle L(x \to \Theta) \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_r(\Psi_i \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi_i) \cdot \cos(\Psi_i, n_x)}{p(\Psi_i)}$$

Generate random directions Ψ_i

$$\langle L \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_r(\dots) \cdot L(x \leftarrow \Psi_i) \cdot \cos(\dots)}{p(\Psi_i)}$$

- evaluate brdf
- evaluate cosine term
- evaluate L(x←Ψ_i)

- evaluate L(x←Ψ_i)?
- Radiance is invariant along straight paths
- $vp(x, \Psi_i)$ = first visible point

•
$$L(x \leftarrow \Psi_i) = L(vp(x, \Psi_i) \rightarrow \Psi_i)$$

How to compute? Recursion ...

Recursion

 Each additional bounce adds one more level of indirect light

Handles ALL light transport

"Stochastic Ray Tracing"

When to end recursion?

From kavita's slides

- Contributions of further light bounces become less significant
 - Max recursion
 - Some threshold for radiance value
- If we just ignore them, estimators will be biased

Russian Roulette

Integral

$$I = \int_{0}^{1} f(x) dx = \int_{0}^{1} \frac{f(x)}{P} P dx = \int_{0}^{P} \frac{f(y/P)}{P} dy$$

Estimator

$$\left\langle I_{roulette}\right\rangle = \begin{cases} \frac{f\left(x_{i}\right)}{P} & \text{if } x_{i} \leq P, \\ 0 & \text{if } x_{i} > P. \end{cases}$$

Variance $\sigma_{roulette} > \sigma$

Russian Roulette

- Pick absorption probability, a = 1-P
 - Recursion is terminated
- 1- a, i.e., P, is commonly to be equal to the reflectance of the material of the surface
 - Darker surface absorbs more paths

Algorithm so far

- Shoot primary rays through each pixel
- Shoot indirect rays, sampled over hemisphere
- Terminate recursion using Russian Roulette

Pixel Anti-Aliasing

- Compute radiance only at the center of pixel
 - Produce jaggies

- We want to evaluate using MC
- Simple box filter
 - The averaging method

Stochastic Ray Tracing

- Parameters
 - Num. of starting ray per pixel
 - Num. of random rays for each surface point (branching factor)
- Path tracing
 - Branching factor = 1

Path Tracing

 Pixel sampling + light source sampling folded into one method

Algorithm so far

- Shoot primary rays through each pixel
- Shoot indirect rays, sampled over hemisphere
 - Path tracing shoots only 1 indirect ray
- Terminate recursion using Russian Roulette

Performance

- Want better quality with smaller # of samples
 - Fewer samples/better performance
 - Quasi Monte Carlo: well-distributed samples
 - Adaptive sampling

Some Example

Uniform sampling (64 samples per pixel)

Adaptive sampling

Reference

Importance Sampling

$$L(x \to \Theta) = L_{e}(x \to \Theta) + \int_{\Omega_{x}} f_{r}(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos(\Psi, n_{x}) \cdot d\omega_{\Psi}$$

Radiance from light sources + radiance from other surfaces

Importance Sampling

$$L(x \rightarrow \Theta) = L_e + L_{direct} + L_{indirect}$$

$$=L_e + \int_{\Omega_x} \cdot f_r \cdot \cos + \int_{\Omega_x} \cdot f_r \cdot \cos \theta$$

 So ... sample direct and indirect with separate MC integration

Comparison

From kavita's slides

- With and without considering direct illumination
 - 16 samples / pixel

Rays per pixel

1 sample/ pixel

4 samples/ pixel

16 samples/ pixel

256 samples/ pixel

© Kavita Bala, Computer Science, Cornell University

Direct Illumination

$$L(x \to \Theta) = \int_{A_{source}} f_r(x, -\Psi \leftrightarrow \Theta) \cdot L(y \to \Psi) \cdot G(x, y) \cdot dA_y$$

$$G(x, y) = \frac{\cos(n_x, \Theta)\cos(n_y, \Psi)Vis(x, y)}{r_{xy}^2}$$

hemisphere integration

area integration

@ Kavita Bala, Computer Science, Cornell University

Estimator for direct lighting

Pick a point on the light's surface with pdf

For N samples, direct light at point x is:

$$E(x) = \frac{1}{N} \sum_{i=1}^{N} \frac{f_r L_{source}}{r_{x\bar{y}_i}^2} \frac{\cos \theta_x \cos \theta_{\bar{y}_i}}{r_{x\bar{y}_i}^2} Vis(x, \bar{y}_i)}{p(\bar{y}_i)}$$

Generating direct paths

- Pick surface points y_i on light source
- Evaluate direct illumination integral

$$\langle L(x \to \Theta) \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_r(...)L(...)G(x, y_i)}{p(y_i)}$$

PDF for sampling light

Uniform

$$p(y) = \frac{1}{Area_{source}}$$

- Pick a point uniformly over light's area
 - Can stratify samples

Estimator:

$$E(x) = \frac{Area_{source}}{N} \sum_{i=1}^{N} f_r L_{source} \frac{\cos \theta_x \cos \theta_{\bar{y}_i}}{r_{x\bar{y}_i}^2} Vis(x, \bar{y}_i)$$

More points ...

$$E(x) = \frac{Area_{source}}{N} \sum_{i=1}^{N} f_r L_{source} \frac{\cos \theta_x \cos \theta_{\overline{y}_i}}{r_{x\overline{y}_i}^2} Vis(x, \overline{y}_i)$$

Even more points ...

36 shadow rays

100 shadow rays

$$E(x) = \frac{Area_{source}}{N} \sum_{i=1}^{N} f_r L_{source} \frac{\cos \theta_x \cos \theta_{\overline{y}_i}}{r_{x\overline{y}_i}^2} Vis(x, \overline{y}_i)$$

Different pdfs

Uniform

$$p(y) = \frac{1}{Area_{source}}$$

- Solid angle sampling
 - Removes cosine and distance from integrand
 - Better when significant foreshortening

$$E(x) = \frac{1}{N} \sum_{i=1}^{N} \frac{f_r L_{source}}{r_{x\overline{y}_i}^2} \frac{\cos \theta_x \cos \theta_{\overline{y}_i}}{r_{x\overline{y}_i}^2} Vis(x, \overline{y}_i)}{p(\overline{y}_i)}$$

Parameters

- How to distribute paths within light source?
 - Uniform
 - Solid angle
 - What about light distribution?
- How many paths ("shadow-rays")?
 - Total?
 - Per light source? (~intensity, importance, ...)

Bidirectional Path Tracing

 Or paths generated from both camera and source at the same time ...!

 Connect endpoints to compute final contribution

S Kavita Bala, Computer Science, Cornell University

valid path

© Kavita Bala, Computer Science, Cornell University

small perturbations

S Kavita Bala, Computer Science, Cornell University

© Kavita Bala, Computer Science, Cornell University

Accept mutations based on energy transport

Biased Methods: Irradiance Caching

- Indirect changes smoothly.
- Cache irradiance.

Irradiance Caching

- Indirect changes smoothly.
- Cache irradiance.

Irradiance Caching

- Indirect changes smoothly.
- Cache irradiance.
- Interpolate them.

Biased Method: Photon Mapping

• 2 passes:

- Shoot "photons" (light-rays) and record any hit-points
- Shoot viewing rays and collect information from stored photons

Pass 1: shoot photons

 Light path generated using MC techniques and Russian Roulette

Store:

- position
- incoming direction
- color
- **–** ...

Savita Bala, Computer Science, Cornell University

Stored Photons

Generate a few hundreds of thousands of photons

Pass 2: viewing ray

- Search for N
 closest photons
 (+check normal)
- Assume these photons hit the point we're interested in
- Compute average radiance

Result

350K photons for the caustic map

Result

350K photons for the caustic map

Class Objectives were:

- Understand a basic structure of Monte Carlo ray tracing
 - Russian roulette for its termination
 - Path tracing

Summary

- Two basic building blocks
- Radiometry
- Rendering equation
- MC integration
- MC ray tracing
 - Unbiased methods
 - Biased methods

Summary

Next Time...

Instant radiosity

Homework

- Go over the next lecture slides before the class
- Watch 2 SIG/I3D/HPG videos and submit your summaries every Tue. class
 - Just one paragraph for each summary

Example:

Title: XXX XXXX XXXX

Abstract: this video is about accelerating the performance of ray tracing. To achieve its goal, they design a new technique for reordering rays, since by doing so, they can improve the ray coherence and thus improve the overall performance.

Any Questions?

- Submit four times in Sep./Oct.
- Come up with one question on what we have discussed in the class and submit at the end of the class
 - 1 for typical questions
 - 2 for questions that have some thoughts or surprise me

