CS688/WST665: Web-Scale Image Retrieval
Descriptors

Sung-Eui Yoon
(윤성의)

Course URL:
http://sglab.kaist.ac.kr/~sungeui/IR
Announcements

- 19 students take the course
- **Two rounds of presentations**
 - One presentation for each person: 25min talk and Q&A; allocate 18 min for the talk itself
 - Deeper understanding on a paper is required; go over two related papers and explain them in a few slides
 - Declare two papers at the Noah board; first come first served
 - Paper/ its presentation date selection: Oct-16
Announcements

- **Projects**
 - Only 2 or more are allowed; clear role for each student!
 - Final presentation: Dec. 16 & 19
 - Mid-term review: Nov. 18 & 21
 - Team formation: Oct - 16
 - Declare your team at the Noah board
Overall Schedule

- Oct-28, 30: 1st round of student presentations
- Nov-4, 6,
- 11, 13
- 18, 21: mid-term presentation
- 25, 28: 2nd round of student presentations
- Dec-2, 4
- 9, 12
- 16, 19: final term presentation

- Upload your slides at Noah board
 - TA will upload them at the homepage
What we will learn today

- Local descriptors
 - SIFT
 - An assortment of other descriptors
 - Applications
Local Descriptors

- We know how to detect points
- Next question:

How to *describe* them for matching?

![Image showing point descriptors]

Point descriptor should be:
1. Invariant
2. Distinctive

Fei-Fei Li
Rotation Invariant Descriptors

• Find local orientation
 – Dominant direction of gradient for the image patch

• Rotate patch according to this angle
 – This puts the patches into a canonical orientation.
Orientation Normalization: Computation

- Compute orientation histogram
- Select dominant orientation
- Normalize: rotate to fixed orientation

Slide adapted from David Lowe

Fei-Fei Li
The Need for Invariance

- Up to now, we had invariance to
 - Translation
 - Scale
 - Rotation
- Not sufficient to match regions under viewpoint changes
 - For this, we need also affine adaptation
Affine Transformation

● **Matrix representation**
 ● Less general types than perspective transformation

\[
\begin{bmatrix}
\vec{y}' \\
1
\end{bmatrix} = \begin{bmatrix}
A & \vec{b} \\
0, \ldots, 0 & 1
\end{bmatrix}\begin{bmatrix}
\vec{x} \\
1
\end{bmatrix}
\]

● **Geometric interpretation**
 ● Rotation + scaling
 ● Shearing
Affine Adaptation

- Problem:
 - Determine the characteristic shape of the region.
 - Assumption: shape can be described by “local affine frame”.

- Solution: iterative approach
 - Use a circular window to compute second moment matrix.
 - Compute eigenvectors to adapt the circle to an ellipse.
 - Recompute second moment matrix using new window and iterate...

The second moment matrix gives a cue on how to transform the patch.
Iterative Affine Adaptation

1. Detect keypoints, e.g. multi-scale Harris
2. Automatically select the scales
3. Adapt affine shape based on second order moment matrix
4. Refine point location

Affine Normalization/Deskewing

- Steps
 - Rotate the ellipse’s main axis to horizontal
 - Scale the x axis, such that it forms a circle
Affine Adaptation Example

Scale-invariant regions (blobs)

Fei-Fei Li
Affine Adaptation Example

Affine-adapted blobs

Fei-Fei Li
Summary: Affine-Inv. Feature Extraction

Extract affine regions → Normalize regions → Eliminate rotational ambiguity → Compare descriptors

Slide credit: Svetlana Lazebnik

Fei-Fei Li
Local Descriptors

- We know how to detect points
- Next question:

How to describe them for matching?

Point descriptor should be:
1. Invariant
2. Distinctive
Local Descriptors

- Simplest descriptor: list of intensities within a patch.
- What is this going to be invariant to?

Write regions as vectors

\[A \rightarrow a, \ B \rightarrow b \]
Feature Descriptors

• Disadvantage of patches as descriptors:
 – Small shifts can affect matching score a lot

• Solution: histograms
Feature Descriptors: SIFT

- **Scale Invariant Feature Transform**
- **Descriptor computation:**
 - Divide patch into 4x4 sub-patches: 16 cells
 - Compute histogram of gradient orientations (8 reference angles) for all pixels inside each sub-patch
 - Resulting descriptor: 4x4x8 = 128 dimensions

Overview: SIFT

• Extraordinarily robust matching technique
 – Can handle changes in viewpoint up to ~60 deg. out-of-plane rotation
 – Can handle significant changes in illumination
 • Sometimes even day vs. night (below)
 – Fast and efficient—can run in real time
 – Lots of code available
Working with SIFT Descriptors

- One image yields:
 - n 128-dimensional descriptors: each one is a histogram of the gradient orientations within a patch
 - $[n \times 128 \text{ matrix}]$
 - n scale parameters specifying the size of each patch
 - $[n \times 1 \text{ vector}]$
 - n orientation parameters specifying the angle of the patch
 - $[n \times 1 \text{ vector}]$
 - n 2D points giving positions of the patches
 - $[n \times 2 \text{ matrix}]$
Local Descriptors: SURF

Fast approximation of SIFT idea
- Efficient computation by 2D box filters & integral images
- \(\Rightarrow 6 \) times faster than SIFT
- Equivalent quality for object identification

http://www.vision.ee.ethz.ch/~surf

GPU implementation available
- Feature extraction @ 100Hz
 - (detector + descriptor, 640×480 img)

http://homes.esat.kuleuven.be/~ncorneli/gpusurf/

[Bay, ECCV’06], [Cornelis, CVGPU’08]
Other Descriptors

- Gray-scale intensity

- GIST
- Many others
Applications of Local Invariant Features

- Wide baseline stereo
- Motion tracking
- Panoramas
- Mobile robot navigation
- 3D reconstruction
- Recognition
 - Specific objects
 - Textures
 - Categories
- ...

Fei-Fei Li
Wide-Baseline Stereo

Image from T. Tuytelaars ECCV 2006 tutorial

Fei-Fei Li
Automatic Mosaicing

Fei-Fei Li

[Brown & Lowe, ICCV'03]
Panorama Stitching

(a) Matier data set (7 images)

(b) Matier final stitch

[Brown, Szeliski, and Winder, 2005]

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

Fei-Fei Li
Recognition of Specific Objects, Scenes

Schmid and Mohr 1997

Sivic and Zisserman, 2003

Rothganger et al. 2003

Lowe 2002

Fei-Fei Li
Alignment Problem

- Fit different images into one canonical image
Alignment Problem

- Many different approaches exist

- Simple fitting procedure in the linear least square sense
 - Approximates viewpoint changes for roughly planar objects and roughly orthographic cameras
 - Can be used to initialize fitting for more complex models

- We do not discuss this issue here
 - Will be discussed in a computer vision course
Time for a Demo...

Automatic panorama stitching

Matthew Brown: http://cvlab.epfl.ch/~brown/autostitch/autostitch.html

Fei-Fei Li
References and Further Reading

• More details on the alignment problem can be found in:

 – R. Hartley, A. Zisserman
 Multiple View Geometry in Computer Vision
 2nd Ed., Cambridge Univ. Press, 2004

• Details about the DoG detector and the SIFT descriptor can be found in
 – D. Lowe, Distinctive image features from scale-invariant keypoints,
 IJCV 60(2), pp. 91-110, 2004

• Try the available local feature detectors and descriptors
 – http://www.robots.ox.ac.uk/~vgg/research/affine/detectors.html#binaries
What we have learned today

- Local descriptor
 - SIFT
 - An assortment of other descriptors
 - Applications
Next Time…

- Object recognition
- Bag-of-Words (BoW) models
PA1

● Objective
 ● Understand how to extract SIFT features and to use related libraries

● Deadline
 ● Oct-2(Thur.) (before 11:59pm)
Homework for Every Class

- Go over the next lecture slides
- Come up with one question on what we have discussed today
 - 1 for typical questions (that were answered in the class)
 - 2 for questions with thoughts or that surprised me
- Write questions at least 4 times