CS686: Classic Motion Planning Methods

Sung-Eui Yoon (윤성의)

Course URL: http://sgvr.kaist.ac.kr/~sungeui/MPA

Class Objectives

Classic motion planning approaches

- Roadmap
- Cell decomposition
- Potential field
- Ch. 2 of my draft:

https://sgvr.kaist.ac.kr/~sungeui/mp/

Classic Path Planning Approaches

Roadmap

- Represent the connectivity of the free space by a network of 1-D curves
- Cell decomposition
 - Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells
- Potential field
 - Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent

Classic Path Planning Approaches

Roadmap

- Represent the connectivity of the free space by a network of 1-D curves
- Cell decomposition
 - Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells
- Potential field
 - Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent

Roadmap Methods

• Visibility Graph

• Shakey project, SRI [Nilsson 69]

Voronoi diagram

- Introduced by computational geometry researchers
- Generate paths that maximize clearance
- O(n log n) time and O(n) space for 2D points
- GPU computation is possible

Other Roadmap Methods

- Visibility graph
- Voronoi diagram
- Silhouette
 - First complete general method that applies to spaces of any dimension and is singly exponential in # of dimensions [Canny, 87]; e.g., $O\left(n^{2^{f(k)}}\right) \rightarrow O(n^k)$
- Probabilistic roadmaps

Cloud RRT* [Kim et al., ICRA]

 Use Voronoi diagram to bias sampling for achieving better convergence to optimal path

https://www.youtube.com/wat ch?v=NSuDtd1amC4

Classic Path Planning Approaches

Roadmap

- Represent the connectivity of the free space by a network of 1-D curves
- Cell decomposition
 - Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells
- Potential field
 - Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent

Cell-Decomposition Methods

• Two classes of methods:

Exact and approximate cell decompositions

• Exact cell decomposition

- The free space F is represented by a collection of non-overlapping cells whose union is exactly F
- Example: trapezoidal decomposition

Trapezoidal Decomposition

Credit: Arras

Criticality-based (e.g., vertices) decomposition \rightarrow Planar sweep \rightarrow O(n log n) time, O(n) space

Cell-Decomposition Methods

- Two classes of methods:
 - Exact and approximate cell decompositions
- Exact cell decomposition
- Approximate cell decomposition
 - The free space F is represented by a collection of non-overlapping cells whose union is contained in F
 - Cells usually have simple, regular shapes (e.g., rectangles and squares)
 - Facilitates hierarchical space decomposition

Quadtree Decomposition

- **1.** Decompose the free space F into cells
- 2. Search for a sequence of mixed or free cells that connect that initial and goal
- **3.** Further decompose the mixed
- 4. Repeat 2 and 3 until a sequence of free cells is found

Octree decomposition

Classic Path Planning Approaches

Roadmap

- Represent the connectivity of the free space by a network of 1-D curves
- Cell decomposition
 - Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells

Potential field

 Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent

Potential Field Methods

- Initially proposed for real-time collision avoidance [Khatib, 86]
 - Use a scalar function, potential field, over the free space
 - Compute a force proportional to the negated gradient of the potential field

Workspace

Attractive and Repulsive fields

Attractive field towards the goal

Repulsive field away from obstacles

Ideal Potential Field

- The ideal one
 - Has the global minimum at the goal
 - Has no local minima
 - Grows to infinity near obstacles
 - Is smooth
- Can we compute the one?

Local Minima

Svenstrup

• What can we do?

 Escape from local minima by taking random walks

Sketch of Algorithm

- Place a regular grid G over the configuration space
- Compute the potential field over G
- Search G using a best-first algorithm with potential field as the heuristic function

Completeness

- A complete motion planner always returns a solution when one exists and indicates that no such solution exists otherwise
 - Is the visibility algorithm complete? Yes
 - How about the exact cell decomposition algorithm and the potential field algorithm?

Homework: PA1

Install <u>Open Motion Planning Library</u> (<u>OMPL</u>)

- Create a scene and a robot
- Find a collision-free path and visualize the path

See KLMS announcement

Submit an image showing a scene with a robot with a computed path

Conf. Deadline

ICRA: Sep.-15 2023
IROS: Jan, RSS, etc..

Class Objectives

Classic motion planning approaches

- Roadmap
- Cell decomposition
- Potential field
- Ch. 2 of my draft:

https://sgvr.kaist.ac.kr/~sungeui/mp/

Homework

• Browse 2 ICRA/IROS/RSS/CoRL/TRO/IJRR papers

- Submit it online before the Tue. Class
- https://forms.gle/2jdXkgYu5snyAb3s8

• Example of a summary (just a paragraph) Title: XXX XXXX XXXX Conf./Journal Name: ICRA, 2020 Summary: this paper is about accelerating the performance of collision detection. To achieve its goal, they design a new technique for reordering nodes, since by doing so, they can improve the coherence and thus improve the overall performance.

Homework for Every Class

- Go over the next lecture slides
- Come up with one question on what we have discussed today and submit at the end of the class
- Write a question two times before the midterm exam
 - https://sgvr.kaist.ac.kr/~sungeui/MPA/

Next Time....

Configuration spaces

