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What we will learn today?

* Introduction to object recognition
— Representation
— Learning

— Recognition




What are the different visual recognition tasks?




Classification:
Does this image contain a building? [yes/no]




Classification:
Is this an beach?




Image Search
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Detection:
Does this image contain a car? [where?]




Detection:
Does this image contain a car? [where?]




Detection:
Which object does this image contain? [where?]




Detection:
Accurate localization (segmentation)




Detection: Estimating object semantic &

geometric attributes
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Object: Building, 452 pose,
. 8-10 meters away
® It has bricks

| — '
Object: Person, back;
1-2 meters away

- ' ' '
— Object: Police car, side view, 4-5 m away



Applications of Object Recognitions
and Image Retrieval

Security Assistive driving
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Categorization vs Single instance
recognition

Does this image contain the Chicago Macy building’s?




Categorization vs Single instance
recognition

Where is the crunchy nut?




Applications of Object Recognitions
and Image Retrieval

*Recognizing landmarks in
mobile platforms
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Activity or Event recognition
What are these people doing?




Visual Recognition

* Design algorithms that are capable to
— Classify images or videos
— Detect and localize objects

— Estimate semantic and geometrical
attributes

— Classify human activities and events

Why is this challenging?
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Michelangelo 1475-1564



Challenges: illumination

image credit J. Koenderink




Challenges: scale



Challenges: deformation




Challenges:
occlusion

Magritte, 1957




Challenges: background clutter

Kilmeny Niland. 1995




Challenges: intra-class variation
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Basic issues

* Representation

— How to represent an object category; which
classification scheme?

* Learning

— How to learn the classifier, given training data

* Recognition

— How the classifier is to be used on novel data




Representation

- Building blocks: Sampling strategies
FEEEE" TN EME N
NEEFrIIfkE
EEEESNE
AEEEsEET T
EEEEN) —-
EEERENRL
EEREERNR

EEEEEEEEEERESE
EIESEEEEEEENE

Dense, uniformly

Multiple interest operators

Image credits: L. Fei-Fel, E. Nowak, J. Sivic



Representation

- Building blocks: Choice of descriptors
[SIFT, HOG, codewords....]




Representation

— Appearance only or location and appearance




Representation

—Invariances
* View point
* [llumination
* Occlusion
* Scale
* Deformation
* Clutter
ol = 68




Representation

— To handle intra-class variability, it is convenient to
describe an object categories using probabilistic
models

— Object models: Generative vs Discriminative vs hybrid




Object categorization:
the statistical viewpoint

p(zebra |image)

p(no zebralimage)

e Bayesrule: P(A|B) =

p(zebra | image)

p(no zebra |image)




Object categorization:
the statistical viewpoint

p(zebra|image)

p(no zebralimage)

P(B|A) P(A)
P(B) -

e Bayesrule: P(4B) =

p(zebra|image) p(image|zebra) p(zebra)

p(no zebra |image)  p(image | no zebra) | p(no zebra)
M L A S

posterior ratio likelihood ratio prior ratio




Object categorization:
the statistical viewpoint

e Discriminative methods model posterior

e Generative methods model likelihood and prior

e Bayes rule:

p(zebra|image) p(image|zebra) p(zebra)

p(no zebra |image)  p(image | no zebra) | p(no zebra)
M AN A S

posterior ratio likelihood ratio prior ratio




Discriminative models

¢ Modeling the posterior ratio:

p(zebra |image)

p(no zebra |image)

Decision
boundary




Discriminative models

Nearest neighbor Neural networks
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10f examples

Shakhnarovich, Viola, Darrell 2003

LeCun, Bottou, Bengio, Haffner 1998

Berg, Berg, Malik 2005... Rowley, Baluja, Kanade 1998
Support Vector Machines Latent SVM Boosting
Structural SVM L)
|'x{ l-'l..\: hfﬂ . : '}
J:“ *__ '.l
Guyon, Vapnik, Heisele, i Viola, Jones 2001,
Serre, Poggio... Felzenszwalb 00 Torralba et al. 2004,
Ramanan 03... Opelt et al. 2006, ..

Source: Vittorio Ferrari, Kristen Grauman, Antonio Torralba

Fei-Fei Li




Generative models
e Modeling the likelihood ratio:

p(image | zebra)

p(image | no zebra)
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Generative models
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Generative models

* Naive Bayes classifier
—  Csurka Bray, Dance & Fan, 2004

* Hierarchical Bayesian topic models (e.g. pLSA
and LDA)

—  Object categorization: Sivic et al. 2005, Sudderth et al. 2005
—  Natural scene categorization: Fei-Fei et al. 2005

* 2D Part based models

- Constellation models: Weber et al 2000; Fergus et al 200
- Star models: ISM (Leibe et al 05)

3D part based models:
- multi-aspects: Sun, et al, 2009




Basic issues

* Representation

— How to represent an object category; which
classification scheme?

* Learning

— How to learn the classifier, given training data

* Recognition

— How the classifier is to be used on novel data




Learning

* Learning parameters: What are you maximizing?
Likelihood (Gen.) or performances on
train/validation set (Disc.)




Learning

* Learning parameters: What are you maximizing?
Likelihood (Gen.) or performances on
train/validation set (Disc.)

e Level of supervision

* Manual segmentation; bounding box; image labels;
noisy labels

e Batch/incremental

e Priors




Learning

* Learning parameters: What are you maximizing?
Likelihood (Gen.) or performances on
train/validation set (Disc.)

¢ Level of supervision

* Manual segmentation; bounding box; image labels;
noisy labels

¢ Batch/incremental

e Priors

®* Training images:
e|ssue of overfitting
eNegative images for

discriminative methods




Basic issues

* Representation

— How to represent an object category; which
classification scheme?

* Learning

— How to learn the classifier, given training data

* Recognition

— How the classifier is to be used on novel data




Recognition

— Recognition task: classification, detection, etc..




Recognition

— Search strategy: Sliding Windows
Viola, Jones 2001,

e Simple
e Computational complexity (x,y, S, 6, N of classes)

- ""‘-A " ol -
- BSW by Lampert et al 08 B o e

- Also, Alexe, et al 10




Recognition

— Search strategy: Sliding Windows :
Viola, Jones 2001,

e Simple
e Computational complexity (x,y, S, 6, N of classes)

- BSW by Lampert et al 08

- Also, Alexe, et al 10
e L ocalization

* Objects are not boxes




Recognition

— Search strategy: Sliding Windows :
Viola, Jones 2001,

e Simple

e Computational complexity (x,y, S, 6, N of classes)

- BSW by Lampert et al 08
- Also, Alexe, et al 10
¢ Localization
* Objects are not boxes
* Prone to false positive

Non max suppression:
Canny '86

Desai et al , 2009




Recognition

*Savarese, 2007

*Sun et al 2009

* Liebelt et al., ‘08, 10
*Farhadi et al 09

— Attributes
Category: car
o Azimuth = 2252
Ml Zenith = 302
- It has metal T~ i
- it is glossy
- has wheels

*Farhadi et al 09
* Lampert etal 09
* Wang & Forsyth 09

Fei-Fei Li



Recognition

(b) [Acivy

(H)

ot I
:Hl:;;’:
— Context & & - B

Semantic:

*Torralba et al 03

* Rabinovich et al 07
* Gupta & Davis 08

* Heitz & Koller 08

« | -] Li et al 0B

* Yao & Fei-Fei 10

Geometric

* Hoiem, et al 06
* Gould et al 09
* Bao, Sun, Savarese 10




Basic issues

* Representation

— How to represent an object category; which
classification scheme?

* Learning

— How to learn the classifier, given training data

* Recognition

— How the classifier is to be used on novel data




What have we learned today?

* Introduction to object recognition
— Representation
— Learning

— Recognition




Homework

e Browse papers and choose a paper that you
want to present, and a topic that your team
will work on

e Propose your paper at Noah board starting
from:

e Oct. 8 (Mon.)

e Final decisions
e Oct. 16 (Tue.)
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Next Time...

e Bag of visual words approach
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