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Announcements

e Make a project team of 2 persons for your
project
e Each student needs a clear role
e Declare team members at KLMS by Sep-26; you
don’t need to define the topic by then
e Each student

e Present two papers related to the project; 15 min
for each talk

e Declare your papers at KLMS by Oct-10

e Each team
e Give a mid-term presentation for the project
e Give the final project presentation KAIST



Tentative schedule

e Oct. 23: no class (reserved)

e Oct. 25: Students Presentation I (2 talks per each class)

e Oct. 30/Nov-1:

e Nov. 6,

e Nov 8, 13: Mid-term project presentation

e Nov. 15 : Students Presentation II

e Nov. 20, 22

e Nov. 27

e Nov. 29: no class (no class due to undergraduate interview)
e Dec. 4/6: Final project presentation

e Dec. 11, 13 Reserved (final exam week; no exam for us) KAIST



Deadlines

e Declare project team members
e By 9/26 at KLMS

e Confirm schedules of paper talks and project
talks at 9/27

e Declare two papers for student presentations
First come, first served

Paper title, conf. name, publication year

by 10/10 at KLMS

Discuss them at the class of 10/11

Choose papers from 2019 ~ now, published on
top-tier conf./journals
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Class Objectives (Ch. 3)

e Configuration space
e Definitions and examples
e Obstacles
e Paths
e Metrics

e Last time:

e Classic motion planning approaches including
roadmap, cell decomposition and potential field
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Questions

e Are all path planning problems solved by
graph navigation problems?
e Trajectory optimization is also useful

TORM: Fast and Accurate Trajectory Optimization
of Redundant Manipulator given an End-Effector
Path, by Mincheul Kang, Heechan Shin, Donghyuk Kim,
and Sung-Eui Yoon

http://sqglab.kaist.ac.kr/TORM/



http://sglab.kaist.ac.kr/TORM/

What is a Path?

A box robot Linked robot

KAIST



Rough Idea of C-Space

e Represent degrees-of-freedom (DoFs) of
rigid robots, articulated robots, etc. into
points

e Apply algorithms in that space, in addition
to the workspace
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Mapping from the Workspace to the

Configuration Space
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Configuration Space

e Definitions and examples
e Obstacles

e Paths

e Metrics

KAIST
0



Configuration Space (C-space)

e The configuration of a robot q
is a complete specification of )
the position of every point
on the robot

e Usually a configuration is
expressed as a vector of
position & orientation
parameters: d = (4;, 95,..-,0,,)

q:(qll q2" : '3qn)'..

e The configuration space C isq1 q
the set of all possible :
configurations
e A configurationis a pointinC C-space formalism:

11 Lozano-Perez ‘79
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Examples of Configuration
Spaces

KAIST
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Examples of Configuration
Spaces

Consider the end-effector in
the workspace?

This is not a valid C-space!

KAIST



Examples of Configuration
Spaces

End effector ‘

The topology of C is usually not that
of a Cartesian space R".
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Examples of Circular Robot
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Dimension of Configuration
Space

e The dimension of the configuration space is
the minimum number of parameters
needed to specify the configuration of the
object completely

e It is also called the number of degrees of
freedom (dofs) of a moving object

16 KAIST
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Example: Rigid Robot in 2-D Workspace

workspace

robot erence direction

L
e

.

‘reference point

X

e 3-parameter specification: q = (x,y, 8) with @ €[0, 2r).
e 3-D configuration space

KAIST
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Example: Rigid Robot in 2-D workspace

e 4-parameter specification: g = (x, y, u, v) with
u’+v2=1. Note u = cos@ and v =siné

e dim of configuration space = 3

e Does the dimension of the configuration space
(number of dofs) depend on the
parametrization?

KAIST
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Holonomic and Non-Holonomic
Constraints

e Holonomic constraints

°eg(q,t)=0
e E.g., pendulum motion: x? + y? = L2

wiki

e Non-holonomic constraints
e g(q,q,t)=0(orq’ =f(q, u), whereuis an
action parameter)
e This is related to the kinematics of robots

e To accommodate this, the C-space is extended
to include the position and its velocity

KAIST



Example of Non-Holonomic
Constraints

See Kinematic Car Model of my draft

sin(@) dy
cos(0) " dx
sin(@)dx — cos(0)dy =0

tan(@) =

dx y :

Frinis cos(0), Frin sin(6),
>

do v

FTi Ztan(d))

Note that v, ¢ are action parameters
20 KAIST



Holonomic and Non-Holonomic
Constraints

21

e Dynamic constraints
e Dynamic equations are represented as G(q, q/,

q”) =0
e These constraints are reduced to non-
holonomic ones when we use the extended C-

space such as the state space:
S= (X, X’), where X=(q, q')

KAIST



Computation of Dimension of C-
Space

e Suppose that we have a rigid body that can
translate and rotate in 2D workspace

e Start with three points: A, B, C (6D space)

e We have the following (holonomic)
constraints

e Given A, we know the dist to B: d(A,B) = |A-B|
e Given A and B, we have similar equations:
d(A,C) = |A-C|, d(B,C) = |B-C]|

Each holonomic constraint reduces one
dim.
- Not for non-holonomic constraint KAIST
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Example: Rigid Robot in 3-D
Workspace

e We can represent the positions and
orientations of such robots with matrices
(i.e., SO (3) and SE (3))

KAIST
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SO (n) and SE (n)

e Special orthogonal group, SO(n), of n x n matrices

R,

R= Iy Iy

that satisfy:
ri2+r°+ry>=1foralli,
[Ty + il + gy =0 forall 1 £},
det(R) = +1

Refer to the 3D Transformation at the undergraduate computer graphics.
http://sgvr.kaist.ac.kr/ ~sungeui/render/raster/transformation.pdf

e Given the orientation matrix R of SO (n) and the
position vector p, special Euclidean group, SE (n),

is defined as:

R b

0 1
- - KAIST


http://sgvr.kaist.ac.kr/~sungeui/render/raster/transformation.pdf

Example: Rigid Robot in 3-D

Workspace

e g = (position, orientation) = (x, y, z, ???)

e Parametrization of orientations by matrix:
0 = (1, F{pseees Fa3, F33) Where r, roo,..., ry; are the
elements of rotation matrix

r11
R=|r,

\r31

25
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e SO(3)
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Example: Rigid Robot in 3-D
Workspace

e Parametrization of orientations by Euler angles:

(.69 IZ

1>2>3>4

26 KAIST



Example: Rigid Robot in 3-D
Workspace

e Parametrization of orientations n=(n,, ny, n,)
by unit quaternion: u = (u;, u,, u; u,)
with u2+u,2+u+u,2=1. |

e Note (u;, u,, u; u,) =
(cosd2, n,sindl2, nsind2, n,sind2) with
nc2+ns2+n/2=1

e Compare with representation of
orientation in 2-D:
(u,,u,) = (cosé, sind)

KAIST
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Example: Rigid Robot in 3-D
Workspace

e Advantage of unit quaternion
representation

e Compact

e No singularity (no gimbal lock indicating two
axes are aligned)

o Naturally reflect the topology of the space of
o rl e n ta tl 0 n S 1. Rota:o:s'! nnnnnnnn gles ; 2. m;en alll three circles

system with three circles in two dimensions from this configuration,
this is a gimbal lock

e Number of dofs = 6
e Topology: R3x SO(3)

YAW L§

ROLL

situations

Cyrille Fauvel
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Class Objectives were:

e Configuration space
Definitions and examples
Obstacles

Paths

Metrics

KAIST
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Next Time....

e Configuration space
e Definitions and examples
e Obstacles
e Paths
e Metrics
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Homework

e Come up with one question on what we
have discussed today

e Write a question two times before the mid-
term exam

e Browse two papers

e Submit their summaries online before the Mon.
Class
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