CS688/WST665: Web-Scale Image Retrieval Scale Invariant Region Selection

Sung-Eui Yoon (윤성의)

Course URL: http://sglab.kaist.ac.kr/~sungeui/IR

What we will learn today?

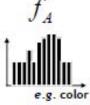
- Local invariant features
 - Motivation
 - Requirements, invariances
- Keypoint localization
 - Harris corner detector
 - Hessian detector
- Scale invariant region selection
 - Automatic scale selection
 - Laplacian-of-Gaussian detector
 - Difference-of-Gaussian detector
 - Combinations
- Local descriptors
 - An intro

From Points to Regions...

- The Harris and Hessian operators define interest points.
 - Precise localization
 - High repeatability

- In order to compare those points, we need to compute a descriptor over a region.
 - How can we define such a region in a scale invariant manner?
- I.e. how can we detect scale invariant interest regions?

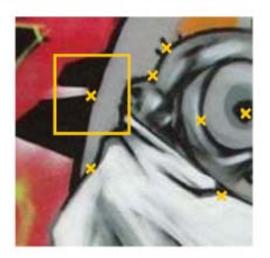
- Multi-scale procedure
 - Compare descriptors while varying the patch size

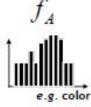


Similarity measure

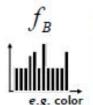
 $d(f_A, f_B)$

- Multi-scale procedure
 - Compare descriptors while varying the patch size

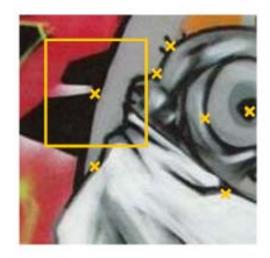


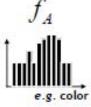


Similarity measure

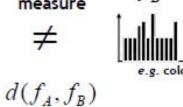


- Multi-scale procedure
 - Compare descriptors while varying the patch size

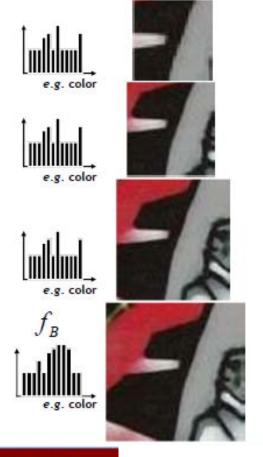


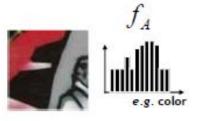


Similarity measure



- Comparing descriptors while varying the patch size
 - Computationally inefficient
 - Inefficient but possible for matching
 - Prohibitive for retrieval in large databases
 - Prohibitive for recognition





Similarity measure

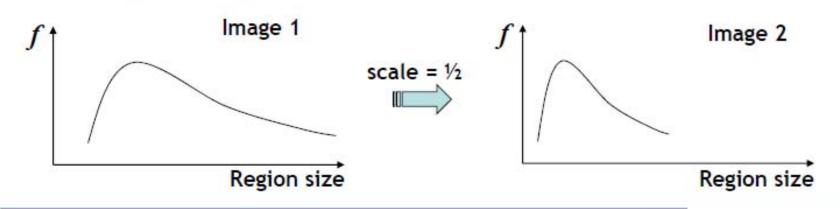
 $d(f_A, f_B)$

Solution:

 Design a function on the region, which is "scale invariant" (the same for corresponding regions, even if they are at different scales)

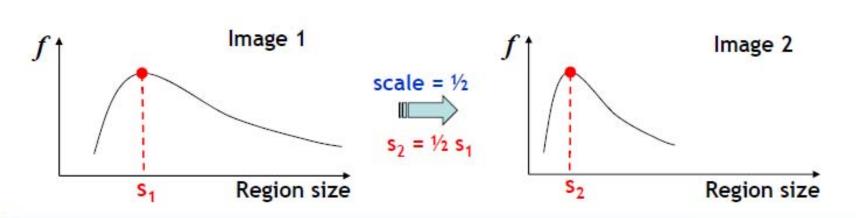
Example: average intensity. For corresponding regions (even of different sizes) it will be the same.

 For a point in one image, we can consider it as a function of region size (patch width)

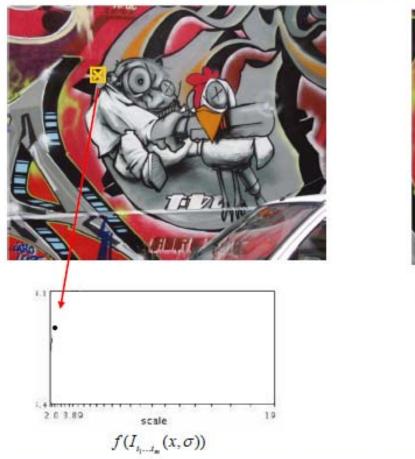


Slide credit: Kristen Grauman

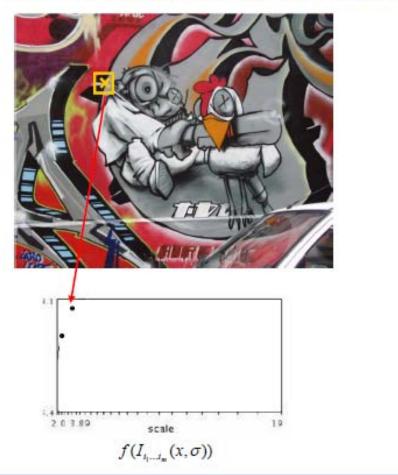
- Common approach:
 - Take a local maximum of this function.
 - Observation: region size for which the maximum is achieved should be invariant to image scale.

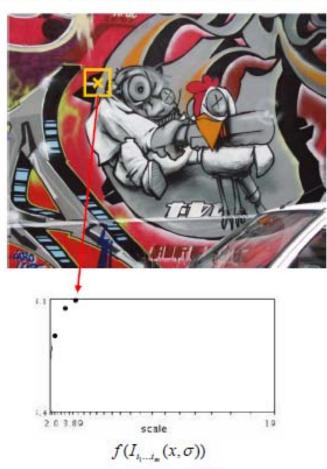


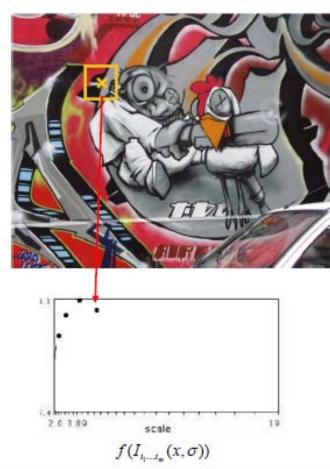
Slide credit: Kristen Grauman

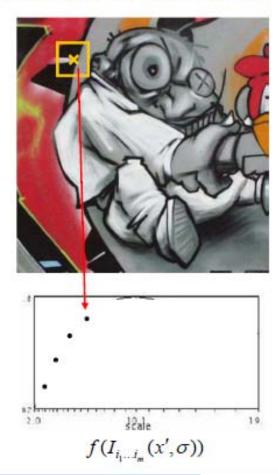




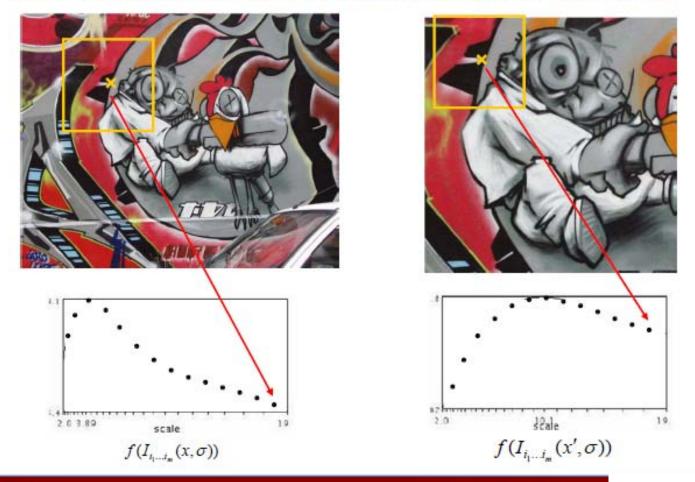




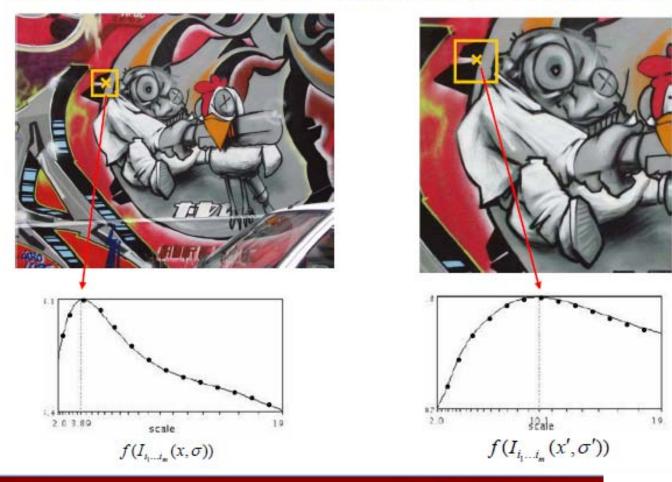




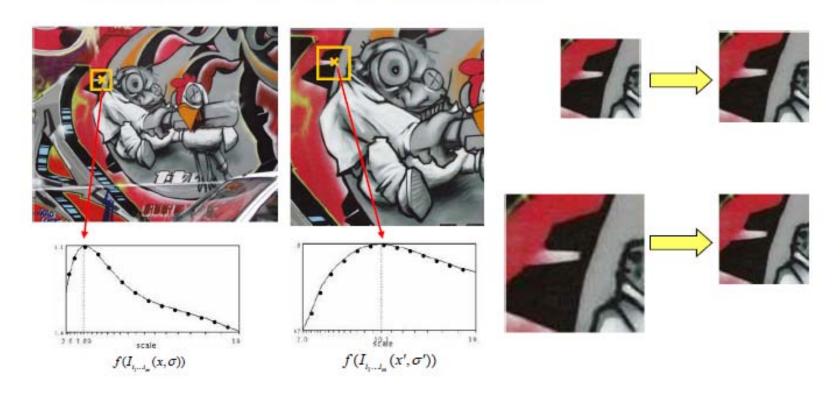
Function responses for increasing scale (scale signature)



Function responses for increasing scale (scale signature)



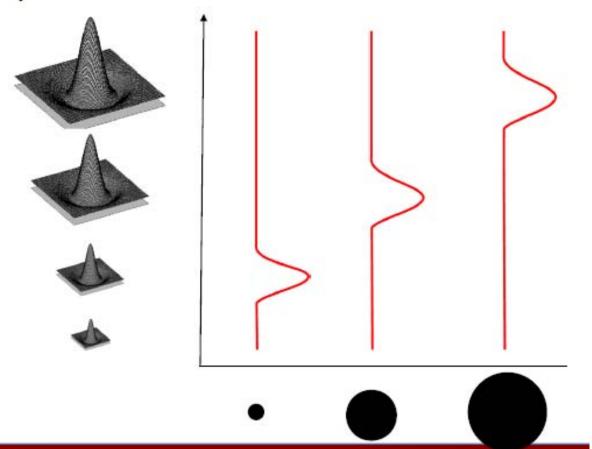
Normalize: Rescale to fixed size



Slide credit: Tinne Tuytelaars

What Is A Useful Signature Function?

Laplacian-of-Gaussian = "blob" detector

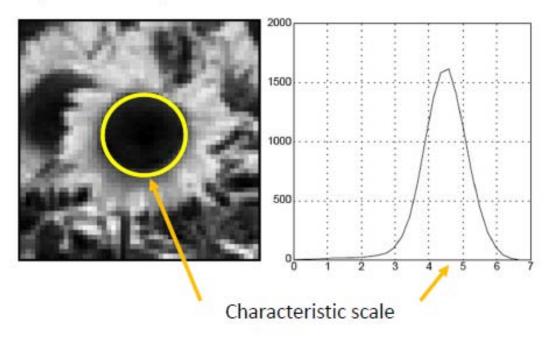


Slide credit: Bastian Leibe

Slide credit: Svetlana Lazebnik

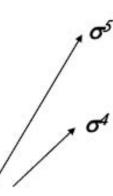
Characteristic Scale

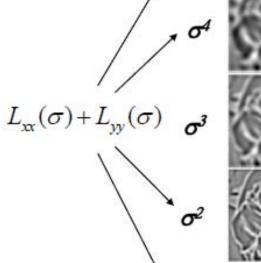
 We define the characteristic scale as the scale that produces peak of Laplacian response

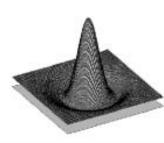


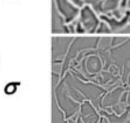
T. Lindeberg (1998). <u>"Feature detection with automatic scale selection."</u> International Journal of Computer Vision 30 (2): pp 77--116.

- Interest points:
 - Local maxima in scale space of Laplacian-of-Gaussian

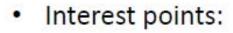




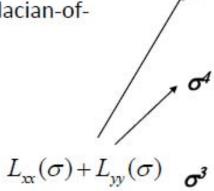


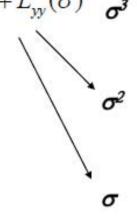


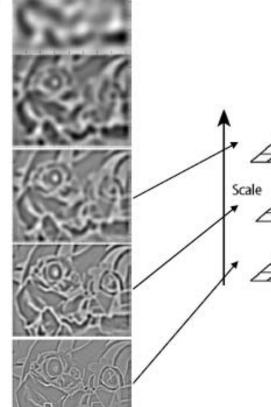
Laplacian-of-Gaussian (LoG)

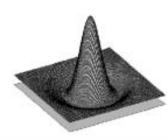


 Local maxima in scale space of Laplacian-of-Gaussian

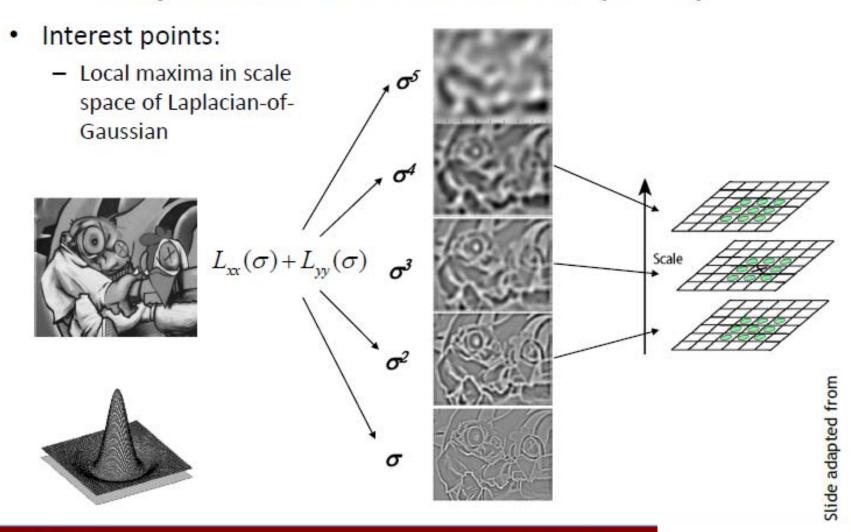




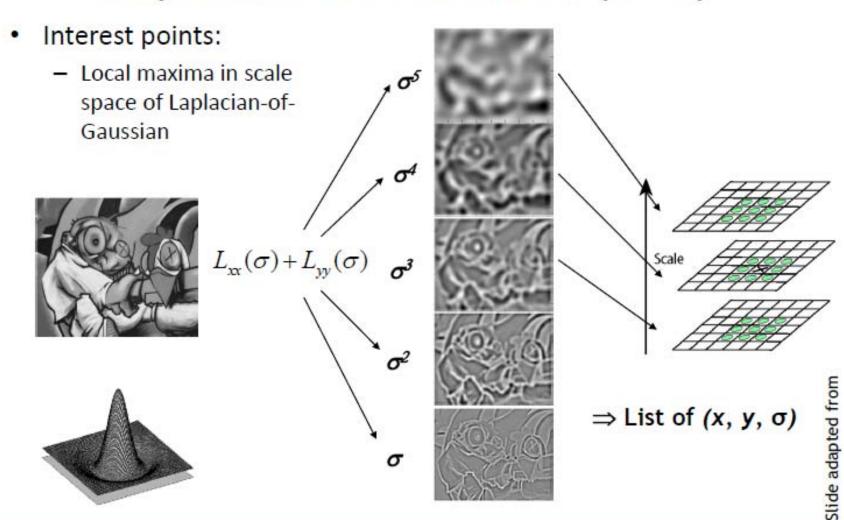




Laplacian-of-Gaussian (LoG)



Laplacian-of-Gaussian (LoG)



LoG Detector: Workflow

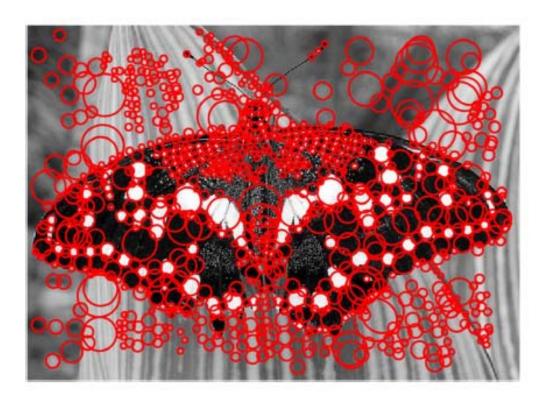
Slide credit: Svetlana Lazebnik

Slide credit: Svetlana Lazebnik

LoG Detector: Workflow

sigma = 11.9912

LoG Detector: Workflow



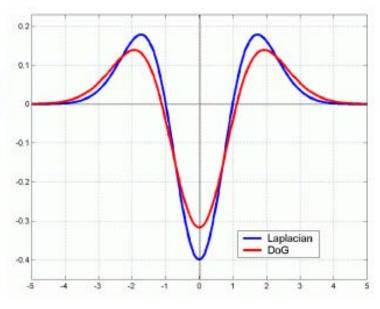
Slide credit: Svetlana Lazebnik

 We can efficiently approximate the Laplacian with a difference of Gaussians:

$$L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$
(Laplacian)

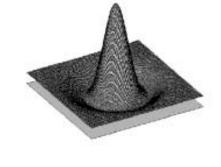
$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$

(Difference of Gaussians)



Difference-of-Gaussian (DoG)

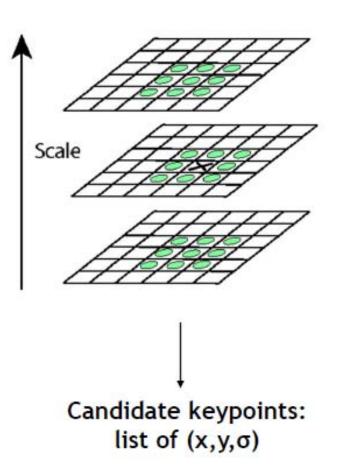
- Difference of Gaussians as approximation of the LoG
 - This is used e.g. in Lowe's SIFT pipeline for feature detection.
- Advantages
 - No need to compute 2nd derivatives
 - Gaussians are computed anyway, e.g. in a Gaussian pyramid.



Slide credit: Bastian Leibe

Key point localization with DoG

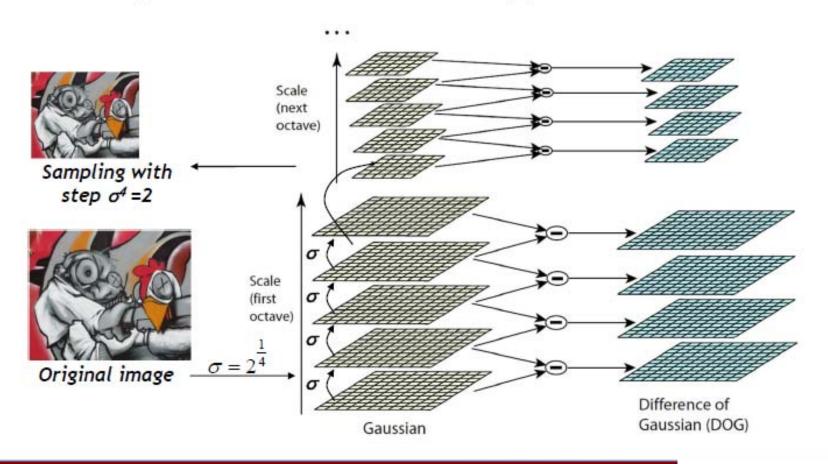
- Detect maxima of difference-of-Gaussian (DoG) in scale space
- Then reject points with low contrast (threshold)
- Eliminate edge responses



Slide credit: David Lowe

DoG – Efficient Computation

Computation in Gaussian scale pyramid



Slide adapted from Krystian Mikolajczyk

Results: Lowe's DoG

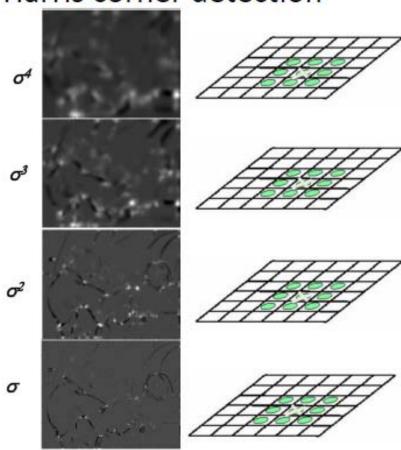
Slide credit: Bastian Leibe

Example of Keypoint Detection

- (a) 233x189 image
- (b) 832 DoG extrema
- (c) 729 left after peak value threshold
- (d) 536 left after testing ratio of principle curvatures (removing edge responses)

Harris-Laplace [Mikolajczyk '01]

1. Initialization: Multiscale Harris corner detection



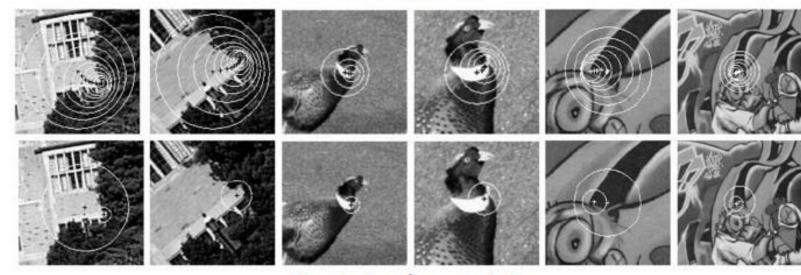
Computing Harris function Detecting local maxima

Slide adapted from Krystian Mikolajczyk

Harris-Laplace [Mikolajczyk '01]

- 1. Initialization: Multiscale Harris corner detection
- Scale selection based on Laplacian
 (same procedure with Hessian ⇒ Hessian-Laplace)

Harris points



Harris-Laplace points

Summary: Scale Invariant Detection

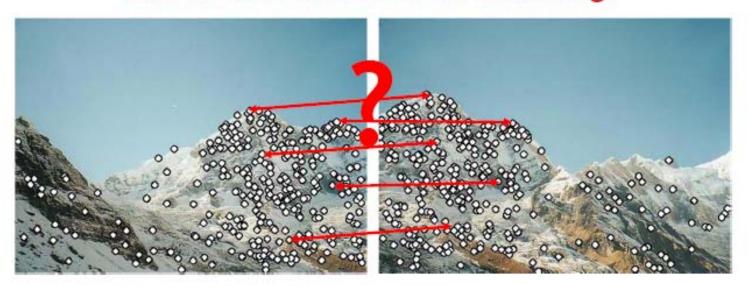
- Given: Two images of the same scene with a large scale difference between them.
- Goal: Find the same interest points independently in each image.
- Solution: Search for maxima of suitable functions in scale and in space (over the image).
- Two strategies
 - Laplacian-of-Gaussian (LoG)
 - Difference-of-Gaussian (DoG) as a fast approximation
 - These can be used either on their own, or in combinations with single-scale keypoint detectors (Harris, Hessian).

What we will learn today?

- Local invariant features
 - Motivation
 - Requirements, invariances
- Keypoint localization
 - Harris corner detector
 - Hessian detector
- Scale invariant region selection
 - Automatic scale selection
 - Laplacian-of-Gaussian detector
 - Difference-of-Gaussian detector
 - Combinations
- Local descriptors
 - An intro

- We know how to detect points
- Next question:

How to describe them for matching?

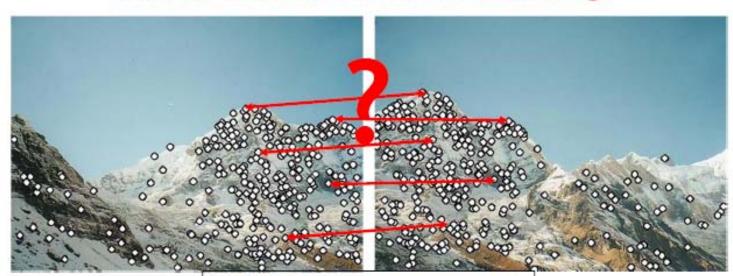


⇒ Next lecture...

Local Descriptors

- We know how to detect points
- Next question:

How to describe them for matching?



Point descriptor should be:

- 1. Invariant
- 2. Distinctive

Next Time

Local descriptors (e.g., SIFT)

Homework for Every Class

- Go over the next lecture slides
- Come up with one question on what we have discussed today
 - 1 for typical questions (that were answered in the class)
 - 2 for questions with thoughts or that surprised me
- Write questions at least 4 times
 - Write a question about one out of every four classes
 - Multiple questions in one time will be counted as one time
- Common questions are compiled at the Q&A file
 - Some of questions will be discussed in the class
- If you want to know the answer of your question, ask me or TA on person