

Sung-Eui Yoon (윤성의)

Course URL: http://sgvr.kaist.ac.kr/~sungeui/MPA

Class Objectives

- Understand the RRT technique and its recent advancements
 - RRT*
 - Kinodynamic planning
- Last time
 - Probabilistic roadmap techniques
 - Sampling and re-sampling techniques

Question

- PRM assumes that we know the global map, but how can we handle the case where we have only a partial map due to the limited sensor range?
 - 지난시간에 배운 PRM 기법들은 글로벌 맵을 알고 있어야 문제 해결이 가능한데, 전체 맵의 일부분(센서 탐지거리 제약 등으로)만을 알고 있는 상황에서 PRM알고리즘을 적용하려면 어떤 방식으로 해야 하는지요?

Rapidly-exploring Random Trees (RRT) [LaValle 98]

- Present an efficient randomized path planning algorithm for single-query problems
 - Converges quickly
 - Probabilistically complete
 - Works well in high-dimensional C-space

Rapidly-Exploring Random Tree

• A growing tree from an initial state

RRT Construction Algorithm

Extend a new vertex in each iteration

• Alternatively, one can simply connect

Overview – Planning with RRT

- Extend RRT until a nearest vertex is close enough to the goal state
 - Can handle nonholonomic constraints and high degrees of freedom
- Probabilistically complete, but does not converge to the optimal one

Voronoi Region

 An RRT is biased by large Voronoi regions to rapidly explore, before uniformly covering the space

Overview – With Dual RRT

- Extend RRTs from both initial and goal states
- Find path much more quickly

737 nodes are used

RRT does not converge to the optimal solution

RRT*

RRT

From Sertac's homepage

RRT*

Asymptotically optimal without a substantial computational overhead

Theorem [Karaman & Frazzoli, IJRR 2011]

(i) The RRT* algorithm is asymptotically optimal

$$\mathbb{P}\Big(\big\{\lim_{n\to\infty}Y_n^{\mathrm{RRT}^*} = c^*\big\}\Big) = 1$$

(ii) RRT* algorithm has no substantial computational overhead when compared to the RRT:

 $\lim_{n \to \infty} \mathbb{E} \left[\frac{M_n^{\text{RRT}^*}}{M^{\text{RRT}}} \right] = \text{constant}$

- Y_n^{RRT*}: cost of the best path in the RRT*
 c^{*}: cost of an optimal solution
- M^{RRT} : # of steps executed by RRT at iteration n
- M^{RRT*}: # of steps executed by RRT* at iteration n

Key Operation of RRT*

• RRT

- Just connect a new node to its nearest neighbor node
- RRT*: refine the connection with rewiring operation
 - Given a ball, identify neighbor nodes to the new node
 - Refine the connection to have a lower cost

Generate a new sample

Identify nodes in a ball

Identify which parent gives the lowest cost

Identify which child gives the lowest cost

Video showing benefits with real robot

Kinodynamic Path Planning

ALSO GIVEN: $h_i(q, \dot{q}, \ddot{q}) \leq 0, \ h_i(q, \dot{q}, \ddot{q}) = 0, \ \dots$

FIND: τ that satisfies $f_i(q), g_i(q, \dot{q}), h_i(q, \dot{q}, \ddot{q})$

Consider kinematic + dynamic constraints

Gait and Trajectory Optimization for Legged Systems through Phase-based End-Effector Parameterization

State Space Formulation

• Kinodynamic planning \rightarrow 2n-dimensional state space

C denote the C-space X denote the state space

$$x = (q, \dot{q}), \text{ for } q \in C, x \in X$$
$$x = [q_1 \ q_2 \ \dots \ q_n \ \frac{dq_1}{dt} \ \frac{dq_2}{dt} \ \dots \ \frac{dq_n}{dt}]$$

Constraints in State Space

$$h_i(q, \dot{q}, \ddot{q}) = 0$$
 becomes $G_i(x, \dot{x}) = 0$,
for $i = 1, ..., m$ and $m < 2n$
• Constraints can be written in:

 $\dot{x} = f(x, u)$

 $u \in U$, U: Set of allowable controls or inputs

Rapidly-Exploring Random Tree

Extend a new vertex in each iteration

RRT at work: Successful Parking Maneuver

Some Works of Our Group

Narrow passages

- Identify narrow passage with a simple onedimensional line test, and selectively explore such regions
- Selective retraction-based RRT planner for various environments, Lee et al., T-RO 14
- http://sglab.kaist.ac.kr/SRRRT/T-RO.html

Handling uncertainty and dynamic objects

Anytime RRBT for handling uncertainty and dynamic objects, IROS 16

Main Contribution: Anytime Extension

Confidence-based Robot Navigation under Sensor Occlusion w/ Deep Reinforcement Learning, ICRA 22

- Robot navigation under sensor occlusion
 - LiDAR based navigation often suffer from unexpected occlusion on (e.g., dust, water, or smudge) sensor surface
 - Such occlusion lowers the visibility of the sensor and might cause potential collisions.

Confidence-based Robot Navigation under Sensor Occlusion w/ Deep Reinforcement Learning, ICRA 22

Our goal

 Build a robot navigation policy robust to such sensor occlusion

Occlusions on the real sensor surface

Received Outstanding Navigation Award Finalist

Hybrid Planning Techniques

- Traditional methods have been carefully designed and worked quite well in many cases
- Learning approaches are showing interesting success, yet have limitations such as data hungry, high computation, and handling global information
- Interesting to combine those two orthogonal approaches together!

Learning-based Initialization of Trajectory Optimization for Path-following Problems of Redundant Manipulators

- Problem Statement of Path-following Problems
- Generate a joint trajectory precisely following a given 6-dimensional Cartesian path (i.e., target path) with an end-effector.

Target path: 'Hello'

- Integrating learning and planning is an important strategy that works in a complementary manner.
 - \rightarrow Improves accuracy and efficiency by combining the two approaches.

Learning-based methods

- \rightarrow may not guarantee optimality
- → but offer a good starting point for optimization quickly.

Optimization-based methods

- \rightarrow may struggle with highdimensional and non-convex problems
- \rightarrow but find optimal solutions around starting point by iterative refinement.

IEEE IEEE ROBOTICS AND AUTOMATION SOCIETY **Outstanding Planning Paper Award** IEEE International Conference on Robotics and Automation - ICRA 2023 For the paper by Minsung Yoon, Mincheul Kong, Daehyung Park, and Sung-Eui Yoon "Learning-based Initialization of Trajectory **Optimization for Path-following Problems of**

Frank Park

Class Objectives were:

- Understand the RRT technique and its recent advancements
 - RRT* for optimal path planning
 - Kinodynamic planning
 - Some related techniques to RRT

Summary

Next Time..

Basic concepts of reinforcement learning

Homework for Every Class

- Submit summaries of 2 ICRA/IROS/RSS/CoRL/TRO/IJRR papers
- Go over the next lecture slides
- Come up with two question submissions before the mid-term exam

