CS686:
 Path Planning for Point Robots

Sung-Eui Yoon (윤성의)

Course URL:
http://sgvr.kaist.ac.kr/~sungeui/MPA

Class Objectives

- Motion planning framework
- Representations of robots and space
- Discretization into a graph
- Search methods
- Ch. 1 of my book
- Last time
- Class overview and grading policy w/ HWs: research oriented course
- Half lectures and half presentations from students

Problem

\square Input

- Robot represented as a point in the plane
- Obstacles represented as polygons
- Initial and goal positions
\square Output
A collision-free path between the initial and goal positions

Courtesy of Prof. David Hsu

Problem

free space

Problem

Types of Path Constraints

- Local constraints
- Lie in free space
- Global constraints
- Have minimal length
- Differential constraints
- Cannot change the car orientation instantly

See Ch. 3 (Kinematic Car Model) of my draft http://sgvr.kaist.ac.kr/~sungeui/mp/

Configuration Space: Tool to Map a Robot to a Point

Motion-Planning Framework

Continuous representation

(configuration space formulation)

Discretization

(random sampling, processing critical geometric events)

\downarrow
 Graph searching

(blind, best-first, A^{*})

Visibility graph method

- Observation: If there is a a collision-free path between two points, then there is a polygonal path that bends only at the obstacles vertices.
- Why?

Any collision-free path can be transformed into a polygonal path that bends only at the obstacle vertices.
\square A polygonal path is a piecewise
 linear curve.

Visibility Graph

- A visibility graph is a graph such that
- Nodes: s, g, or obstacle vertices
- Edges: An edge exists between nodes u and v if the line segment between u and v is an obstacle edges or it does not intersect the obstacles

Visibility Graph

- A visibility graph
- Introduced in the late 60s
- Can produce shortest paths in 2-D configuration spaces

Simple Algorithm

- Input: s, q, polygonal obstacles
- Output: visibility graph G

1: for every pair of nodes u, v
2: if segment (u, v) is an obstacle edge then
3: insert edge (u, v) into G;
4: else
5: for every obstacle edge e
6: if segment (u, v) intersects e // check collisions
7: \quad go to (1);
8: insert edge (u, v) into G;
9: Search a path with G using A*

Computation Efficiency

1: for every pair of nodes u, v
2: if segment (u, v) is an obstacle edge then $O(n)$
3: insert edge (u, v) into G;
4: else
5: for every obstacle edge e
6: if segment (u, v) intersects e
7: \quad go to (1);
8: insert edge (u, v) into G;

- Simple algorithm: $\mathbf{O}\left(n^{3}\right)$ time
- More efficient algorithms
- Rotational sweep $\mathbf{O}\left(\mathbf{n}^{2} \log \mathrm{n}\right)$ time, etc.
- $\mathbf{O (n ^ { 2 })}$ space

Motion-Planning Framework

Continuous representation

(configuration space formulation)

Discretization

(random sampling, processing critical geometric events)

Graph searching
(blind, best-first, A*)

Graph Search Algorithms

- Breadth, depth-first, best-first
- Dijkstra's algorithm
- \mathbf{A}^{*}

Breadth-first search

Breadth-first search

Breadth-first search

Breadth-first search

Traverse the graph by using the queue, resulting in the level-by-level traversal

Dijkstra's Shortest Path Algorithm

- Given a (non-negative) weighted graph, two vertices, s and g :
- Find a path of minimum total weight between them
- Also, find minimum paths to other vertices
- Has 0 (|V|Ig|V| + |E|), where V \& E refer vertices \& edges

Dijkstra's Shortest Path Algorithm

- Set S
- Contains vertices whose final shortest-path cost has been determined
- DIJKSTRA (G, s):

Input: \mathbf{G} is an input graph, s is the source

1. Initialize-Single-Source (G, s)
2. $S \leftarrow$ empty
3. Queue \leftarrow Vertices of G
4. While Queue is not empty
5. Do u \leftarrow min-cost from Queue
6. $\quad S \leftarrow$ union of S and $\{u\}$
7. for each vertex v in Adj [u]
8. do RELAX (u, v)

Dijkstra's Shortest Path Algorithm

Compute optimal cost-to-come at each iteration

Yellow vertices are in a set with shortest costs White vertices are in the queue.
Shaded one is chosen for relaxation.

A* Search Algorithm

- An extension of Dijkstra's algorithm based on a heuristic estimate
- Conservatively estimate the cost-to-go from a vertex to the goal
- The estimate should not be greater than the optimal cost-to-go
- Sort vertices based on "cost-to-come + the estimated cost-to-go"
- Can find optimal solutions with fewer steps

K* Algorithm (Video)

- Recursive Path Planning Using Reduced States for Car-like Vehicles on Grid Maps
- IEEE Transactions on Intelligent Transportation System

(a) $H_{\text {free }}$

(b) $H_{o b s}$

(c) $H_{\text {free }} \& H_{\text {obs }}$
- A* and its variants are quite commonly used for its optimality and high performance

Framework

continuous representation

discretization
construct visibility graph

\downarrow
graph searching
breadth-first search

Computational Efficiency

- Running time $\mathbf{O}\left(\mathrm{n}^{3}\right)$
- Compute the visibility graph
- Search the graph
- Space O(\mathbf{n}^{2})
- Can we do better?
- Lead to classical approaches such as roadmap

Class Objectives were:

- Motion planning framework
- Representations of robots and space
- Discretization into a graph
- Search methods
- Ch. 1 of my book

Homework

- Browse 2 ICRA/IROS/RSS/CoRL/WAFR/TRO/IJRR papers
- Submit it online before the Mon. Class
- Example of a summary (just a paragraph) Title: XXX XXXX XXXX Conf./Journal Name: ICRA, 2023
Summary: this paper is about accelerating the performance of collision detection. To achieve its goal, they design a new technique for reordering nodes, since by doing so, they can improve the coherence and thus improve the overall performance.

Valid Papers for Paper Presentation

- Related to the course theme
- Top-tier conf/journals
- No arxiv paper, unless it has meaningful citation counts (say, 10 per year)
- Recent ones
- Published at 2019~2023

Homework for Every Class

- Go over the next lecture slides
- Come up with one question on what we have discussed today and submit at the end of the class
- 1 for typical questions
- 2 for questions with thoughts or that surprised me
- Write a question two times before the midterm exam; submit at the course webpage

Next Time....

- Classic path planning algorithms

