CS688/WST665: Web-Scale Image Retrieval Keypoint Localization

Sung-Eui Yoon (윤성의)

Course URL: http://sglab.kaist.ac.kr/~sungeui/IR

Homework for Every Class

- Go over the next lecture slides
- Come up with one question on what we have discussed today
 - 1 for typical questions (that were answered in the class)
 - 2 for questions with thoughts or that surprised me
- Write questions at least 4 times before the midterm
 - Multiple questions in one time will be counted as one time
- Common questions are addressed at my draft
 - Some of questions will be discussed in the class
- If you want to know the answer of your question, ask me or TA on person

Homework for Every Class

- Go over recent papers on image search
 - High quality papers: Papers published at the top-tier conf. or close it can be presented; e.g., CVPR, ICCV, ECCV, MM, SIGGRAPH
 - Recent publication : papers published since 2011
 - Find and browse two papers, and submit your summary before every beginning of the Thur. class; submit two summaries
 - Online submission is possible
- Think about possible team members
- Too late if you think them later...

What we will learn today?

- Local invariant features
 - Motivation
 - Requirements, invariances
- · Keypoint localization
 - Harris corner detector
 - Hessian detector

What we will learn today?

- Local invariant features
 - Motivation
 - Requirements, invariances
- · Keypoint localization
 - Harris corner detector
 - Hessian detector

Content-Based Image Retrieval (CBIR)

 Identify similar images given a userspecified image or other types of inputs

Input

Output

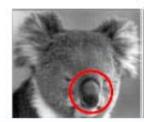
Motivation

- Global representations have major limitations
- Instead, describe and match only local regions
- Increased robustness to
 - Occlusions

Articulation



Intra-category variations



Application: Image Matching

by Diva Sian



by swashford

Harder Case

by scgbt

Harder Still?

NASA Mars Rover images

Answer Below (Look for tiny colored squares)

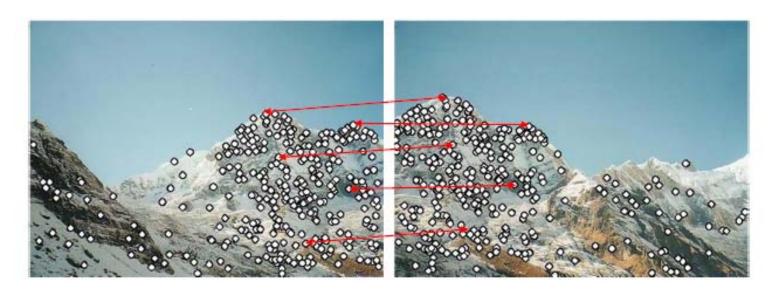
NASA Mars Rover images with SIFT feature matches (Figure by Noah Snavely)

Application: Image Stitching

Application: Image Stitching

- · Procedure:
 - Detect feature points in both images

Application: Image Stitching



· Procedure:

- Detect feature points in both images
- Find corresponding pairs

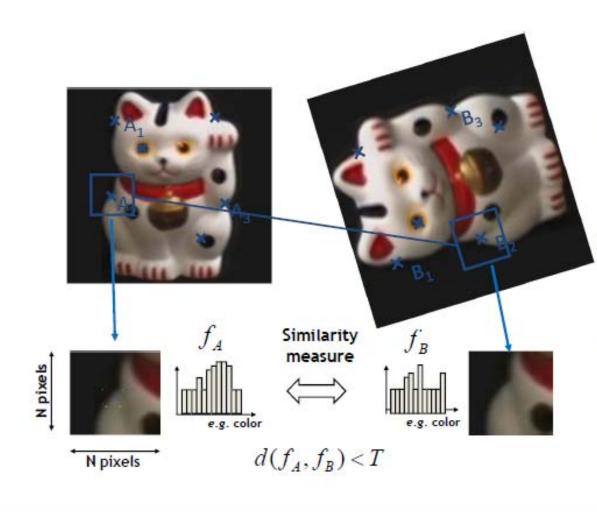
Slide credit: Darya Frolova, Denis Simakov

Application: Image Stitching

Procedure:

- Detect feature points in both images
- Find corresponding pairs
- Use these pairs to align the images

General Approach



- Find a set of distinctive keypoints
- Define a region around each keypoint
- Extract and normalize the region content
- Compute a local descriptor from the normalized region
- Match local descriptors

Slide credit: Bastian Leibe

Common Requirements

- Problem 1:
 - Detect the same point independently in both images

No chance to match!

This lecture

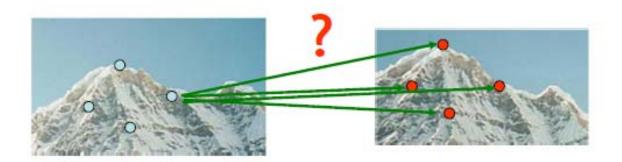
We need a repeatable detector!

Slide credit: Darya Frolova, Denis Simakov

Slide credit: Darya Frolova, Denis Simakov

Common Requirements

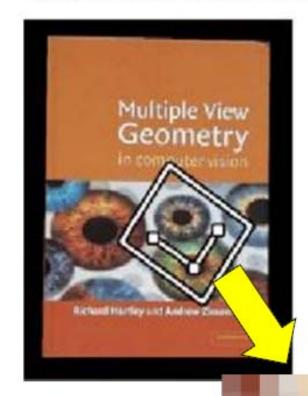
- Problem 1:
 - Detect the same point independently in both images
- Problem 2:
 - For each point correctly recognize the corresponding one

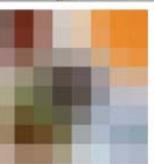


Next lecture

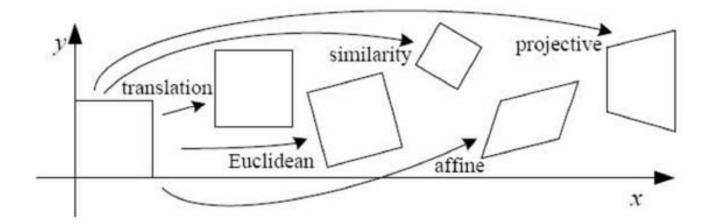
We need a reliable and distinctive descriptor!

Invariance: Geometric Transformations

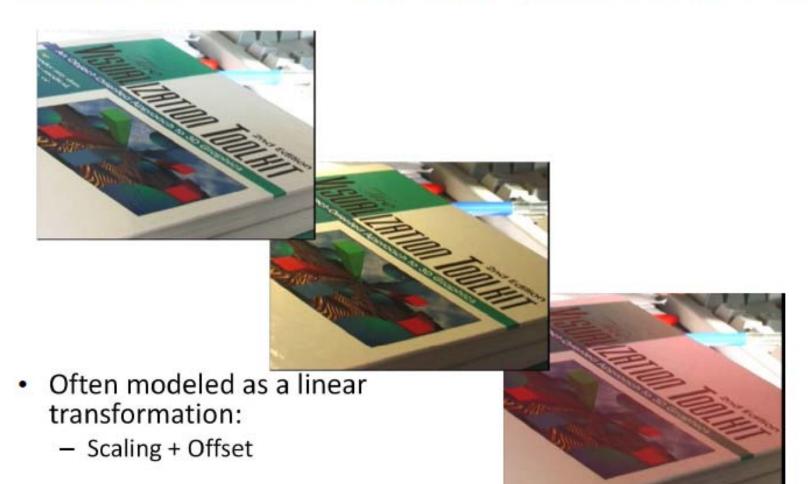




Levels of Geometric Invariance



Invariance: Photometric Transformations



Slide credit: Tinne Tuytelaars

Slide credit: Bastian Leibe

Requirements

- Region extraction needs to be repeatable and accurate
 - Invariant to translation, rotation, scale changes
 - Robust or covariant to out-of-plane (≈affine) transformations
 - Robust to lighting variations, noise, blur, quantization
- Locality: Features are local, therefore robust to occlusion and clutter.
- Quantity: We need a sufficient number of regions to cover the object.
- Distinctivenes: The regions should contain "interesting" structure.
- Efficiency: Close to real-time performance.

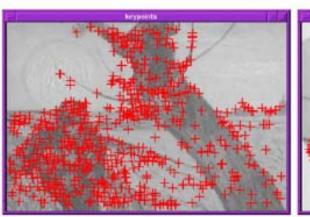
Many Existing Detectors Available

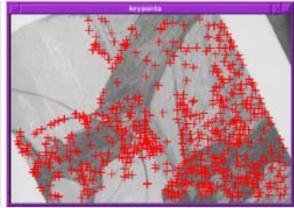
- Hessian & Harris [Beaudet '78], [Harris '88]
- Laplacian, DoG [Lindeberg '98], [Lowe '99]
- Harris-/Hessian-Laplace [Mikolajczyk & Schmid '01]
- Harris-/Hessian-Affine [Mikolajczyk & Schmid '04]
- EBR and IBR [Tuytelaars & Van Gool '04]
- MSER [Matas '02]
- Salient Regions [Kadir & Brady '01]
- Others...
- Those detectors have become a basic building block for many recent applications in Computer Vision.

Keypoint Localization

- Goals:
 - Repeatable detection
 - Precise localization
 - Interesting content
 - ⇒ Look for two-dimensional signal changes

Finding Corners





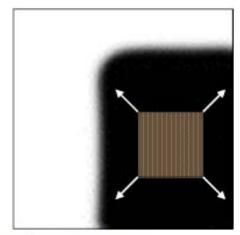
- · Key property:
 - In the region around a corner, image gradient has two or more dominant directions
- Corners are repeatable and distinctive

C.Harris and M.Stephens. "A Combined Corner and Edge Detector."

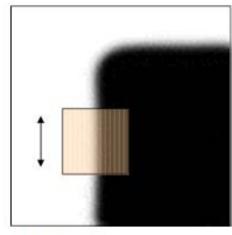
Proceedings of the 4th Alvey Vision Conference, 1988.

Corners as Distinctive Interest Points

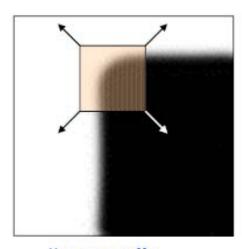
- Design criteria
 - We should easily recognize the point by looking through a small window (locality)
 - Shifting the window in any direction should give a large change in intensity (good localization)



"flat" region: no change in all directions



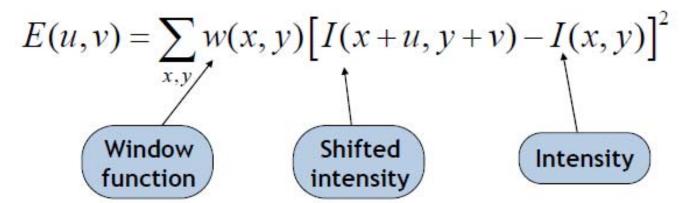
"edge": no change along the edge direction

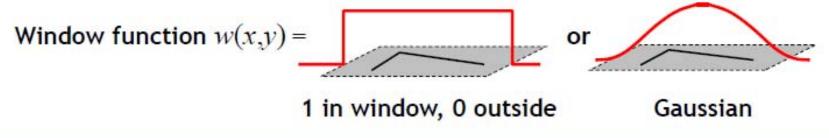


"corner": significant change in all directions

Harris Detector Formulation

Change of intensity for the shift [u,v]:





Harris Detector Formulation

· This measure of change can be approximated by:

$$E(u,v) \approx [u \ v] M \begin{bmatrix} u \\ v \end{bmatrix}$$

where M is a 2×2 matrix computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$
 Gradient with respect to x , times gradient with respect to y

Sum over image region – the area we are checking for corner

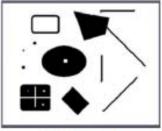
(Second moment matrix)

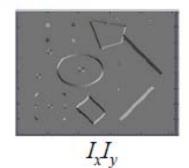
$$M = \begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} = \sum \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x I_y]$$

Refer 4.1.1. Feature detectors in Rick's book

Slide credit: Rick Szeliski

Harris Detector Formulation





where M is a 2×2 matrix computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$
 Gradient with respect to x , times gradient

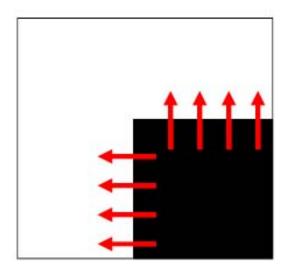
Sum over image region - the area we are checking for corner

times gradient with respect to y

$$M = \begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} = \sum \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x \ I_y]$$

What Does This Matrix Reveal?

First, let's consider an axis-aligned corner:



What Does This Matrix Reveal?

First, let's consider an axis-aligned corner:

$$M = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

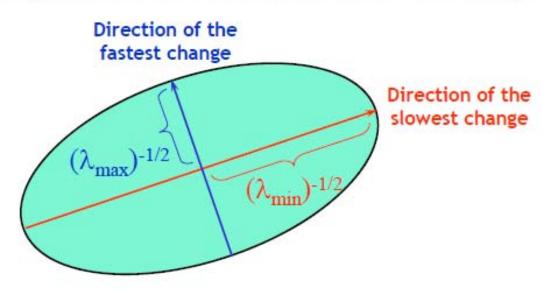
- This means:
 - Dominant gradient directions align with x or y axis
 - If either \(\lambda \) is close to 0, then this is not a corner, so look for locations where both are large.
- What if we have a corner that is not aligned with the image axes?

General Case

• Since M is symmetric, we have $M=R^{-1}egin{bmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{bmatrix}\!R$

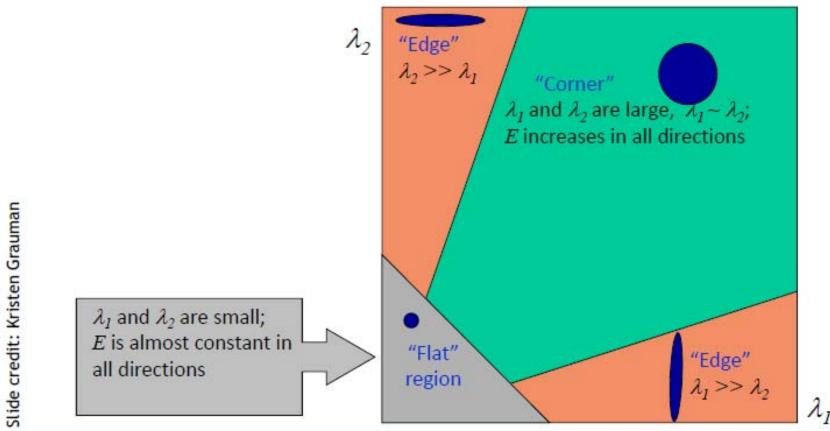
(Eigenvalue decomposition)

 We can visualize M as an ellipse with axis lengths determined by the eigenvalues and orientation determined by R



Interpreting the Eigenvalues

Classification of image points using eigenvalues of M:



Corner Response Function

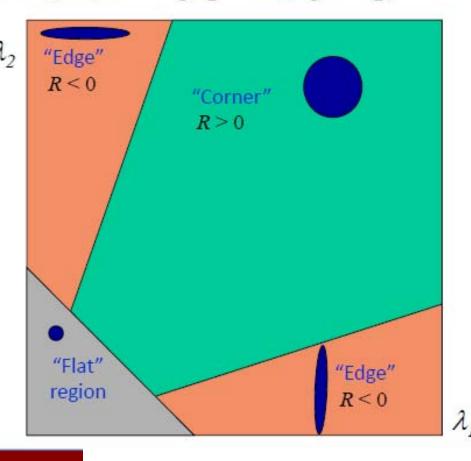
$$R = \det(M) - \alpha \operatorname{trace}(M)^{2} = \lambda_{1}\lambda_{2} - \alpha(\lambda_{1} + \lambda_{2})^{2}$$

$$M = \begin{bmatrix} A & B \\ B & C \end{bmatrix},$$

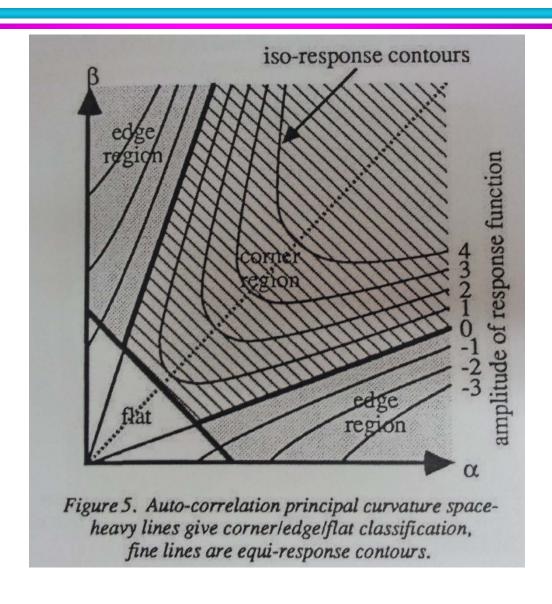
trace(M) = A + C,

$$\det(M) = AC - B^2$$

- Fast approximation
 - Avoid computing the eigenvalues
 - α: constant (0.04 to 0.06)



Corner Response Function



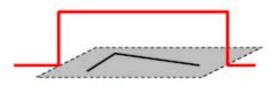
Window Function w(x,y)

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

- Option 1: uniform window
 - Sum over square window

$$M = \sum_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

- Problem: not rotation invariant



1 in window, 0 outside

Window Function w(x,y)

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

- Option 1: uniform window
 - Sum over square window

$$M = \sum_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

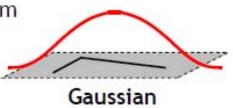
Problem: not rotation invariant

1 in window, 0 outside

- Option 2: Smooth with Gaussian
 - Gaussian already performs weighted sum

$$M = g(\sigma) * \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$
 Gaus

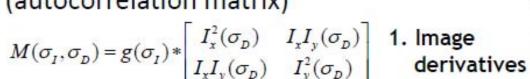
- Result is rotation invariant

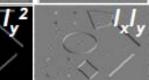


Slide credit: Krystian Mikolajczyk

Summary: Harris Detector [Harris88]

Compute second moment matrix (autocorrelation matrix)





derivatives

2. Square of

4. Cornerness function - two strong eigenvalues

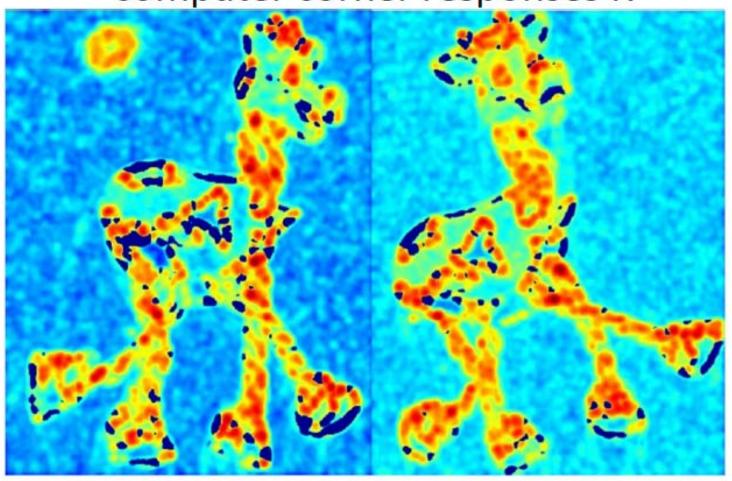
$$R = \det[M(\sigma_{I}, \sigma_{D})] - \alpha[\operatorname{trace}(M(\sigma_{I}, \sigma_{D}))]^{2}$$

= $g(I_{x}^{2})g(I_{y}^{2}) - [g(I_{x}I_{y})]^{2} - \alpha[g(I_{x}^{2}) + g(I_{y}^{2})]^{2}$

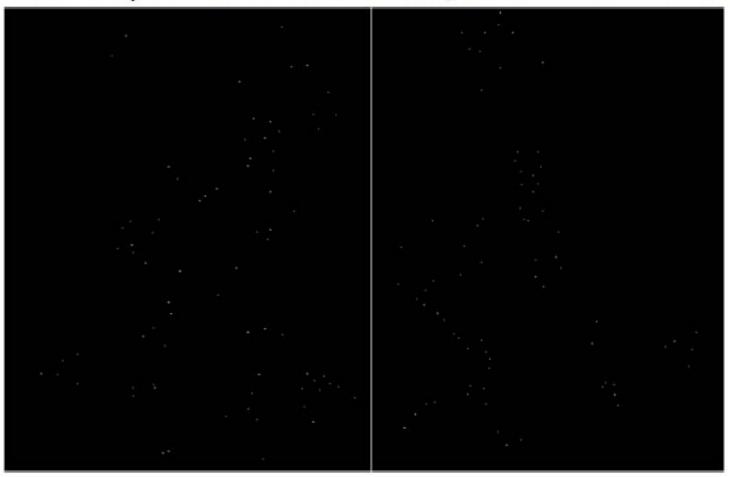
5. Perform non-maximum suppression

Slide adapted from Darya Frolova, Denis Simakov

- computer corner responses R

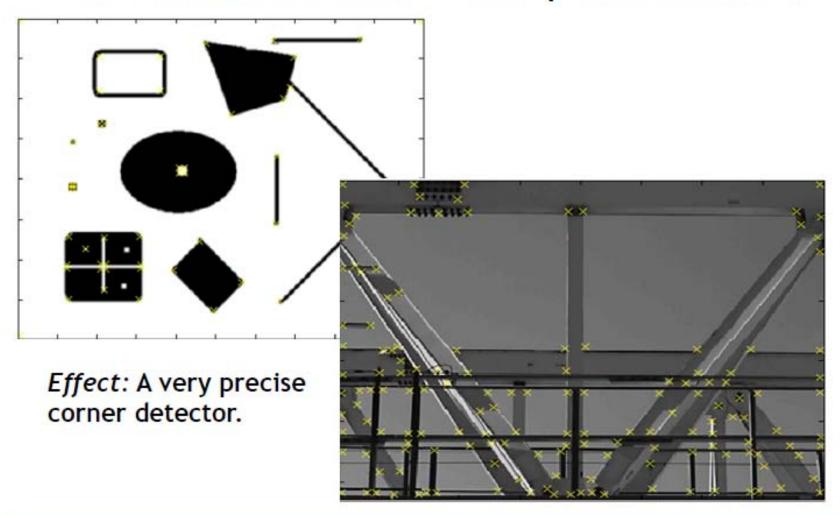


- Take only the local maxima of R, where R>threshold



- Resulting Harris points

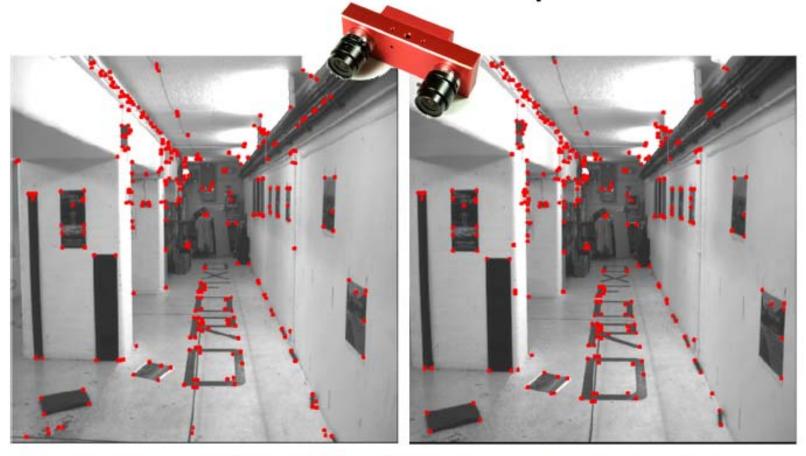
Harris Detector – Responses [Harris88]



Harris Detector – Responses [Harris88]

Slide credit: Krystian Mikolajczyk

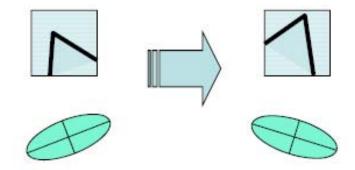
Harris Detector – Responses [Harris88]



Results are well suited for finding stereo correspondences

Harris Detector: Properties

Rotation invariance?



Ellipse rotates but its shape (i.e. eigenvalues) remains the same

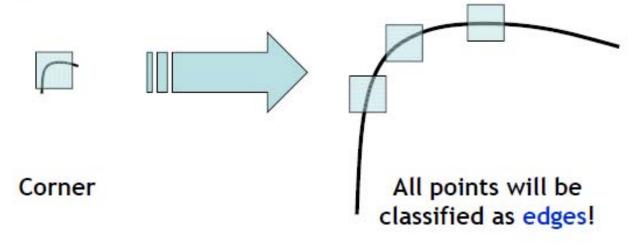
Corner response R is invariant to image rotation

Harris Detector: Properties

- Rotation invariance
- Scale invariance?

Harris Detector: Properties

- Rotation invariance
- Scale invariance?



Not invariant to image scale!

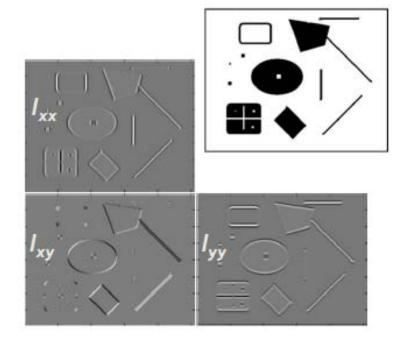
Hessian Detector [Beaudet78]

Hessian determinant

$$Hessian(I) = \begin{bmatrix} I_{xx} & I_{xy} \\ I_{xy} & I_{yy} \end{bmatrix}$$

Note: these are 2nd derivatives!

Intuition: Search for strong derivatives in two orthogonal directions



Hessian Detector [Beaudet78]

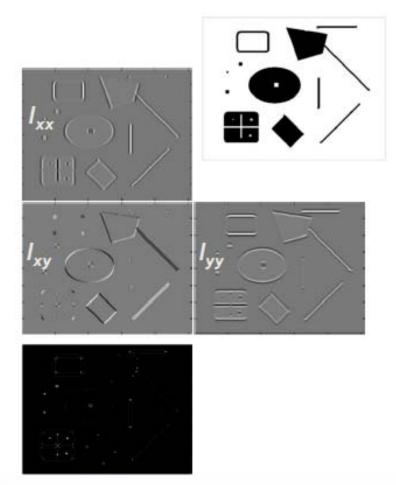
Hessian determinant

$$Hessian(I) = \begin{bmatrix} I_{xx} & I_{xy} \\ I_{xy} & I_{yy} \end{bmatrix}$$

$$\det(Hessian(I)) = I_{xx}I_{yy} - I_{xy}^{2}$$

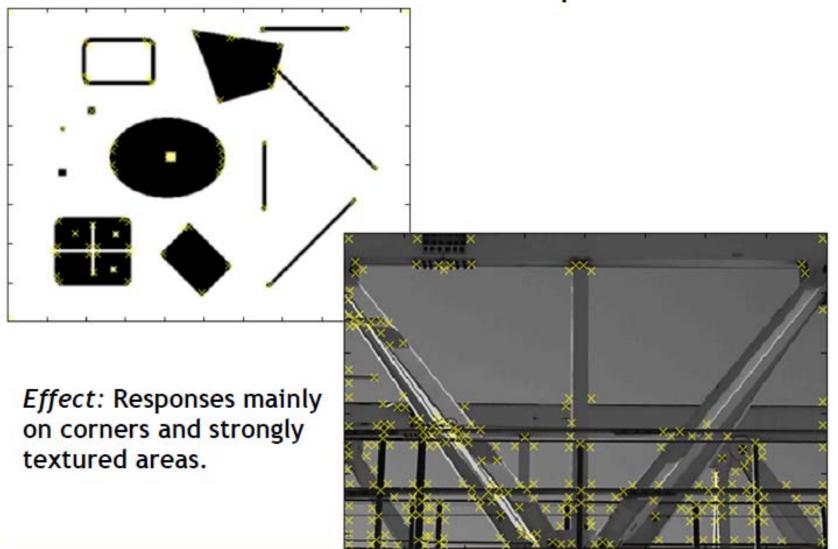
In Matlab:

$$I_{xx}.*I_{yy}-(I_{xy})^2$$



Slide credit: Krystian Mikolajczyk

Hessian Detector – Responses [Beaudet78]



Slide credit: Krystian Mikolajczyk

Hessian Detector – Responses [Beaudet78]

Next Time..

Scale invariant region selection

Homework for Every Class

- Go over the next lecture slides
- Come up with one question on what we have discussed today
- Go over recent papers on image search, and submit their summary

Homework for Every Class

- Go over recent papers on image search
 - High quality papers: Papers published at the top-tier conf. or close it can be presented; e.g., CVPR, ICCV, ECCV, MM, SIGGRAPH
 - Recent publication : papers published since 2011
 - Find and browse two papers, and submit your summary before every beginning of the Thur. class
- Think about possible team members
- Too late if you think them later...

