Image Search with Deep Learning

Sung-Eui Yoon (윤성의)

Tentative Schedule

 10/25: mid-term 11/22: Student pre. II exam 11/24 11/29 10/27: Student pre. I 12/1 11/1 12/6 11/3 12/8: reserved 11/8 12/13: final pre. 11/10: mid-pre 12/15: final pre. 11/15: mid-pre **D: 10/4 (student** 11/17: no class schedule

Deadlines

- Declare project team members
 - By 10/3 at Noah
- Confirm schedules of paper talks and project talks at 10/4
- Declare two papers for student presentations
 - by 10/17 at Noah
 - Discuss them at the class of 10/18

Deep Learning for Image Search

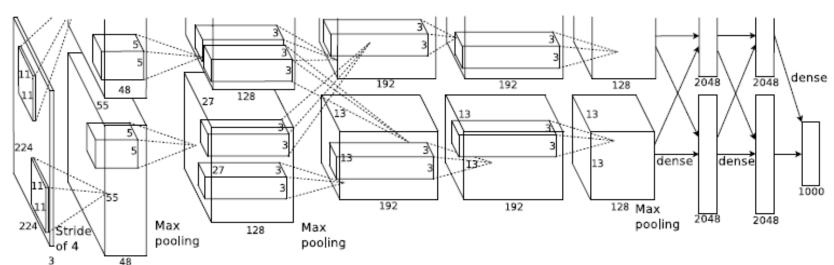
- Not well studied yet
- Designed by integrating some machine learning and computer vision techniques within deep learning

Outline

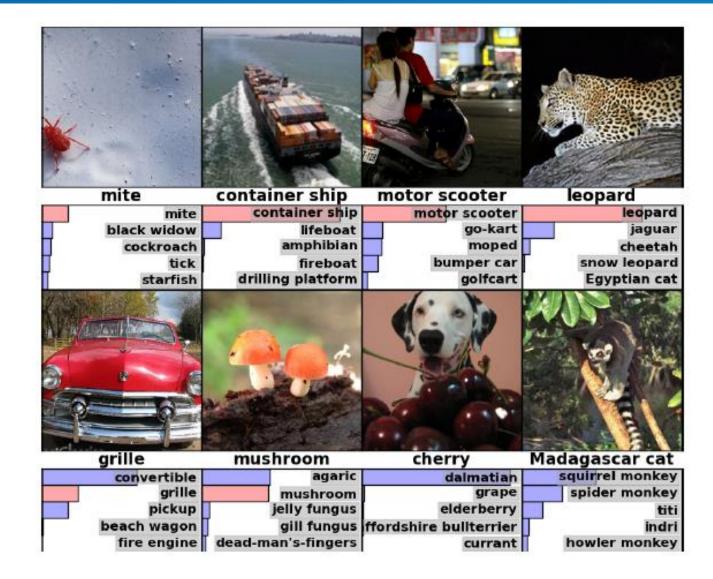
- Representations
 - Fine-tuning
 - Dimension reduction
- Localization and detections
- Not that much on:
 - Post-processing
 - Matching

ImageNet Classification with Deep Convolutional Neural Networks [NIPS 12]

- Rekindled interest on CNNs
 - Use a large training images of 1.2 M labelled images
 - Use GPU w/ rectifying non-linearities and dropout regularization

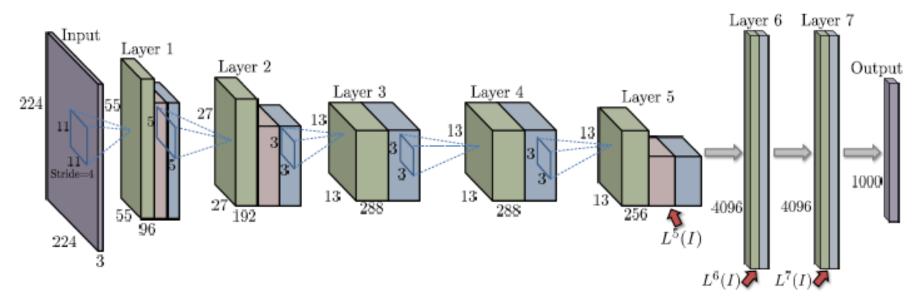


Tested on ILSVRC-2010



Neural Codes for Image Retrieval [ECCV 14]

- Uses top layers of CNNs as high-level global descriptors (Neural Codes) for image search
- Shows higher accuracy with re-training



Sum Pooling and Centering Priors

- Inspired by many prior aggregated features (e.g., BoW)
 - Use convolution layers as local features as dense SIFTs $\psi_1(I) = \sum_{i=1}^{H} \sum_{j=1}^{W} f_{(x,y)}$
- Aggregation
 - Simply sums those local features or
 - Considers centering priors w/ varying weights

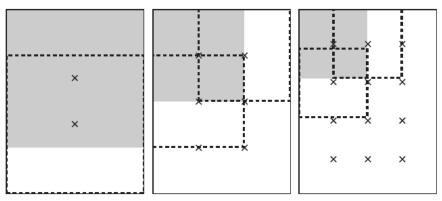
Method	Holidays	Oxford5K (full)	Oxford105K (full)	UKB
Fisher vector, k=16	0.704	0.490	_	_
Fisher vector, k=256	0.672	0.466	_	_
Triangulation embedding, k=1	0.775	0.539		_
Triangulation embedding, k=16	0.732	0.486	_	_
Max pooling	0.711	0.524	0.522	3.57
Sum pooling (SPoC w/o center prior)	0.802	0.589	0.578	3.65
SPoC (with center prior)	0.784	0.657	0.642	3.66

R-MAC: Regional Maximum Activation of Convolutions

- Use maximum activation of convolutions for translation invariance
- Consider uniformly generated regions with different scales, and take the maximum per each feature channel

 Aggregation can be considered as a simple method for cross matching among all possible

regions



Approximate Integral Max-Pooling

- Approximate the maximum with L_p norm
 - $\alpha = 10$

$$\tilde{f}_{\mathcal{R},i} = \left(\sum_{p \in \mathcal{R}} \mathcal{X}_i(p)^{\alpha}\right)^{\frac{1}{\alpha}} \approx \max_{p \in \mathcal{R}} \mathcal{X}_i(p) = f_{\mathcal{R},i},$$

- Need to sum values of many different regions
 - Use integral images, summed-area table, of features
 - Do not need to extract features again from regions

Post-Processing

- Once a shortlist is identified, various postprocessing can be adopted
- Localization
 - Exhaustive search takes too much time
 - Refine box coordinates from initial responses
- Reranking and query expansion can be performed

Fine-Tuning for Search

- Use CNN features that were trained with ImageNet
- Retraining with a task-specific dataset achieve higher accuracy
 - Can lower accuracy when using dissimilar datasets

Fine-Tuning for Search

Descriptor	Dims	Oxford	Oxford 105K	Holidays	UKB			
Fisher+color[7]	4096			0.774	3.19			
VLAD+adapt+innorm[2]	32768	0.555		0.646				
Sparse-coded features[6]	11024			0.767	3.76			
Triangulation embedding[9]	8064	0.676	0.611	0.771	3.53			
Neural codes trained on ILSVRC								
Layer 5	9216	0.389		0.690*	3.09			
Layer 6	4096	0.435	0.392	0.749*	3.43			
Layer 7	4096	0.430		0.736*	3.39			
After retraining on the Landmarks dataset								
Layer 5	9216	0.387	- <i>//</i>	0.674*	2.99			
Layer 6	4096	0.545	0.512	0.793*	3.29			
Layer 7	4096	0.538	_	0.764*	3.19			
After retraining on turntable views (Multi-view RGB-D)								
Layer 5	9216	0.348		0.682*	3.13			
Layer 6	4096	0.393	0.351	0.754*	3.56			
Layer 7	4096	0.362		0.730*	3.53			

Landmark dataset has similar images to Oxford

Results before & after retraining

Dimension Reduction

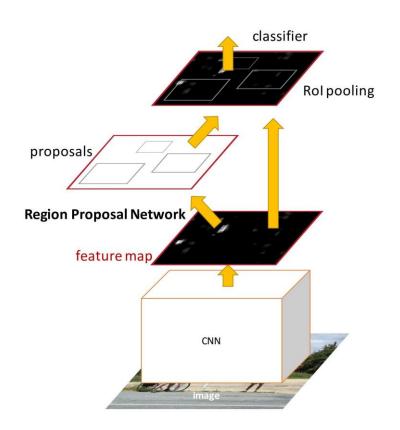
- CNN features (4096D) are robust to PCA compression
 - Maintain accuracy by 256 D

Dimensions	16	32	64	128	256	512
Oxford						
Layer 6	0.328	0.390	0.421	0.433	0.435	0.435
Layer 6 + landmark retraining	0.418	0.515	0.548	0.557	0.557	0.557
Layer 6 + turntable retraining	0.289	0.349	0.377	0.391	0.392	0.393

Outline

- Representations
 - Fine-tuning
 - Dimension reduction
- Localization and detections
- Not that much on:
 - Post-processing
 - Matching

Faster R-CNN:



Insert a Region Proposal Network (RPN) after the last convolutional layer

RPN trained to produce region proposals directly; no need for external region proposals!

After RPN, use Rol Pooling and an upstream classifier and bbox regressor just like Fast R-CNN

Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015

Slide credit: Ross Girschick

Faster R-CNN: Region Proposal Network

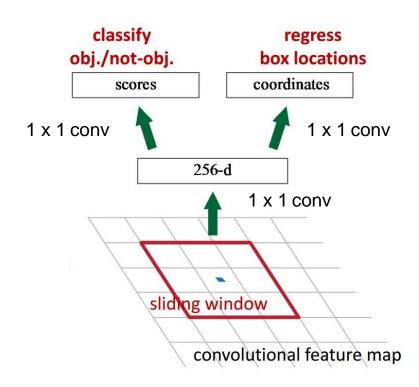
Slide a small window on the feature map

Build a small network for:

- · classifying object or not-object, and
- regressing bbox locations

Position of the sliding window provides localization information with reference to the image

Box regression provides finer localization information with reference to this sliding window



Slide credit: Kaiming He

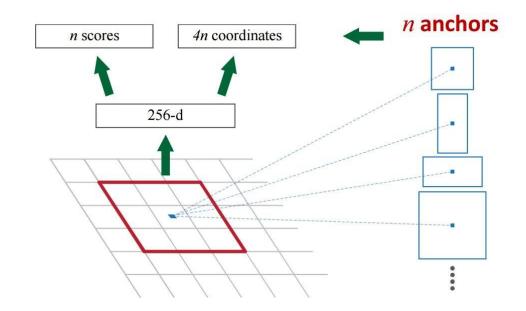
Faster R-CNN: Region Proposal Network

Use **N** anchor boxes at each location

Anchors are **translation invariant**: use the same ones at every location

Regression gives offsets from anchor boxes

Classification gives the probability that each (regressed) anchor shows an object



Faster R-CNN: Results

	R-CNN	Fast R-CNN	Faster R-CNN
Test time per image (with proposals)	50 seconds	2 seconds	0.2 seconds
(Speedup)	1x	25x	250x
mAP (VOC 2007)	66.0	66.9	66.9

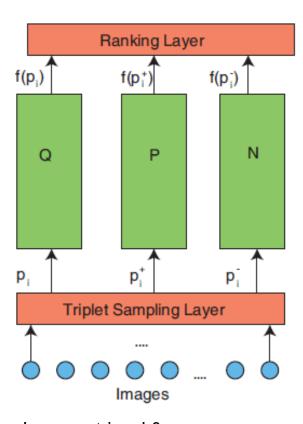
Object Detection State-of-the-art: ResNet 101 + Faster R-CNN + some extras

training data	COCO train		COCO trainval		
test data	COC	COCO val C		COCO test-dev	
mAP	@.5	@[.5, .95]	@.5	@[.5, .95]	
baseline Faster R-CNN (VGG-16)	41.5	21.2			
baseline Faster R-CNN (ResNet-101)	48.4	27.2			
+box refinement	49.9	29.9			
+context	51.1	30.0	53.3	32.2	
+multi-scale testing	53.8	32.5	55.7	34.9	
ensemble			59.0	37.4	

He et. al, "Deep Residual Learning for Image Recognition", arXiv 2015

Instance-Level or Fine-Grained Image Search

- Uses a ranking loss w/ triplet of data
 - Used commonly for metric learning



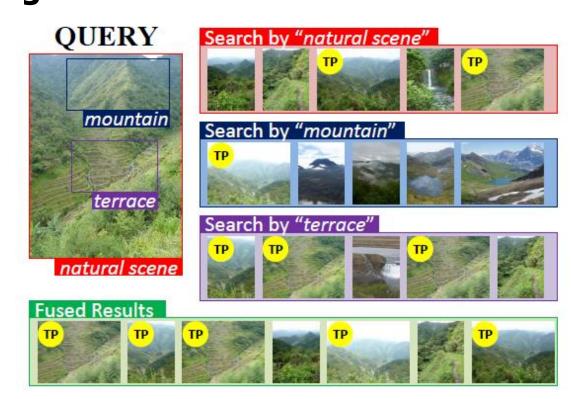
- Ranking model based on the Siamese network
- Given a image p_i , p_i^+ and p_i^- are similar and dissimilar images
- The Siamese network may share CNN features

Image Classification and Retrieval are ONE [ICMR 15]

- Handle the classification and search in a unified framework
 - Uses region proposals

Uses nearest neighbor search for both

problems



Outline

- Representations
 - Fine-tuning
 - Dimension reduction
- Localization and detections
- Not that much on:
 - Post-processing
 - Matching

