Hashing Techniques

윤성의 (Sung-Eui Yoon)

Associate Professor KAIST

http://sglab.kaist.ac.kr

Class Objectives

- Understand the basic hashing techniques based on hyperplanes
- Get to know a recent one based on hyperspheres

Image Retrieval

Finding visually similar images

Image Descriptor

High dimensional point

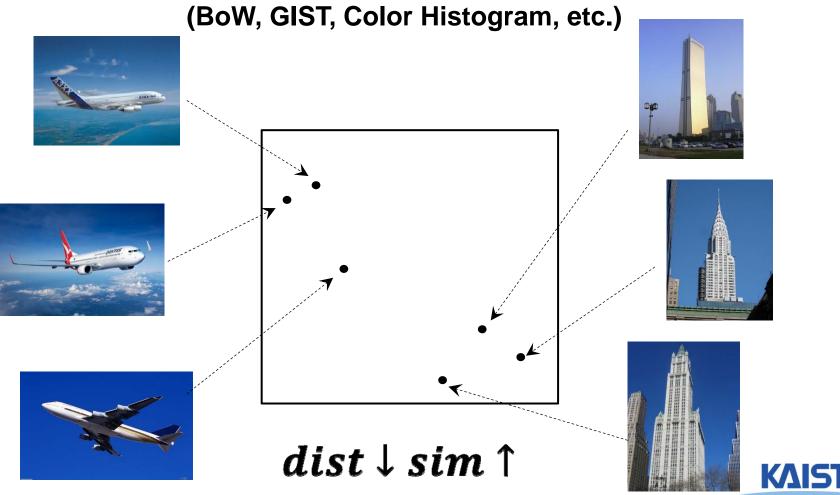
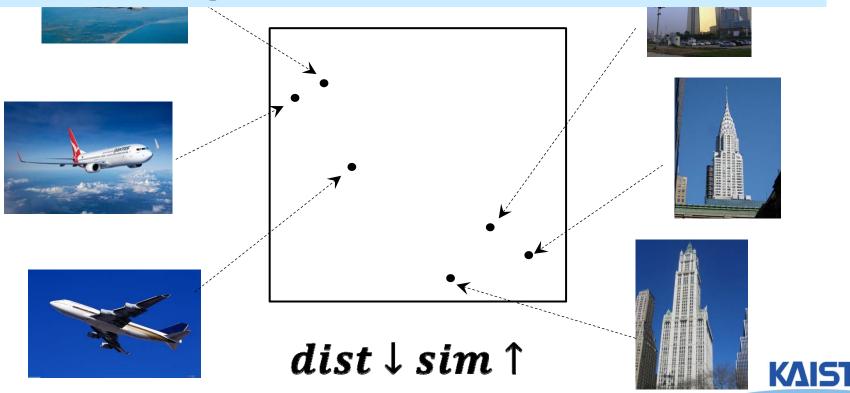


Image Descriptor

High dimensional point Nearest neighbor search (NNS) in high dimensional space

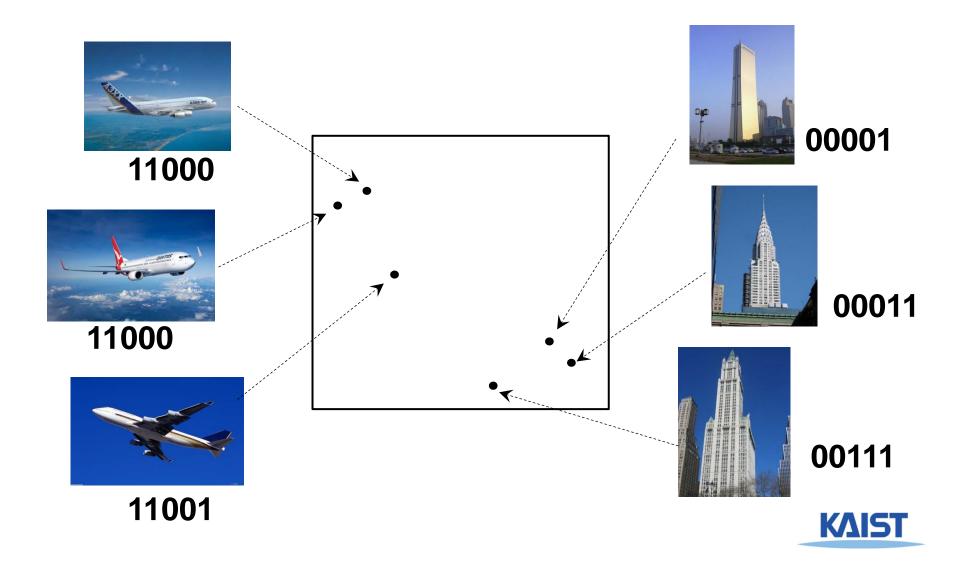


Challenge

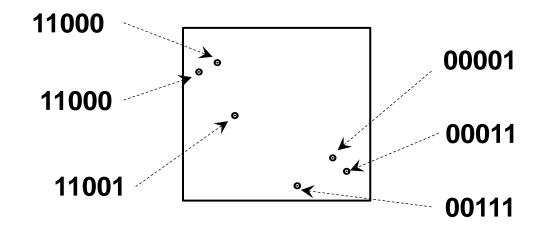
	BoW	GIST
Dimensions	1000+	300+
1 image	4 KB+	1.2 KB+
1B images	3 TB+	1 TB+

 $\frac{144 \text{ GB memory}}{1 \text{ billion images}} \approx \frac{128 \text{ bits}}{1 \text{ image}}$

Binary Code

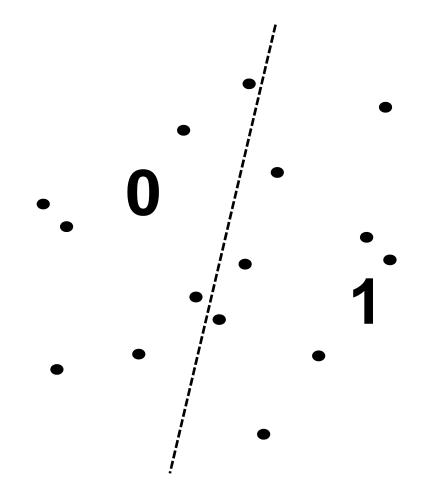


Binary Code

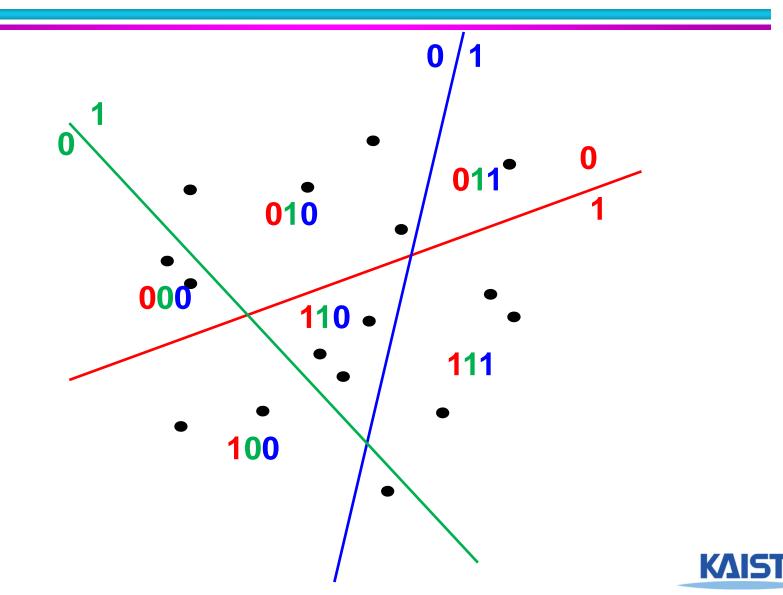


- * Benefits
 - Compression
 - Very fast distance computation (Hamming Distance, XOR)

Hyper-Plane based Binary Coding



Hyper-Plane based Binary Coding

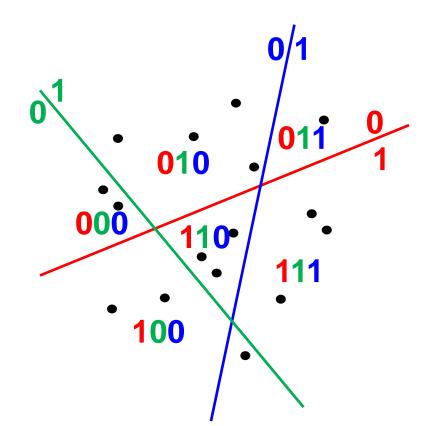


Distance between Two Points

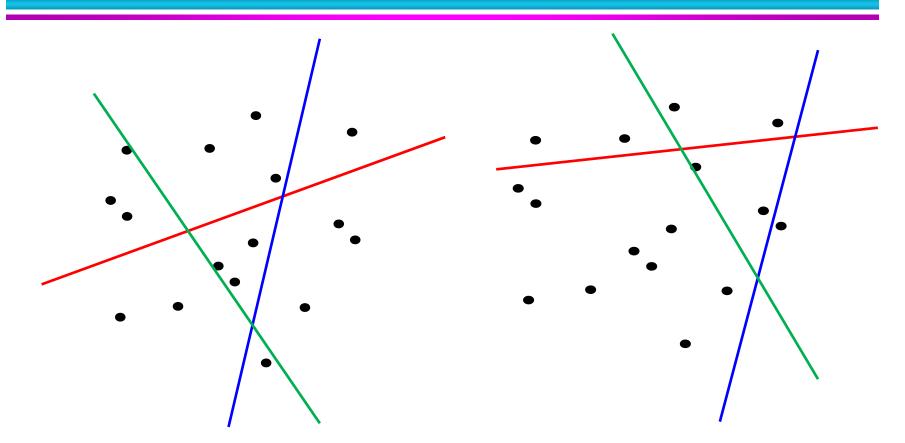
- Measured by bit differences, known as Hamming distance
- Efficiently computed by XOR bit operations

$$d_{hd}(b_i, b_j) =$$

$$|b_i\oplus b_j|$$



Good and Bad Hyper-Planes



Previous work focused on how to determine good hyper-planes

Previous Work

- Random hyper-planes from a specific distribution [Indyk STOC 1998, Raginsky NIPS 2009]
- Spectral graph partitioning [Yeiss, NIPS 2008]
- Minimize quantization error [Gong, CVPR 2011 oral session]
- Independent component analysis [He, CVPR 2011 oral session]
- Support Vector Machine [Joly, CVPR 2011]

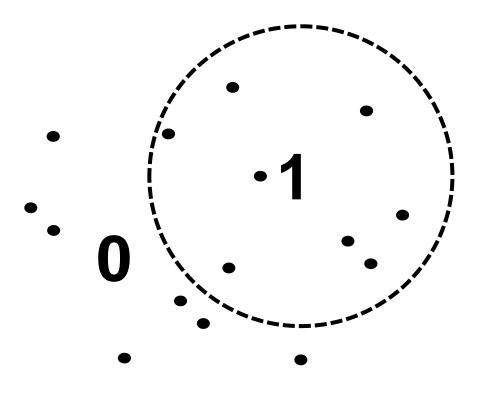
Components of Spherical Hashing

- Spherical hashing
- Hyper-sphere setting strategy
- Spherical Hamming distance

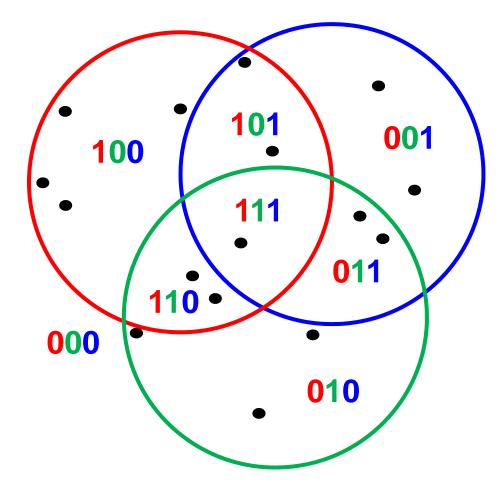
Components of Spherical Hashing

- Spherical hashing
- Hyper-sphere setting strategy
- Spherical Hamming distance

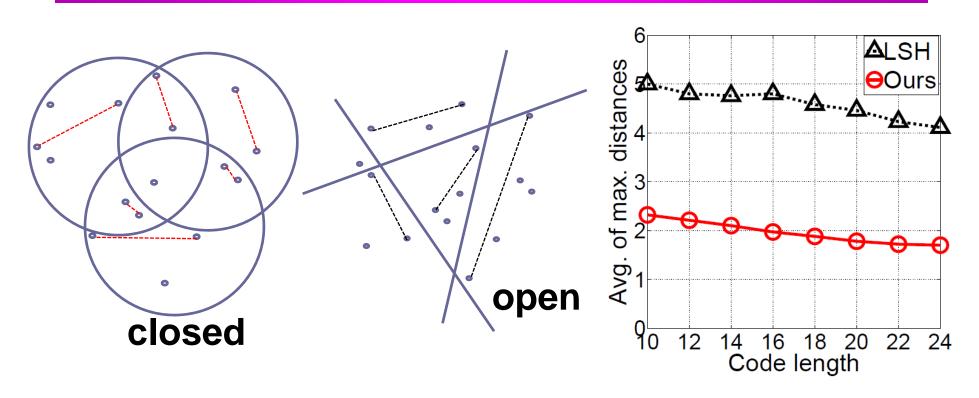
Spherical Hashing [Heo et al., CVPR 12]



Spherical Hashing [Heo et al., CVPR 12]



Hyper-Sphere vs Hyper-Plane



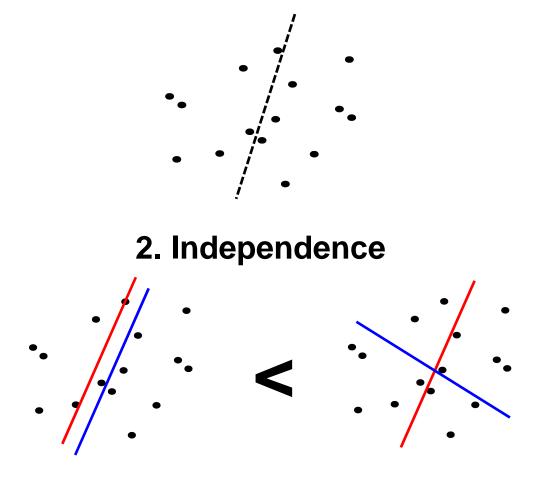
Average of maximum distances within a partition: - Hyper-spheres gives tighter bound!

Components of Spherical Hashing

- Spherical hashing
- Hyper-sphere setting strategy
- Spherical Hamming distance

Good Binary Coding [Yeiss 2008, He 2011]

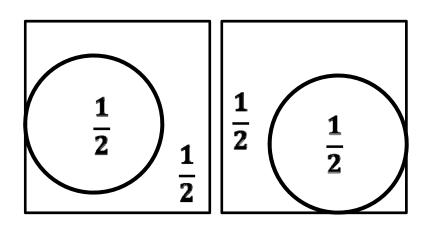
1. Balanced partitioning

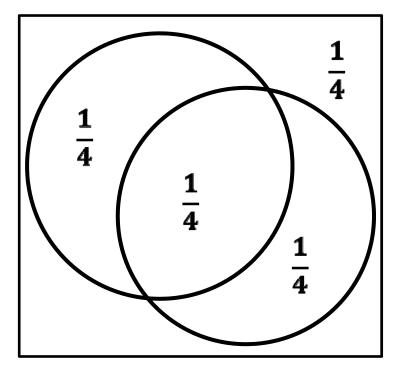


Intuition of Hyper-Sphere Setting

1. Balance

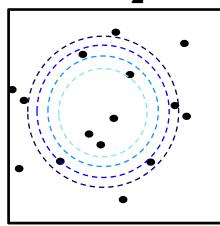
2. Independence





Hyper-Sphere Setting Process

- 1. Balance
- by controlling radius for $n(S) = \frac{N}{2}$



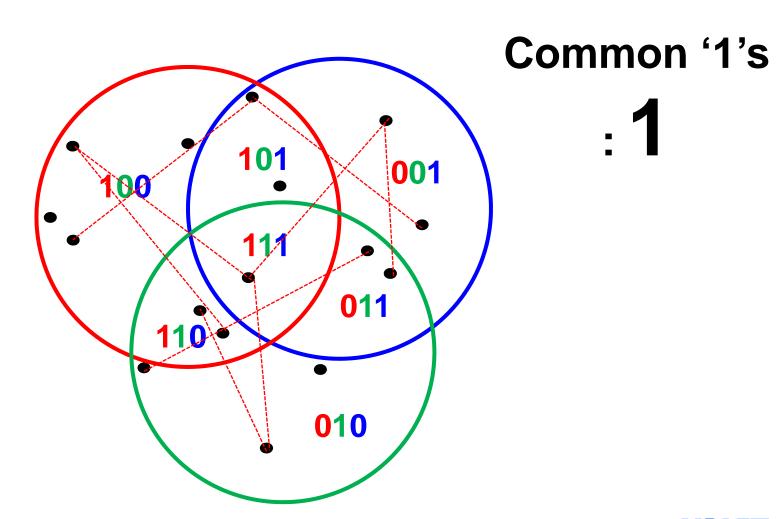
2. Independence - by moving two hyperspheres for $n(S_1 \cap S_2) = \frac{N}{4}$

Iteratively repeat step 1, 2 until convergence.

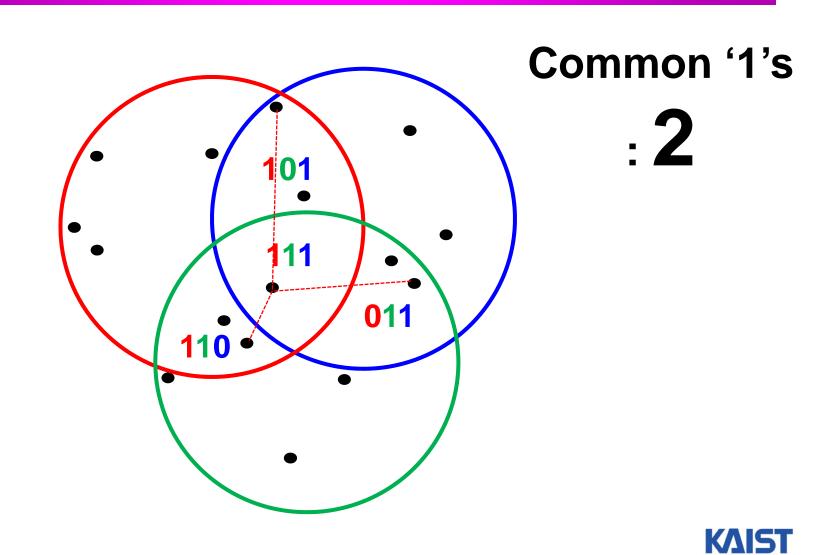
Components of Spherical Hashing

- Spherical hashing
- Hyper-sphere setting strategy
- Spherical Hamming distance

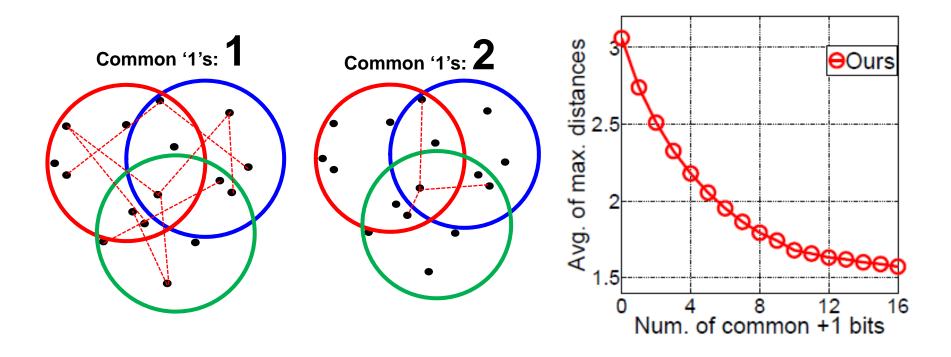
Max Distance and Common '1'



Max Distance and Common '1'



Max Distance and Common '1'



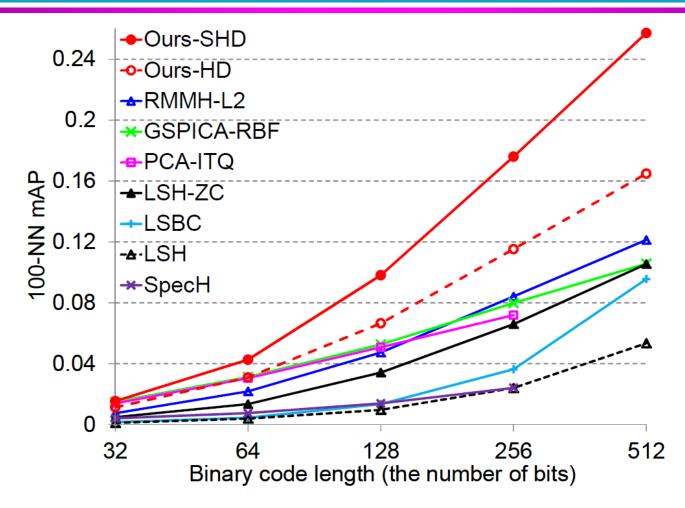
Average of maximum distances between two partitions: decreases as number of common '1'

Spherical Hamming Distance (SHD)

$$d_{shd}(b_i, b_j) = \frac{|b_i \oplus b_j|}{|b_i \wedge b_j|}$$

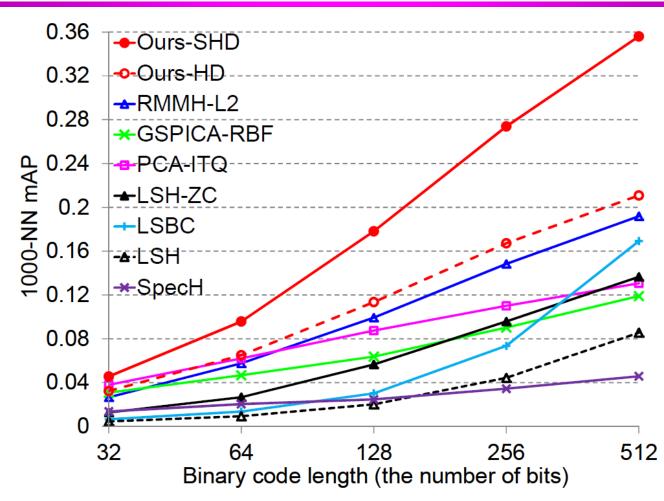
SHD: Hamming Distance divided by the number of common '1's.

Results



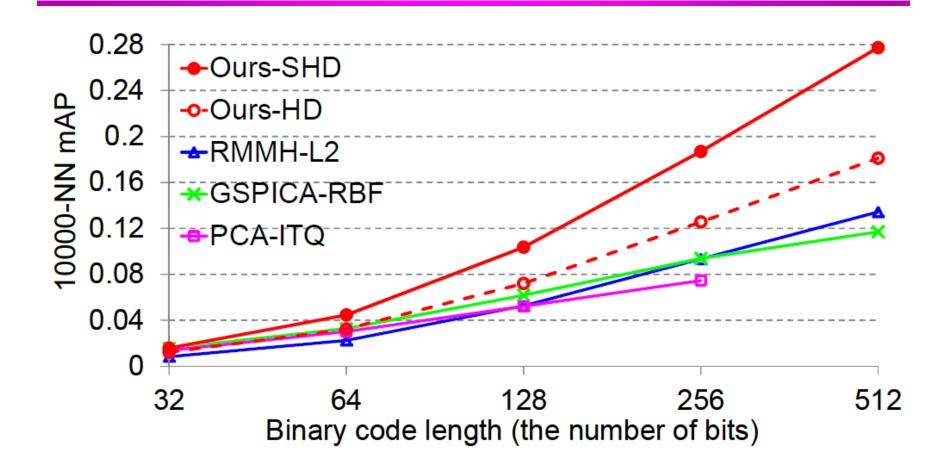
384 dimensional 1 million GIST descriptors

Results



960 dimensional 1 million GIST descriptors

Results



384 dimensional 75 million GIST descriptors

Summary

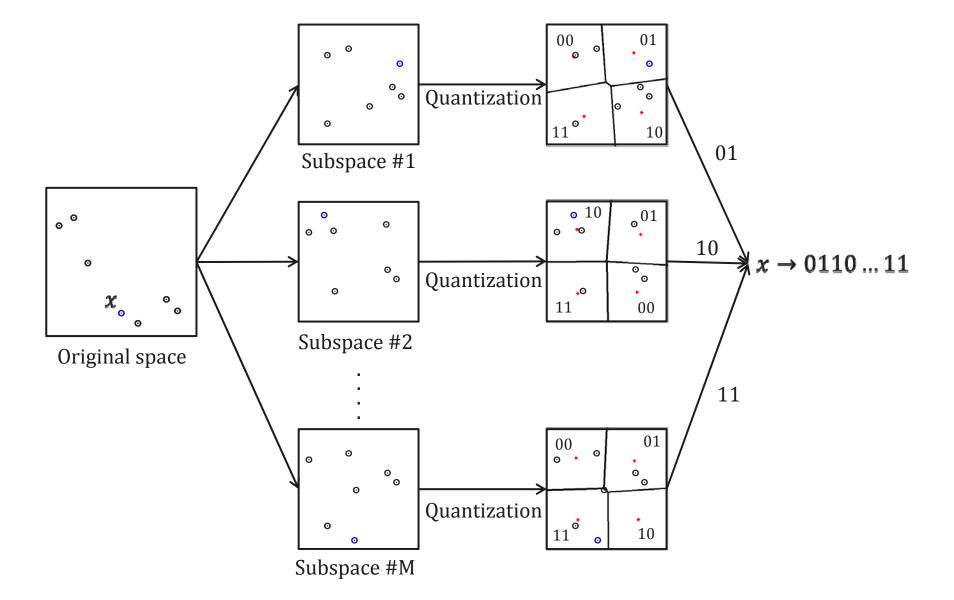
- The need of binary code embedding
- Spherical binary code embedding
 - Uses spherical hashing for tighter bounds
 - Iterative process to achieve balance and independence
 - Spherical Hamming distance

Distance Encoded Product Quantization

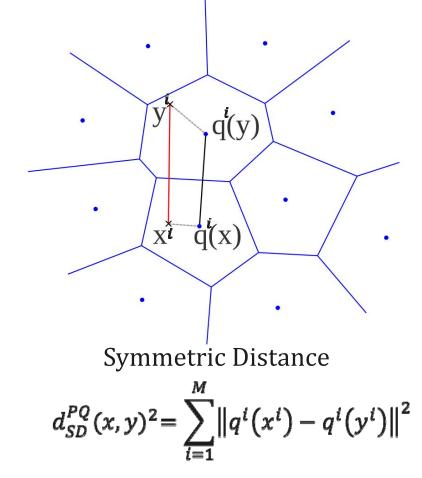
Jae-Pil Heo, Zhe Lin, and Sung-Eui Yoon

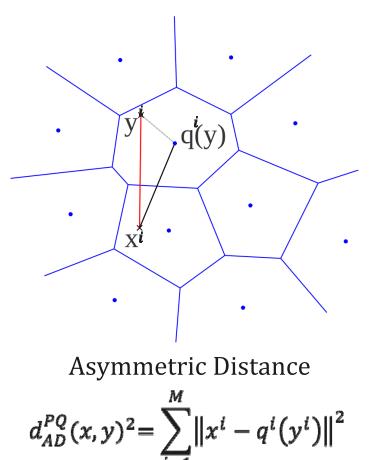
CVPR 2014

PQ: Product Quantization [Jegou et al., TPAMI 2011]



Distance Computation in PQ





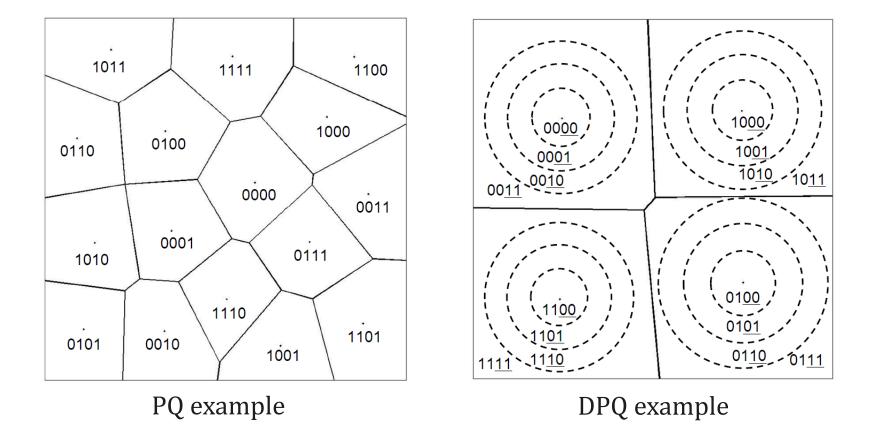
Terms

x: query, y: data, M: # of Subspaces, q^i : quantizer in i^{th} subspace, x^i : sub-vector of x in i^{th} subspace

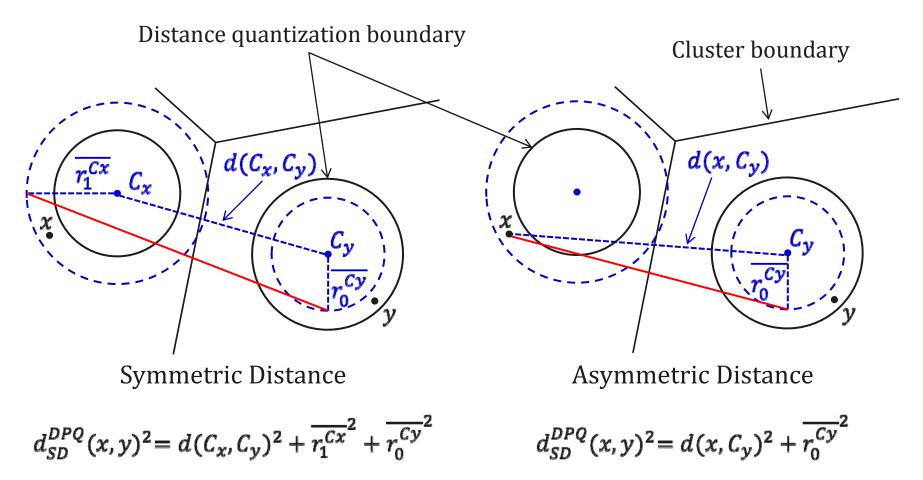
Figures are from [Jegou et al., TPAMI 2011]

DPQ: Distance Encoded PQ

• DPQ encodes quantized distance from the center as well as the cluster index in each subspace.

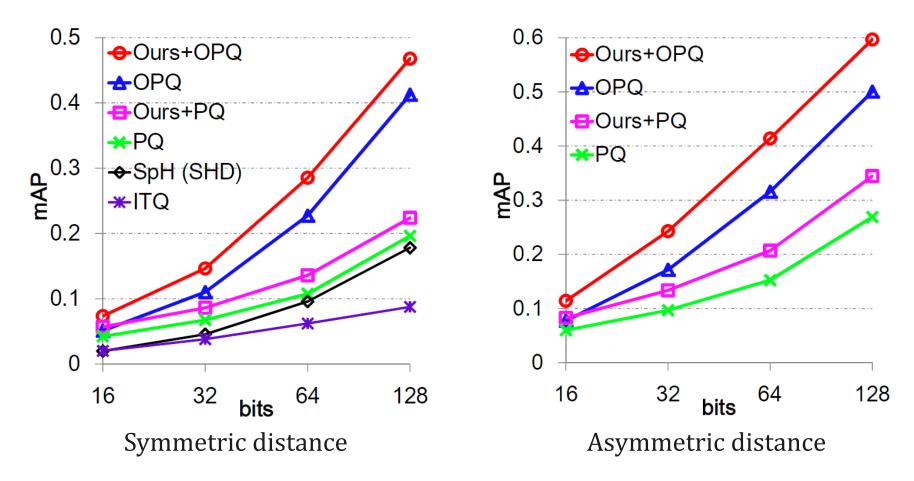


Distance Computation in DPQ



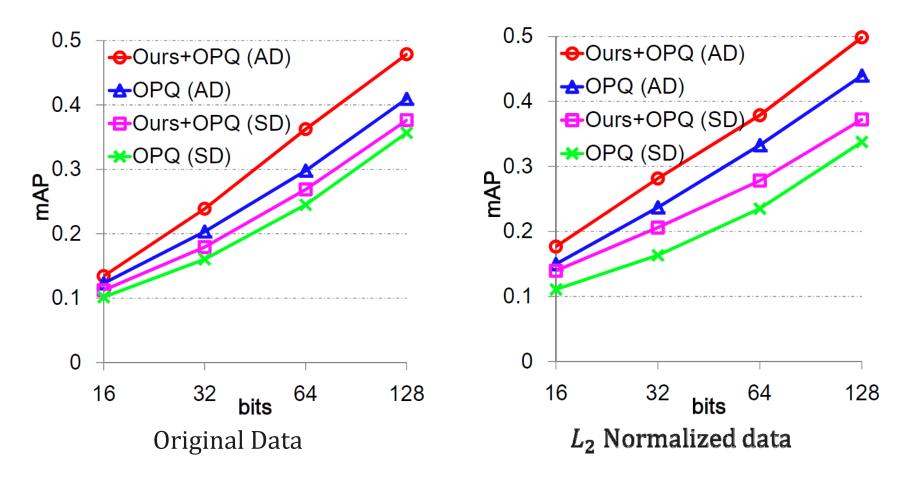
 $\overline{r_j^C}$: average distance from the center to points whose cluster center is C and quantized distance index is j

Results on GIST-1M-960D



1000-nearest neighbor search mAP OPQ: Optimized PQ [Ge et al., CVPR 2013] SpH: Sperical Hashing [Heo et al., CVPR 2012] ITQ: Iterative Quantization [Gong and Lazebnik, CVPR 2011]

Results on BoW-1M-1024D



1000-nearest neighbor search mAP SD: Symmetric distance AD: Asymmetric distance

Class Objectives were:

- Understand the basic hashing techniques based on hyperplanes
- Get to know a recent one based on hyperspheres
- Codes are available

http://sglab.kaist.ac.kr/software.htm

Next Time...

Novel applications

