Aggregating Deep Convolutional Features for Image Retrieval

A.Babenko, V.Lempitsky
ICCV 2015

Presenter: Taewook Ha
Contents

- Introduction
- Background
- Main approach
- Experiments
- References
Introduction

- Local deep convolutional features describe particular image regions

- Aggregating local features produces a global image descriptor for image retrieval
 - Some existing aggregation methods for SIFT features are used
 - i.e. VLAD [1], Fisher vector [2], Triangular embedding [3]
 - Need simple aggregation method for deep convolutional features

Descriptor aggregation

- An image I is represented by a set of features $\{x_1, x_2, ..., x_n\} \subset \mathbb{R}^d$
- The goal is to combine features into global representation $\psi(I)$
- The common way to produce a representation $\psi(I)$ includes two steps: embedding and aggregation
 - Embedding maps individual feature x into higher dimensional vector $\phi(x)$
 - Aggregation integrates vectors $\phi(x)$ into global representation $\psi(I)$

Ex) VLAD

- Precompute a codebook with K centroids $\{c_1, ..., c_K\}$
- Map x to vector $\phi_{VL}(x) = [0 \ 0 \ ... \ (x - c_k) \ ... \ 0]$ with k closest centroids

- i.e. Simple summation $\psi(I) = \sum \phi(x)$
Background

- Descriptor aggregation
 - Ex) VLAD embedding and aggregation for SIFT features

\[V(:, k) = \sum_{i=1}^{N} a_k(x_i)(x_i - c_k) \]

0/1 assignment of desc. \(i \) to cluster \(k \)

Sum over all \(N \) descriptors in the image

\[V = [\vdots, \vdots, \vdots, \vdots, \ldots] \]

Background

- Deep descriptors for retrieval
 - Instead of traditional SIFT-like features, use deep convolutional features to aggregation methods
 - Ex) VLAD-embedding for deep convolutional features [4]

Main approach

- SPoC descriptor
 - Based on the aggregation of deep convolutional features **without embedding**
 - Each deep convolutional feature f is computed from image I with the spatial coordinates (x,y)
Main approach

- SPoC descriptor
 - Sum pooling

 \[
 \psi_1(I) = \sum_{y=1}^{H} \sum_{x=1}^{W} f(x,y)
 \]

- Similarity measure
 - Similarity measure uses scalar product of two descriptors

 \[
 \text{sim}(I_1, I_2) = \langle \psi(I_1), \psi(I_2) \rangle = \sum_{f_i \in I_1} \sum_{f_j \in I_2} \langle f_i, f_j \rangle
 \]
Main approach

- **SPoC descriptor**
 - **Centering prior**
 - Assign larger weights to the features from the center of the feature map

 $$\psi_2(I) = \sum_{y=1}^{H} \sum_{x=1}^{W} \alpha(x,y) f(x,y)$$

 - **Coefficients** $\alpha(x,y)$
 - Depends on the spatial coordinates x and y
 - Uses the Gaussian weighting scheme

 $$\alpha(x,y) = \exp\left\{ - \frac{(y - \frac{H}{2})^2 + (x - \frac{W}{2})^2}{2\sigma^2} \right\}$$
Main approach

- SPoC descriptor
 - **Post-processing**
 - The obtained representation $\psi(I)$ is subsequently l_2-normalized, then PCA compression and whitening are performed
 - PCA compression

\[
\psi_3(I) = \text{diag}(s_1, s_2, \ldots, s_N)^{-1} M_{\text{PCA}} \psi_2(I)
\]

- l_2-normalization

\[
\psi_{SPoC}(I) = \frac{\psi_3(I)}{\|\psi_3(I)\|_2}
\]
Experiments

- Comparison among three types of features
 - Deep convolutional features, original SIFT features, and Fisher Vector-embedded SIFT features
Experiments

- Comparison of feature aggregation methods for deep convolutional features

<table>
<thead>
<tr>
<th>Method</th>
<th>Holidays</th>
<th>Oxford5K (full)</th>
<th>Oxford105K (full)</th>
<th>UKB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisher vector, k=16</td>
<td>0.704</td>
<td>0.490</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Fisher vector, k=256</td>
<td>0.672</td>
<td>0.466</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Triangulation embedding, k=1</td>
<td>0.775</td>
<td>0.539</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Triangulation embedding, k=16</td>
<td>0.732</td>
<td>0.486</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Max pooling</td>
<td>0.711</td>
<td>0.524</td>
<td>0.522</td>
<td>3.57</td>
</tr>
<tr>
<td>Sum pooling (SPoC w/o center prior)</td>
<td>0.802</td>
<td>0.589</td>
<td>0.578</td>
<td>3.65</td>
</tr>
<tr>
<td>SPoC (with center prior)</td>
<td>0.784</td>
<td>0.657</td>
<td>0.642</td>
<td>3.66</td>
</tr>
</tbody>
</table>
Experiments

- Retrieved examples using SPoC descriptor on the Oxford Building dataset
Experiments

- Comparison of overfitting effect arose from PCA matrix learning for SPoC and other methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Holidays</th>
<th>Oxford5K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisher vector, k=16</td>
<td>0.704</td>
<td>0.490</td>
</tr>
<tr>
<td>Fisher vector, PCA on test, k=16</td>
<td>0.747</td>
<td>0.540</td>
</tr>
<tr>
<td>Fisher vector, k=256</td>
<td>0.672</td>
<td>0.466</td>
</tr>
<tr>
<td>Fisher vector, PCA on test, k=256</td>
<td>0.761</td>
<td>0.581</td>
</tr>
<tr>
<td>Triang. embedding, k=1</td>
<td>0.775</td>
<td>0.539</td>
</tr>
<tr>
<td>Triang. embedding, PCA on test, k=1</td>
<td>0.789</td>
<td>0.551</td>
</tr>
<tr>
<td>Triang. embedding, k=16</td>
<td>0.732</td>
<td>0.486</td>
</tr>
<tr>
<td>Triang. embedding, PCA on test, k=16</td>
<td>0.785</td>
<td>0.576</td>
</tr>
<tr>
<td>Max pooling</td>
<td>0.711</td>
<td>0.524</td>
</tr>
<tr>
<td>Max pooling, PCA on test</td>
<td>0.728</td>
<td>0.531</td>
</tr>
<tr>
<td>SPoC w/o center prior</td>
<td>0.802</td>
<td>0.589</td>
</tr>
<tr>
<td>SPoC w/o center prior, PCA on test</td>
<td>0.818</td>
<td>0.593</td>
</tr>
<tr>
<td>SPoC (with center prior)</td>
<td>0.784</td>
<td>0.657</td>
</tr>
<tr>
<td>SPoC (with center prior), PCA on test</td>
<td>0.797</td>
<td>0.651</td>
</tr>
</tbody>
</table>
References

Q & A
Quiz

1. SPoC descriptor is based on the aggregation of deep convolutional features without ().
 a. Aggregation
 b. Embedding
 c. Quantization
 d. Clustering

2. SPoC descriptor uses () to assign larger weights to the features from the center of the feature map
 a. Centroid
 b. Triangulation
 c. Centering prior
 d. Fisher vector