Configuration Space II

Sung-Eui Yoon (윤성의)

Course URL:

http://sglab.kaist.ac.kr/~sungeui/MPA

Coming Schedule and Homework

- Browse recent papers (2011 ~ 2013)
 - You need to present two papers at the class and give your mid-term & final presentations
- Declare your chosen 3 papers at the board by Oct-13 (Sun.)
 - First come, first served
- Decide our talk schedule on Oct.-14 (Mon)
- Student presentations will start right after the mid-term exam
 - 2 talks per each class

Class Objectives

- Configuration space
 - Definitions and examples
 - Obstacles
 - Paths
 - Metrics

Configuration Space

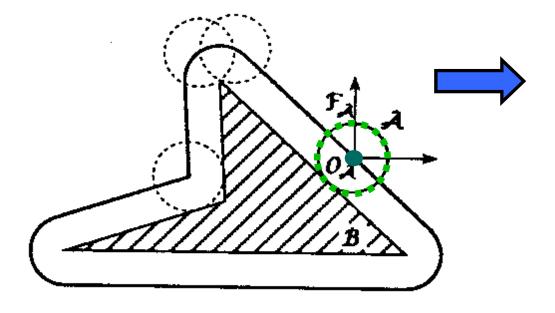
- Definitions and examples
- Obstacles
- Paths
- Metrics

Obstacles in the Configuration Space

- A configuration q is collision-free, or free, if a moving object placed at q does not intersect any obstacles in the workspace
- The free space F is the set of free configurations
- A configuration space obstacle (C-obstacle) is the set of configurations where the moving object collides with workspace obstacles

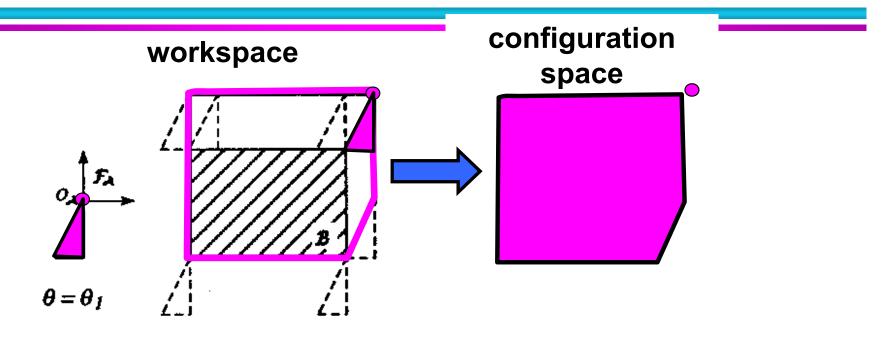
Disc in 2-D Workspace

workspace

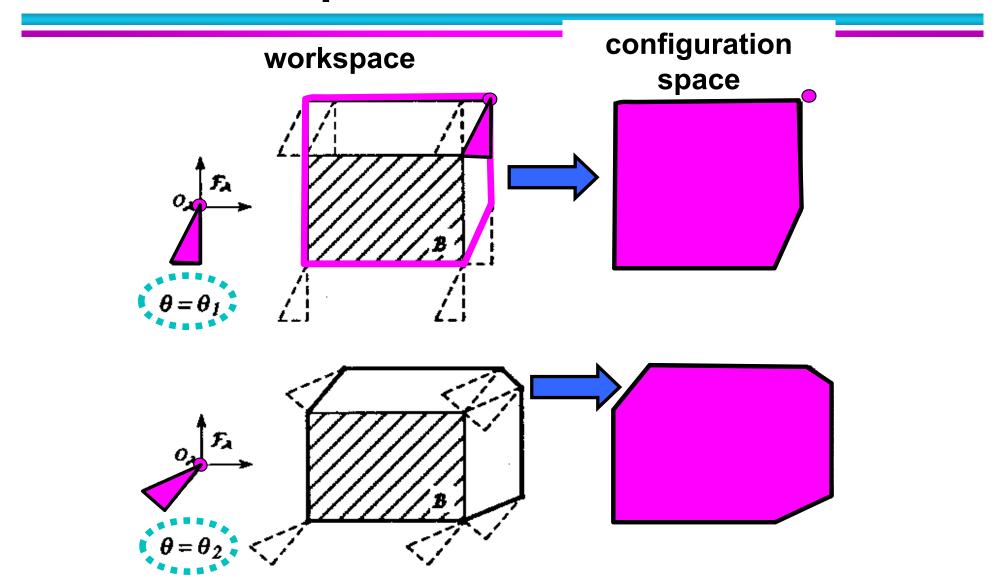


configuration space

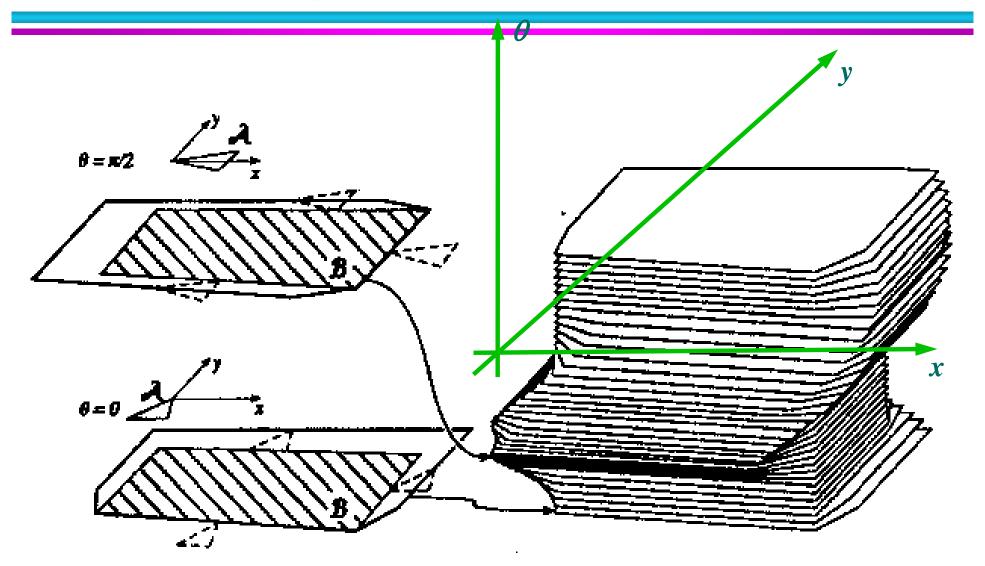
Polygonal Robot Translating in 2-D Workspace



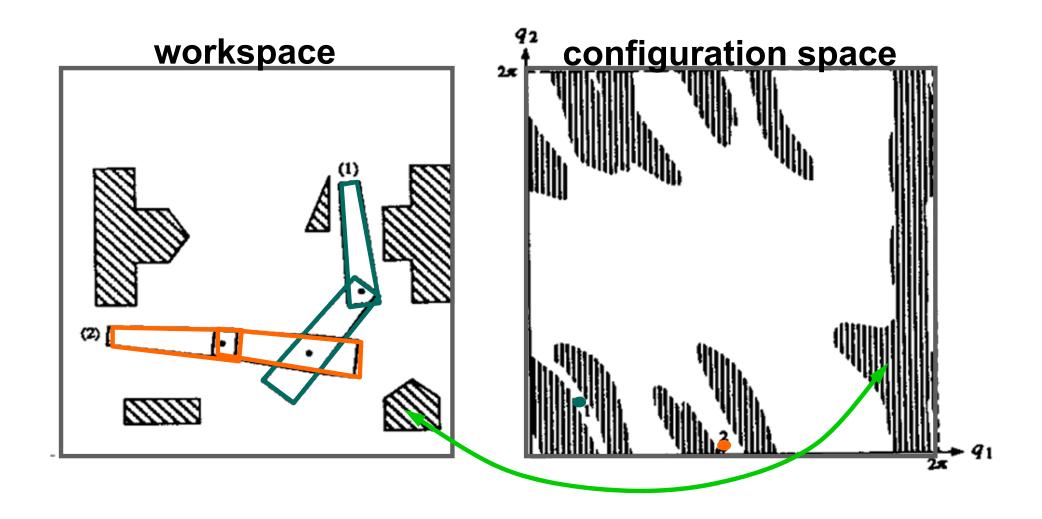
Polygonal Robot Translating & Rotating in 2-D Workspace



Polygonal Robot Translating & Rotating in 2-D Workspace



Articulated Robot in 2-D Workspace



C-Obstacle Construction

- Input:
 - Polygonal moving object translating in 2-D workspace
 - Polygonal obstacles
- Output: configuration space obstacles represented as polygons

Minkowski Sum

• The Minkowski sum of two sets P and Q, denoted by $P \oplus Q$, is defined as

 $P \oplus Q = \{p+q \mid p \in P, q \in Q\}$

 Similarly, the Minkowski difference is defined as

$$P \ominus Q = \{ p-q \mid p \in P, q \in Q \}$$

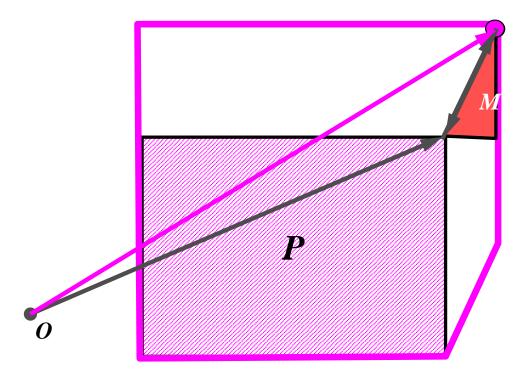
= $P \oplus -Q$

Minkowski Sum of Convex Polygons

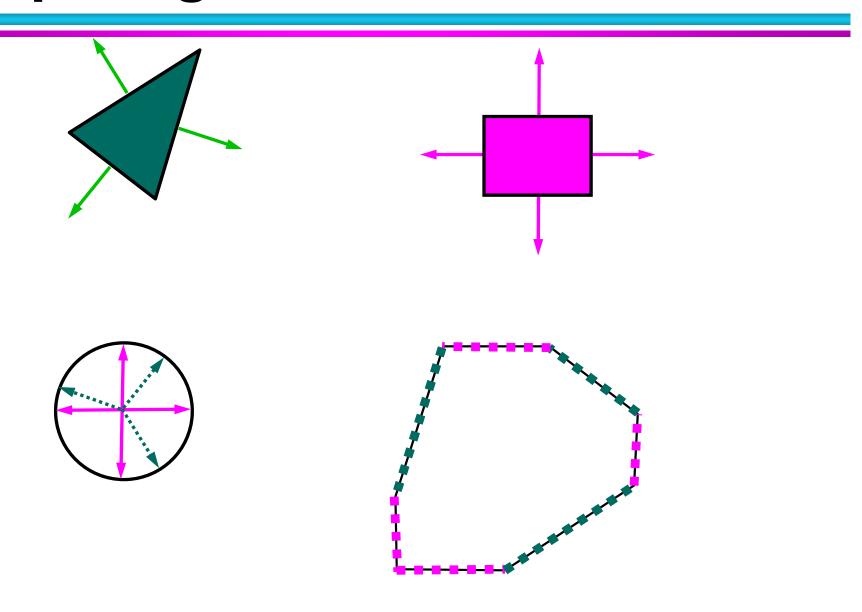
- The Minkowski sum of two convex polygons P and Q of m and n vertices respectively is a convex polygon $P \oplus Q$ of m + n vertices.
 - The vertices of $P \oplus Q$ are the "sums" of vertices of P and Q.

Observation

• If P is an obstacle in the workspace and M is a moving object. Then the C-space obstacle corresponding to P is $P \ominus M$



Computing C-obstacles



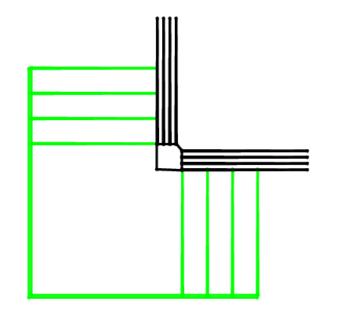
Computational efficiency

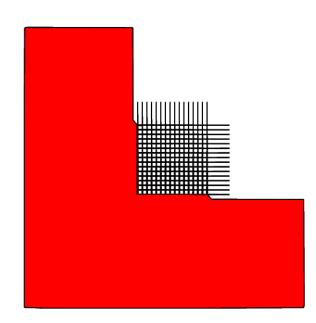
- Running time O(n+m)
- Space O(n+m)
- Non-convex obstacles
 - Decompose into convex polygons (e.g., triangles or trapezoids), compute the Minkowski sums, and take the union
 - Complexity of Minkowksi sum $O(n^2m^2)$
- 3-D workspace
 - Convex case: O(nm)
 - Non-convex case: $O(n^3m^3)$

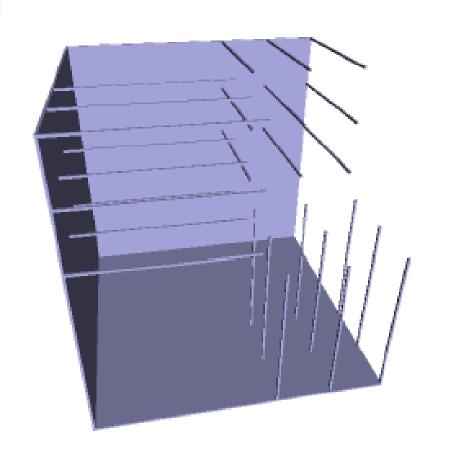
Worst case example

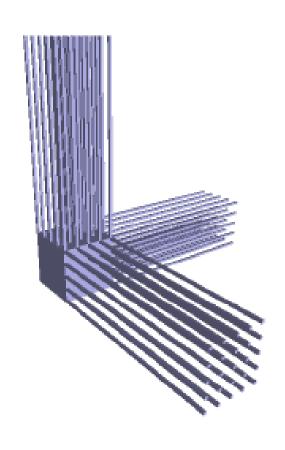
• $O(n^2m^2)$ complexity

2D example Agarwal et al. 02

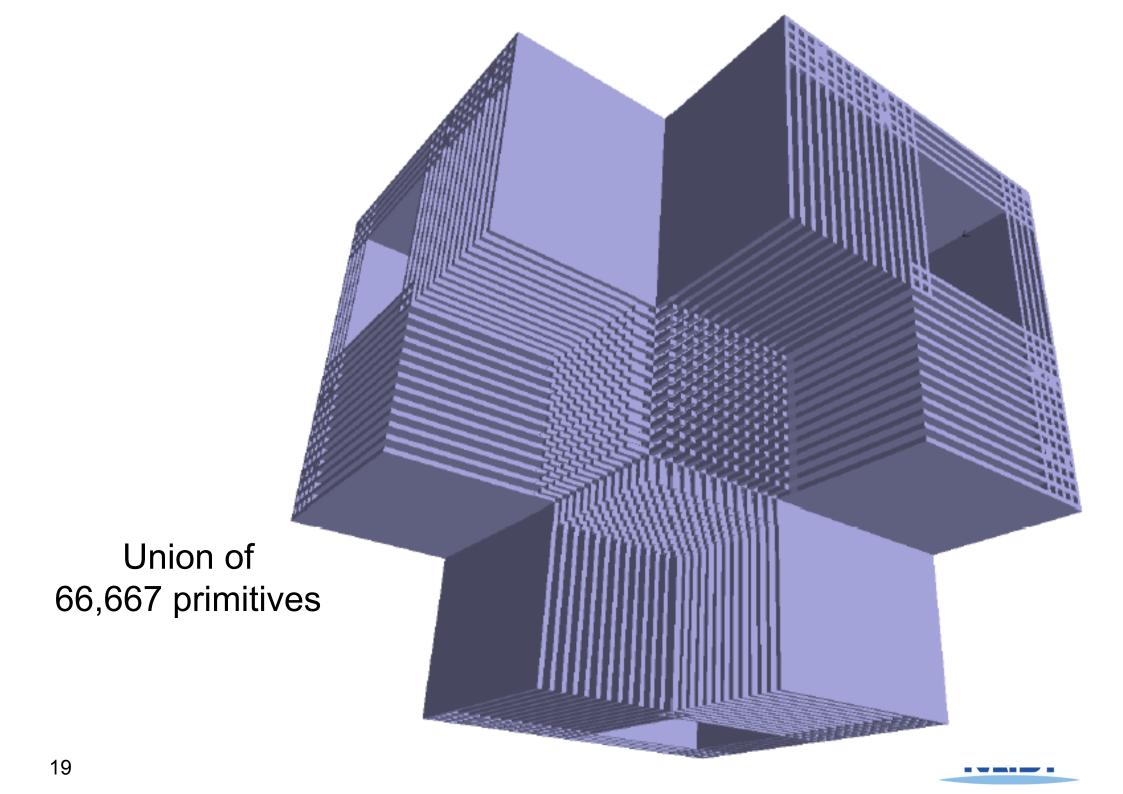








444 tris 1,134 tris



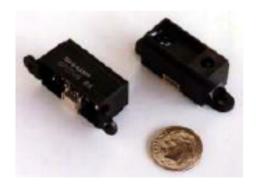
Sensors!

Robots' link to the external world...

Sensors, sensors, sensors!

and tracking what is sensed: world models

compass



IR rangefinder

sonar rangefinder

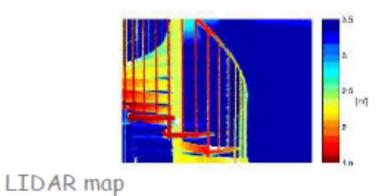
CMU cam with onboard processing

odometry...

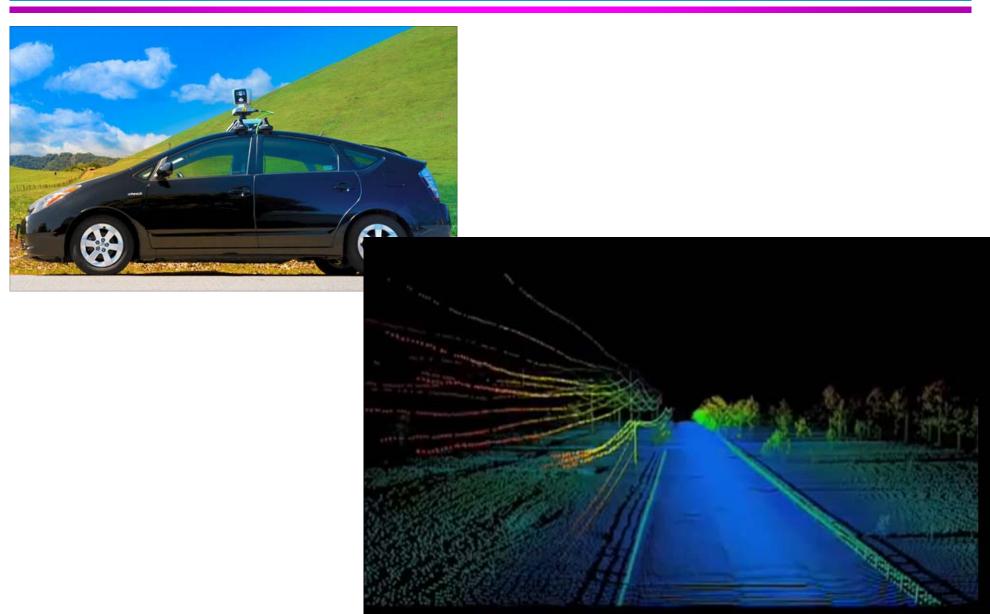
Laser Ranging

LIDAR

Sick Laser



Velodyne



Kinect

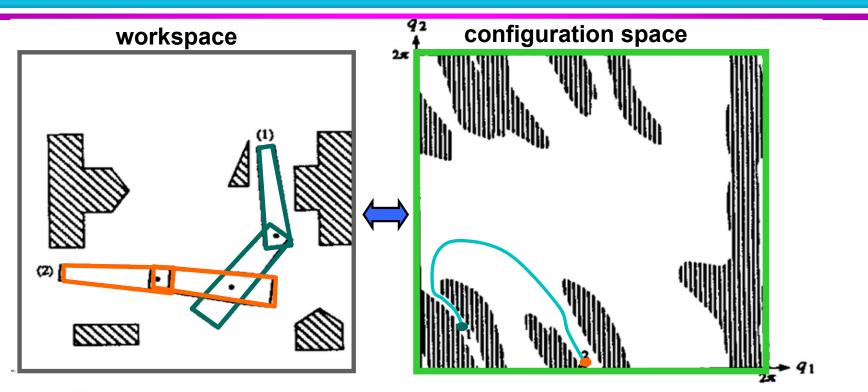
Resolution

- 640×480 pixels @ 30 Hz (RGB camera)
- 640×480 pixels @ 30 Hz (IR depth-finding camera)

Configuration space

- Definitions and examples
- Obstacles
- Paths
- Metrics

Paths in the configuration space



 A path in C is a continuous curve connecting two configurations q and q':

$$\tau: s \in [0,1] \to \tau(s) \in C$$

such that $\tau(0) = q$ and $\tau(1) = q'$.

Constraints on paths

A trajectory is a path parameterized by time:

$$\tau: t \in [0,T] \to \tau(t) \in C$$

- Constraints
 - Finite length
 - Bounded curvature
 - Smoothness
 - Minimum length
 - Minimum time
 - Minimum energy
 - ...

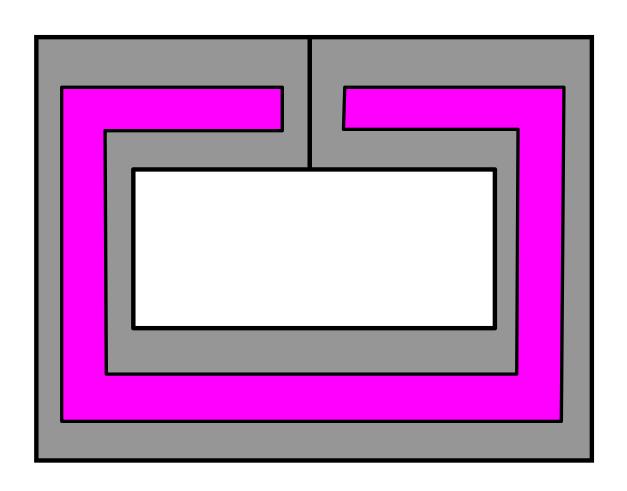
Free Space Topology

- A free path lies entirely in the free space F.
- The moving object and the obstacles are modeled as closed subsets, meaning that they contain their boundaries.
- One can show that the C-obstacles are closed subsets of the configuration space C as well.
- Consequently, the free space F is an open subset of C.

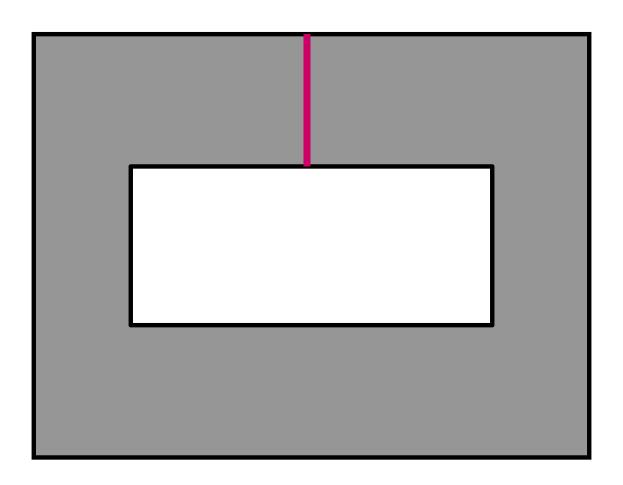
Semi-Free Space

- A configuration q is semi-free if the moving object placed q touches the boundary, but not the interior of obstacles.
 - Free, or
 - In contact
- The semi-free space is a closed subset of C.

Example



Example



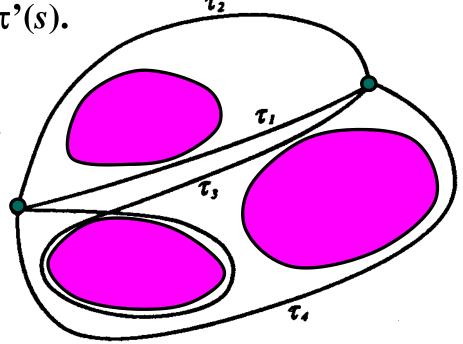
Homotopic Paths

• Two paths τ and τ ' (that map from U to V) with the same endpoints are homotopic if one can be continuously deformed into the other:

$$h: U \times [0,1] \rightarrow V$$

with $h(s,0) = \tau(s)$ and $h(s,1) = \tau'(s)$.

 A homotopic class of paths contains all paths that are homotopic to one another.



Connectedness of C-Space

 C is connected if every two configurations can be connected by a path.

 C is simply-connected if any two paths connecting the same endpoints are homotopic.

Examples: R² or R³

Otherwise C is multiply-connected.

Connectedness of C-Space

- C is connected if every two configurations can be connected by a path.
- C is simply-connected if any two paths connecting the same endpoints are homotopic.

Examples: R² or R³

- Otherwise C is multiply-connected.
 Examples: S¹ and SO(3) are multiply- connected:
 - In S¹, infinite number of homotopy classes
 - In SO(3), only two homotopy classes

Configuration space

- Definitions and examples
- Obstacles
- Paths
- Metrics

Metric in Configuration Space

 A metric or distance function d in a configuration space C is a function

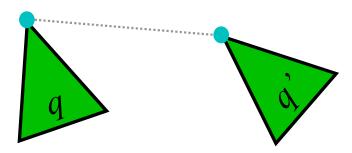
such that
$$d:(q,q')\in C^2\to d(q,q')\geq 0$$

- d(q, q') = 0 if and only if q = q',
- d(q, q') = d(q', q),
- $d(q,q') \le d(q,q'') + d(q'',q')$.

Example

- Robot A and a point x on A
- x(q): position of x in the workspace when A is at configuration q
- A distance d in C is defined by $d(q, q') = \max_{x \in A} || x(q) x(q') ||$

, where ||x - y|| denotes the Euclidean distance between points x and y in the workspace.



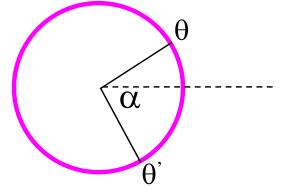
L_p Metrics

$$d(x, x') = \left(\sum_{i=1}^{n} |x_i - x_i'|^p\right)^{\frac{1}{p}}$$

- L₂: Euclidean metric
- L₁: Manhattan metric
- L_{∞} : Max (| $x_i x_i'$ |)

Examples in R² x S¹

- Consider R² x S¹
 - $q = (x, y, \theta), q' = (x', y', \theta')$ with $\theta, \theta' \in [0,2\pi)$
 - $\alpha = \min \{ |\theta \theta'|, 2\pi |\theta \theta'| \}$



•
$$d(q, q') = \operatorname{sqrt}((x-x')^2 + (y-y')^2 + \alpha^2)$$

Class Objectives were:

- Configuration space
 - Definitions and examples
 - Obstacles
 - Paths
 - Metrics

Next Time....

Collision detection and distance computation

