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Coming Schedule and Homework

e Declare the team at the noah board by Oct-
S
e Browse recent papers (2012 — 2015)
e You need to present two papers at the class

e Declare your chosen 2 papers at the board
by Oct-12 (Mon.)
e First come, first served
e Paper title, conf. name, publication year

e Decide our talk schedule on Oct.-13 (Tue.)

e Student presentations will start right after
the mid-term exam

e 3 talks per each class; 20 min for each talk
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Class Objectives

e Configuration space
Definitions and examples
Obstacles

Paths

Metrics
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Configuration Space

e Definitions and examples
e Obstacles

e Paths

e Metrics
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Obstacles in the Configuration Space

e A configuration g is collision-free, or free, If
a moving object placed at g does not
Intersect any obstacles in the workspace

e The free space F iIs the set of free
configurations

e A configuration space obstacle (C-obstacle)
IS the set of configurations where the
moving object collides with workspace
obstacles
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Disc in 2-D Workspace

workspace configuration
space
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Polygonal Robot Translating in 2-D
Workspace

configuration

workspace
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Polygonal Robot Translating & Rotating
in 2-D Workspace

workspace configuration
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Polygonal Robot Translating & Rotating
in 2-D Workspace
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C-Obstacle Construction

e Input:

e Polygonal moving object translating in 2-D
workspace

e Polygonal obstacles
e Output:
e Configuration space obstacles represented as
polygons
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Minkowski Sum

e The Minkowski sum of two sets P and Q,
denoted by P@Q, Is defined as

P#Q={p+q|p eP,qeQ} //q
P

e Similarly, the Minkowski difference Is
defined as

PeQ={p-q|peP,qeQ}
= P& -Q
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Minkowski Sum of Convex
Polygons

e The Minkowski sum of two convex
polygons P and Q of m and n vertices
respectively is a convex polygon P& Q of m
+ n vertices.

e The vertices of P® Q are the “sums” of vertices
of P and Q.
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Observation

e If P Is an obstacle in the workspace and M
IS a moving object. Then the C-space
obstacle corresponding to P is Pe M

KAIST



14

Computing C-obstacles
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Computational efficiency

e Running time O(n+m)
e Space O(n+m)

e Non-convex obstacles

e Decompose into convex polygons (e.q.,
triangles or trapezoids), compute the
Minkowski sums, and take the union

e Complexity of Minkowksi sum O(n?m?)

e 3-D workspace
e Convex case: O(hm)
e Non-convex case: O(n*m3)
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Worst case example

e O(n’m?) complexity

2D example
Agarwal et al. 02
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Union of
66,667 primitives
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Main Message

e Computing the free or obstacle space in an
accurate way Is an expensive and non-
trivial problem

e Lead to many sampling based methods

e Utilize many geometric concepts developed for
designing complete planners
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Sensors!

sonar rangefinder

Robots’ link to the external world... —

&\

Sensors, sensors, sensors!
and tracking what is sensed: world models

gyro
l compass
IR rangefinder - 1 CMU cam with on-
sonar rangefinder board processing
Odometry‘ o 16-735, Howie Choset with slides from G.D. Hager and Z. Dodds



Laser Ranging

Sick Laser

LIDAR

LIDAR ma p

16-735. HowilEnH38€Hith slides from G.D. Hager and Z. Dodds

rannge Tinder
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Kinect

e Resolution
e 640X%X480 pixels @ 30 Hz (RGB camera)

e 640x%x480 pixels @ 30 Hz (IR depth-finding
camera)
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Whole Picture

e Sensor
e Point clouds as obstacle map

e Control

e Compute force controls given a
computed path

e SLAM (Simultaneous
Localization and Mapping)

e Path/motion planner
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Configuration space

e Definitions and examples
e Obstacles

e Paths

e Metrics

KAIST
A
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Paths in the configuration space

workspace *  configuration space

)
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e A path in C is a continuous curve connecting two
configurations qand q’:

7:5€[01] > 7(s)eC

such that 7(0) =q and #(1)=q’.
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Constraints on paths

e A trajectory is a path parameterized by time:
7:t€[0,T]>7r(t)eC

e Constraints
e Finite length
e Bounded curvature
e Smoothness
e Minimum length
e Minimum time
e Minimum energy
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Free Space Topology

e A free path lies entirely in the free space F

e The moving object and the obstacles are
modeled as closed subsets, meaning that they
contain their boundaries.

e One can show that the C-obstacles are closed
subsets of the configuration space C as well

e Consequently, the free space F is an open
subset of C
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Semi-Free Space

e A configuration g is semi-free If the moving
object placed g touches the boundary, but
not the interior of obstacles.

e Free, or
e In contact

e The semi-free space Is a closed subset of C
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Example .

KAIST




Example
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Homotopic Paths

e Two paths t and 1’ (that map from U to V) with the same
endpoints are homotopic if one can be continuously
deformed into the other:

h:Ux[01] >V
with h(s,0) = z(s) and h(s,1) = 7’(s). L

e A homotopic class of paths
contains all paths that are
homotopic to one another.

@™
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Connectedness of C-Space

e C Is connected If every two configurations
can be connected by a path.

e C Is simply-connected if any two paths
connecting the same endpoints are
homotopic.

Examples: R?or R3

e Otherwise C is multiply-connected.

KAIST
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Connectedness of C-Space

e C Is connected If every two configurations
can be connected by a path.

e C Is simply-connected if any two paths
connecting the same endpoints are
homotopic.

Examples: R?or R3

e Otherwise C is multiply-connected.
Examples: St and SO(3) are multiply- connected:

e In S!, infinite number of homotopy classes

e In SO(3), only two homotopy classes
KAIST
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Configuration space

e Definitions and examples
e Obstacles

e Paths

e Metrics

KAIST



36

Metric in Configuration Space

e A metric or distance functiond in a
configuration space C iIs a function

d:(0,0)eC?*—>d(g,g)=>0
such that @.9) @.9)

e d(g,g)=0i1fandonly ifg=q’,
e d(q,q’) =d(q’, 9),
e d(g.,9')<d(q,9")+d(q".q’).
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Example

e Robot A and a point x on A

e X(q): position of x in the workspace when A
IS at configuration (

e A distance d in C is defined by
d(@, 9°) = max,.a || x(a) —x(a’) |

, where | |x-y] | denotes the Euclidean
distance between points x and y in the
workspace.
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Lp Metrics

n

40 X) :(z

=1

e L,: Euclidean metric
e L,: Manhattan metric
L. Max (| x;—x|)

X —x;\p]%
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Examples in R? x S’

e Consider R2 x St
e g=(X,v,0,q =(X",y’, &) with 6, & € [0,2n)
ea=mn{|0-]|,2x-]6-0"] }

o d(g, q7) = sqrt( (x-x") + (y-y")* + a?) )
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Class Objectives were:

e Configuration space
e Definitions and examples
e Obstacles
e Paths
e Metrics
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Next Time....

e Collision detection and distance
computation
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Homework

e Browse 2
ICRAZ/IROS/RSS/WAFR/TRO/1JRR papers

e Prepare two summaries and submit at the
beginning of every Tue. class, or

e Submit it online before the Tue. Class

e Example of a summary (Just a paragraph)

Title: XXX XXXX XXXX

Conf./Journal Name: ICRA, 2015

Summary: this paper is about accelerating the
performance of collision detection. To achieve its goal,
they design a new technique for reordering nodes,
since by doing so, they can improve the coherence
and thus improve the overall performance.
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Homework for Every Class

e Go over the next lecture slides

e Come up with one guestion on what we
have discussed today and submit at the end
of the class

e 1 for typical questions

e 2 for questions with thoughts or that surprised
me

e Write a question more than 4 times on
Sep./Oct.

KAIST



