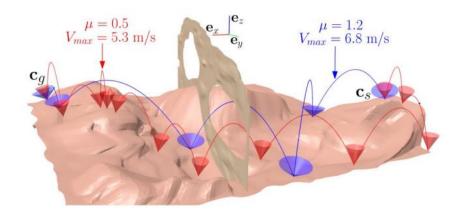
CS686 MOTION PLANNING & APPLICATION PLANNER FOR MULTI-CONTACT LOCOMOTION

Zeehyo Kim (김지효)

2019.12.03

Recap

- 1. Ballistic Motion Planning
 - Simulation for ballistic motion of point robot in 3D environment.
 - Constraints from the slipping and velocity.



- 2. Single Leg Dynamic Motion Planning with Mixed-Integer Convex Optimization
 - Implemented ballistic motion planning for real robot.
 - Simplify constraints through Mixed-Integer convex optimization

An Efficient Acyclic Contact Planner for Multiped Robots

S.Tonneau, A. D. Prete, J. Pettré, C. Park, D. Manocha, and N. Mansard, *IEEE Transactions on Robotics*, 2018

Objective

- Make a contact planner for complex legged locomotion tasks.
 - Contact planner will give contact sequences and planned motion sequences.
 Why is contact important?
 - It plans an acyclic contact sequence between a start and goal configuration in cluttered environments considering static equilibrium.

Previous works on contact planning

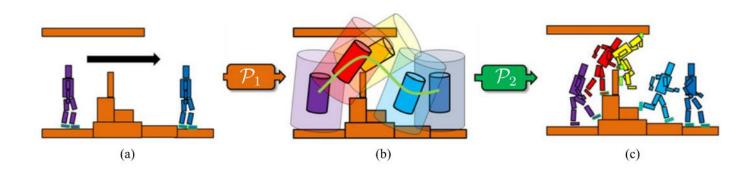
- Key issue: Avoiding combinatorial explosion while considering the possible contacts and potential paths.
- [T. Bretl. 2006], [K. Hauser, et al. 2006], [H. Dai, et al. 2014]
 - Papers proposed effective algorithms on simple situations, but not applicable to arbitrary environments.
- [R. Deits and R. Tedrake, 2014]
 - Solved contact planning globally as mixed-integer problem, but only cycle bipedal locomotion is considered, and equilibrium is not considered.

Problems for acyclic contact planning

- \wp_1 : Computation of a root guide path
- \wp_2 : Generating a discrete sequence of contact configurations.
- \vec{1}_3: Interpolating a complete motion btwn two postures of the contact sequence.
- \rightarrow In this work, problems are going to be decoupled into subproblems to reduce the complexity.
- In the paper, solving the \wp_1 , \wp_2 is introduced, and planner uses existing method for \wp_3 .
 - For \wp_3 , they used [J. Carpentier, et al. 2016]

Overview of two-stage framework

- 1. Plan feasible root guide path (\wp_1)
 - It will be achieved by defining geometric condition, the reachability condition.
 - Plan guide path in a low dimensional space by RRT.
- 2. Generate a discrete sequence of contact configurations(\wp_2)
 - Extending the path to a discrete sequence of whole-body configuration in static equilibrium using an iterative algorithm.



Root Path Planning(\mathcal{B}_1)

• Conditions for *contact reachable workspace*

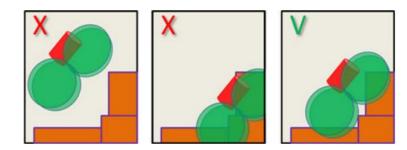
- Compromise between the following conditions.
- Necessary conditions

 $\mathcal{C}^0_{\text{Nec}} = \{ \mathbf{q}^0 : W(\mathbf{q}^0) \cap O \neq \emptyset \text{ and } W^0(\mathbf{q}^0) \cap O = \emptyset \}.$

- Torso of robot: Collision free
- Obstacle need to intersects reachable workspace of a robot.
- Sufficient conditions $\mathcal{C}^0_{\text{Suf}} = \{\mathbf{q}^0 : W(\mathbf{q}^0) \cap O \neq \emptyset \text{ and } B^{\text{Suf}}(\mathbf{q}^0) \cap O = \emptyset\}.$

Bounding volume of whole robot except effector surfaces: not intersect with object.

- Reachability condition:
 - W_s^0 : scaling transformation of vol $C_s^0 = \{\mathbf{q}^0 : W(\mathbf{q}^0) \cap O \neq \emptyset \text{ and } W_s^0(\mathbf{q}^0) \cap O = \emptyset\}$.



Root Path Planning(\wp_1)

- Computing the Guide Path in contact reachable workspace.
 - Motion planning with any standard motion planner is possible. Here, authors used Bi-RRT Planner.
 - Only difference from classic implementation is that instead of collision detection, authors validate it with *reachability condition*.

- Root path $q^0(t)$ discretized into a sequence of j key configurations: $Q^0 = [q_0^0; q_1^0; ..., ; q_{j-1}^0]$
 - *j*: Discretization step.
- Contact sequence follows below.
 - At most one contact is broken between two consecutive configurations.
 - At most one contact is added between two consecutive configurations.
 - Each configuration is in static equilibrium.
 - Each configuration is collision-free.
- They create contacts using first in, first out approach
 - First try to create contact with the limb that has been contact free longest.

Algorithm 1: Discretization of a Path.

1:	: function INTERPOLATE($s0, \mathbf{Q}^0, MAX_TRIES$)				
2:	$states \leftarrow (s0) \triangleright$ List of states initialized with $s0$				
3:	$nb_fail \leftarrow 0$				
4:	$i \leftarrow 1;$ \triangleright Current index in the list				
5:	while $i < Length(\mathbf{Q}^0)$ do				
6:	$pState \leftarrow LastElement(states)$				
7:	$s \leftarrow \text{GenFullBody}(pState, Element(\mathbf{Q}^0, i))$				
8:	if $s \neq 0$ then				
9:	$nb_fail \leftarrow 0$				
10:	$i \leftarrow i + 1$				
11:	else				
12:	$nb_fail \leftarrow nb_fail + 1$				
13:	$s \leftarrow \text{IntermediateContactState}(pState)$				
14:	if $s == 0 \lor nb_{fail} == MAX_{TRIES}$ then				
15:	return FAILURE				
16:	PushBack(states, s)				
17:	return states				
Algorithm 2. Adds or Depositions a Contact for One Limb					

Algorithm 3: Adds or Repositions a Contact for One Limb.

1: function INTERMEDIATECONTACTSTATE(<i>state</i>)				
2:	$newState \leftarrow state$			
3:	for each k in FreeLimbs(newState) do			
4:	if $GenerateContact(newState, k)$ then			
5:	MarkContact(newState, k)			
6:	return newState			
7:	for each k in ContactLimbs(newState) do			
8:	if $GenerateContact(newState, k)$ then			
9:	/*Account for repositioning in FIFO queue*/			
10:	MarkContact(newState, k)			
11:	return newState			
12:	/*Fails if impossible to relocate any effector*/			
13:	return 0			

Algorithm 2: Full Body Contact Generation Method.

1:	function GENFULLBODY($pState, \mathbf{q}^0$)
2:	$newState \leftarrow CreateState(\mathbf{q}^0,$
3:	ContactLimbs(pState))
4:	$nConBroken \leftarrow 0$
5:	for each k in ContactLimbs(pState) do
6:	if \neg <i>MaintainContact</i> ($pState, \mathbf{q}^0, k$) then
7:	$nConBroken \leftarrow nConBroken + 1$
8:	if $nConBroken > 1$ then
9:	return 0
10:	MarkFree(newState, k)
11:	else
12:	MarkContact(newState, k)
13:	for each k in FreeLimbs(newState) do
14:	if $GenerateContact(newState, k)$ then
15:	MarkContact(newState, k)
16:	return newState
17:	if IsInStaticEquilibrium(newState) then
18:	return newState
19:	else
20:	return 0

Contact Generator

- Input: a configuration of the root and the list of effectors that should be in contact
- Output: configuration of the limbs

Contact Generator

- $C_{Contact}^{\epsilon}$ is the set of configuration that the minimum distance between an effector and an obstacle is less then ϵ
- 1) Generate offline N valid sample limb configurations
- 2) When contact creation is required, retrieve the list of samples $S \subset C_{Contact}^{\epsilon}$ close to contact.
- 3) Use a user-defined heuristic to sort *S*.
- 4) *S* is empty, stop. Else select the first configuration of *S*, and project it onto contact using inverse kinematics.
- Until a configuration is in static equilibrium!

Conditions for Static Equilibrium

• They solved LP on Newton-Euler equations to judge static equilibrium.

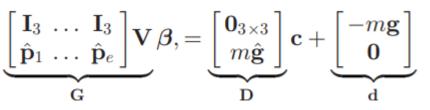
- 1) $\mathbf{c} \in \mathbb{R}^3$ is the robot center of mass (COM);
- 2) $m \in \mathbb{R}$ is the robot mass;
- 3) $\mathbf{g} = [0, 0, -9.81]^T$ is the gravity acceleration;
- 4) μ is the friction coefficient;

Stacked non-slipping

- 5) for the *i*th contact point $1 \le i \le e$:
 - a) \mathbf{p}_i is the contact position;
 - b) f_i is the force applied at p_i ;
 - c) $\mathbf{n}_i, \gamma_{i1}, \gamma_{i2}$ form a local Cartesian coordinate system centered at \mathbf{p}_i . \mathbf{n}_i is aligned with the contact surface normal, and the γ_i s are tangent vectors.

$$\mathbf{V}_{i} = ig[\, \mathbf{n}_{i} + \mu oldsymbol{\gamma}_{i1} \, \, \mathbf{n}_{i} - \mu oldsymbol{\gamma}_{i1} \, \, \mathbf{n}_{i} + \mu oldsymbol{\gamma}_{i2} \, \, \mathbf{n}_{i} - \mu oldsymbol{\gamma}_{i2} \, ig]^{T}$$

Newton-Euler equations



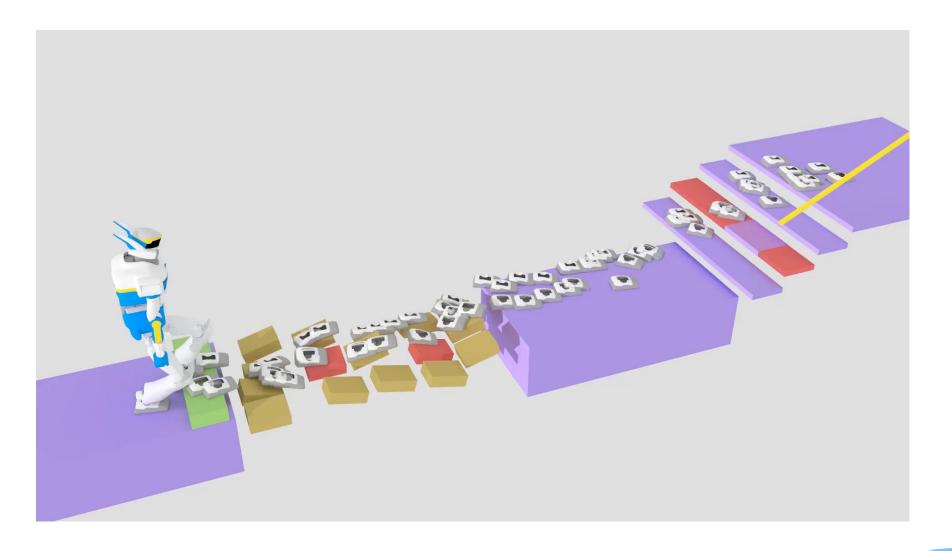
Robust LP formulation

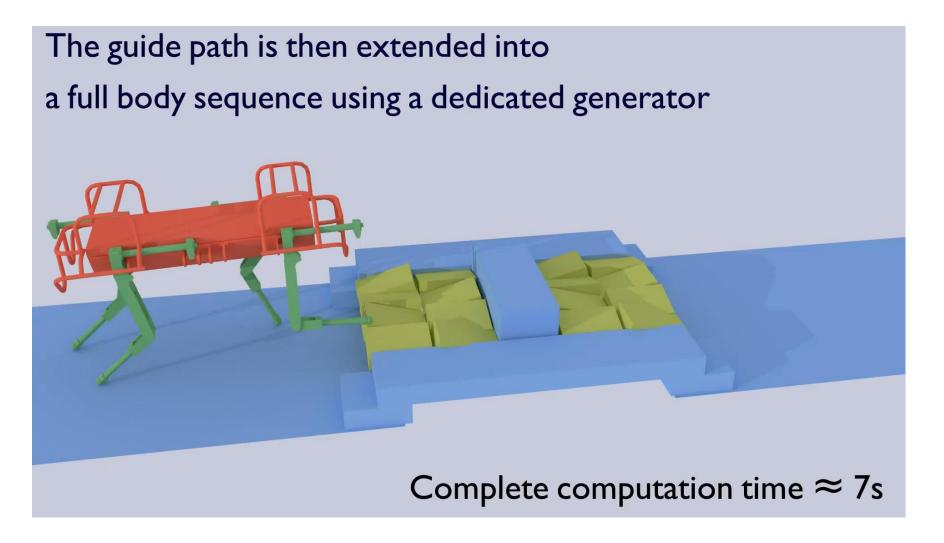
find $\boldsymbol{\beta} \in \mathbb{R}^{4e}, b_0 \in \mathbb{R}$

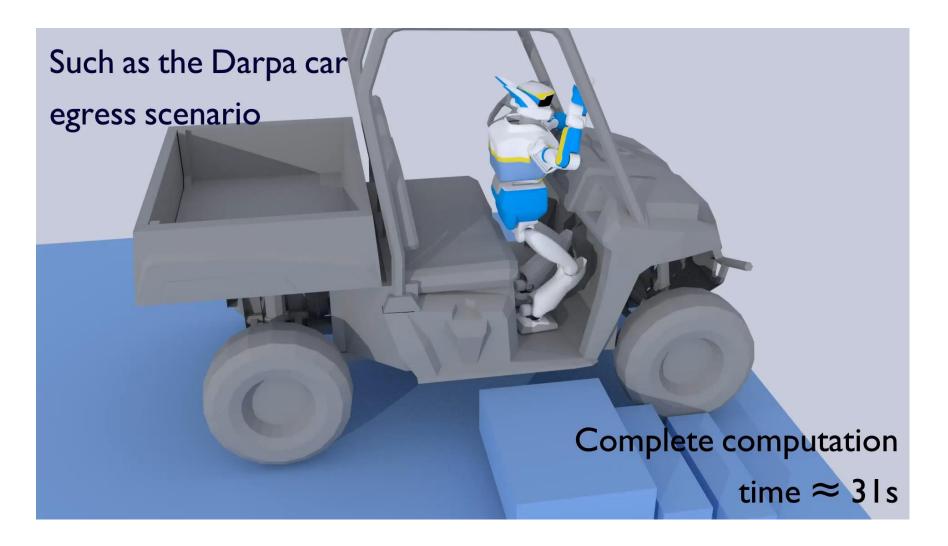
minimize $-b_0$

subject to $\mathbf{G}\boldsymbol{\beta} = \mathbf{D}\mathbf{c} + \mathbf{d}$

• If b_0 is positive, configuration is in static equilibrium, and otherwise, no.







Conclusion

- They consider the multi-contact planning problem formulated as three subproblem ℘₁, ℘₂, ℘₃.
- Their contributions
 - \wp_1 : Simply computing root path by introduction of a low-dimensional space.
 - \wp_2 : fast contact generation scheme.
- Their approach was successful compare to previous approach.

Scenario	Method	Computation time
	Hauser [9]	5.42 min
Stair 20 cm	Mordatch et al.[12]	2 to 10 min
	Ours + [1]	< 2s
	Hauser [9]	4.08 min
Stair 30 cm	Mordatch et al.[12]	2 to 10 min
	Ours	< 2s
	Hauser [9]	10.08 min
Stair 40 cm	Mordatch et al.[12]	2 to 10 min
	Ours	< 5 s
Table (cor) agress	Bouyarmane et al. [19], [18]	3.5 hours
Table (car) egress	Ours	< 60 s

A kinodynamic steering-method for legged multi-contact locomotion

P. Fernbach, S. Tonneau, A. D. Prete, and M. Ta¨ix, *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, 2017

Objective

- Make a kinodynamic planner for multi-contact motions that could produce highly-dynamic motion in complex environments.
- The kinodynamic planning requires:
 - A steering method that heuristically generates a trajectory between two states of the robot.
 - A trajectory validation method that verifies that the trajectory is collision-free, dynamically feasible.

Why is it difficult?

- Dynamic constraints of the robot are state-dependent.
- The contact points are not coplanar: cannot apply simplified dynamic models.
- Local optimization methods could get stuck in local minima.

Previous works for multi-contact planning

- Regard the problem as a optimization problem
 - I. Mordatch, E. Todorov, and Z. Popovic (2012)
 - Problem: Be able to result in local minima.
- Plan the root path heuristically, then generate a contact sequence along this path.
 - Paper 1
 - Problem: Each contact phase to be in static equilibrium.

Definitions

- State S =< X, P, N, q >
 - $X = \langle c, \dot{c}, \ddot{c} \rangle$: position, velocity, acceleration of COM
 - $P = \langle p_1, ..., p_k \rangle$; $p_i \in \mathbb{R}^3$, position of the i-th contact point
 - N =< $n_1, \ldots, n_k >$: $n_i \in \mathbb{R}^3$, surface normal of the i-th contact point
 - $\mathbf{q} \in SE(3) \times \mathbb{R}^n$: configuration of the robot.
- All positions are expressed in the world frame.

Steering method & Trajectory validation

Proposed two-step method

- 1. Use DIMT method with constraints computed for the initial state S₀.
 DIMT (Double Integrator Minimum time) method
 - Input: User-defined constant & symmetric bounds on the COM dynamics along orthogonal axis, initial state, target state
 - Output: minimum time trajectory X(t) that connects exactly X_0 and X_1 . (w/o considering collision avoidance)

•Increase probability that the trajectory X(t) be dynamically feasible in the neighborhood of S_0 .

Steering method & Trajectory validation

Proposed two-step method

- 2. In trajectory validation phase, verify the dynamic equilibrium of the root, collision avoidance along the trajectory.
 - •Inputs: Two states S_0 , S_1 and a trajectory X(t) connecting them.
 - Output: dynamically feasible, collision free sub-trajectory of X, X'(t)

Trajectory validation

They checked dynamic equilibrium by solving the LP.

• Detail \rightarrow Refer to paper

2) Dynamic equilibrium: We formulate a test for dynamic equilibrium as an LP, extending the static equilibrium test proposed in [19]. The Newton-Euler equations verify:

$$\begin{bmatrix} m(\ddot{\mathbf{c}} - \mathbf{g}) \\ m\mathbf{c} \times (\ddot{\mathbf{c}} - \mathbf{g}) + \dot{\mathbf{L}} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_3 & \dots & \mathbf{I}_3 \\ \dot{\mathbf{p}}_1 & \dots & \dot{\mathbf{p}}_k \end{bmatrix} \mathbf{f}$$
(4)

Where :

- m is the total mass of the robot;
- $\mathbf{f} = [\mathbf{f}_1, \mathbf{f}_2, ..., \mathbf{f}_k]^T \in \mathbb{R}^{3k}$ is the stacked vector of contact forces \mathbf{f}_i , applied at contact position \mathbf{p}_i ; • $\mathbf{g} = \begin{bmatrix} 0 & 0 & -9.81 \end{bmatrix}^T$ is the gravity vector;
- $\mathbf{L} \in \mathbb{R}^3$ is the angular momentum (expressed at c).
- $\hat{\mathbf{p}}_i$ denotes the skew-symmetric matrix associated to \mathbf{p}_i .

To respect the non-slipping condition, we constrain the contact forces f_i to lie inside a linearized friction cone of generators V_i , such that [4]:

$$\mathbf{f}_i = \mathbf{V}_i \boldsymbol{\beta}_i \text{ with } \boldsymbol{\beta}_i \in \mathbb{R}^4 \text{ and } \boldsymbol{\beta}_i \ge 0$$
 (5)

which leads to

 $\mathbf{f} = \mathbf{V}\boldsymbol{\beta}$ with $\boldsymbol{\beta} \in \mathbb{R}^{4k}$ and $\boldsymbol{\beta} > \mathbf{0}$ (6)

where $\mathbf{V} = diag(\begin{bmatrix} \mathbf{V}_1 & \dots & \mathbf{V}_k \end{bmatrix}) \in \mathbb{R}^{3k \times 4k}$. We set $\dot{\mathbf{L}} = 0$ as classically done [25] and rewrite (4):

$$\underbrace{m \begin{bmatrix} \mathbf{I}_3 \\ \hat{\mathbf{c}} \end{bmatrix}}_{\mathbf{H}} \mathbf{\ddot{c}} + \underbrace{m \begin{bmatrix} -\mathbf{g} \\ \mathbf{c} \times -\mathbf{g} \end{bmatrix}}_{\mathbf{h}} = \underbrace{\begin{bmatrix} \mathbf{I}_3 & \dots & \mathbf{I}_3 \\ \hat{\mathbf{p}_1} & \dots & \hat{\mathbf{p}_k} \end{bmatrix}}_{\mathbf{G}} \mathbf{V} \boldsymbol{\beta} \quad (7)$$

Thus, if there exists a β^* such that $\beta^* \ge 0$ and (7) is satisfied, it means the robot is in dynamic equilibrium. Our test then boils down to solving the following LP:

find
$$\beta$$

s.t. $\mathbf{G}\beta = \mathbf{H}\ddot{\mathbf{c}} + \mathbf{h}$ (8)
 $\beta \ge 0$

Computing acceleration bounds for the steering method

- 1. Call DIMT with arbitrary large bounds, then obtain a trajectory. a is the direction of the first phase.
- 2. Computes maximum acceleration $\ddot{c}^{max} = \alpha^* a$, and $\alpha^* \in \mathbb{R}^+$ satisfying non-slipping condition at S_0 .
 - α^* can be achieved by LP extending previous slide, also refer to paper.
- 3. Compute X(t) by calling again the DIMT, using bound $-(\alpha^* a)_{\{x,y,z\}} \le \ddot{c}_{\{x,y,z\}} \le (\alpha^* a)_{\{x,y,z\}}$

- They integrated their methods within the [Paper 1] to generate multicontact motions.
 - They are going to modify planner from PAPER 1 that decouples motion planning problem to three phases.
 - \wp_1 : Planning a root trajectory by RRT
 - • \wp_2 : Generation of a discrete contact sequence along this root path
 - • \wp_3 : Interpolating contact sequence into continuous motion for the robot.

Planning a root trajectory(\$\$\mathcal{P}_1\$)

Integration of the steering method.

• For given configuration, compute the intersection between the reachable workspace of each effector and the environments. Then assume that a contact exists at the center of this intersection.

• Approximate COM as position of the root.



Approximation of contact locations in \wp_1

Planning a root trajectory(\$\varsigma_1\$)

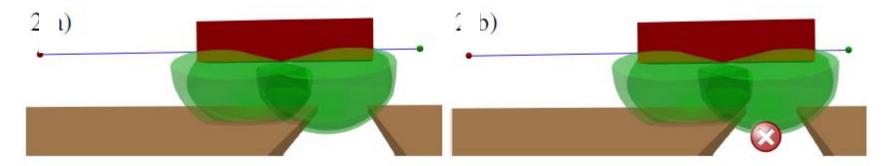
- Trajectory validation in \wp_1
 - Approximate contact phases P(t), N(t).

•Assume that contacts sliding along with COM trajectory. - If it could not be continued, estimates new contacts and continue.

- Planning a root trajectory(\$\$\mathcal{B}_1\$)
 - Generating jumps

• If the produced trajectory between to states results in phases where the number of active contact falls under a user-defined threshold, the planner could try to generate a jump

- Planning a root trajectory(\$\$\mathcal{B}_1\$)
 - Generating jumps
 - •1) Identify the last state $X(t_{to})$ where the desired effectors were still in contact.

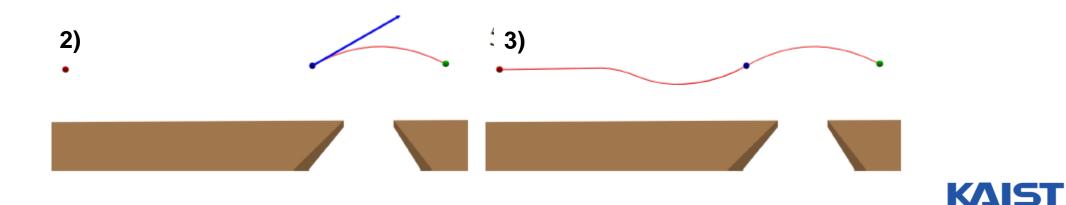


▲ Last state that desired effectors were still in contact ▲ First invalid state

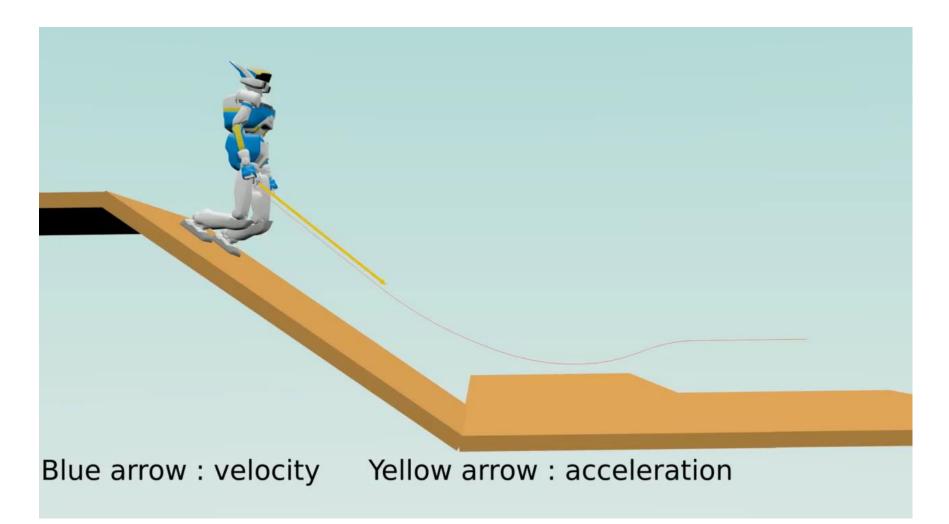
- Planning a root trajectory(\$\varsigma_1\$)
 - Generating jumps

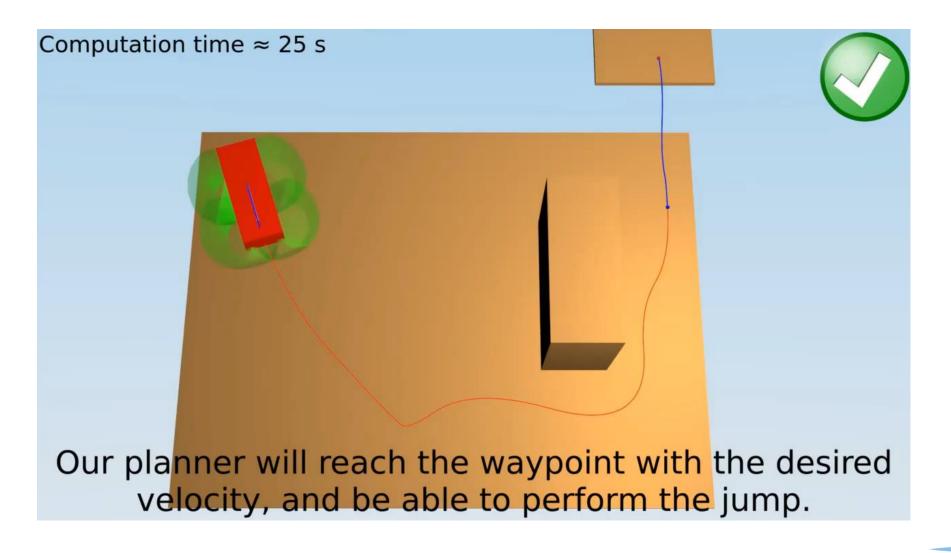
•2) Try to compute a feasible take-off velocity \dot{c}_{to} such that a collision free ballistic motion between S_{to} and S_1 is feasible.

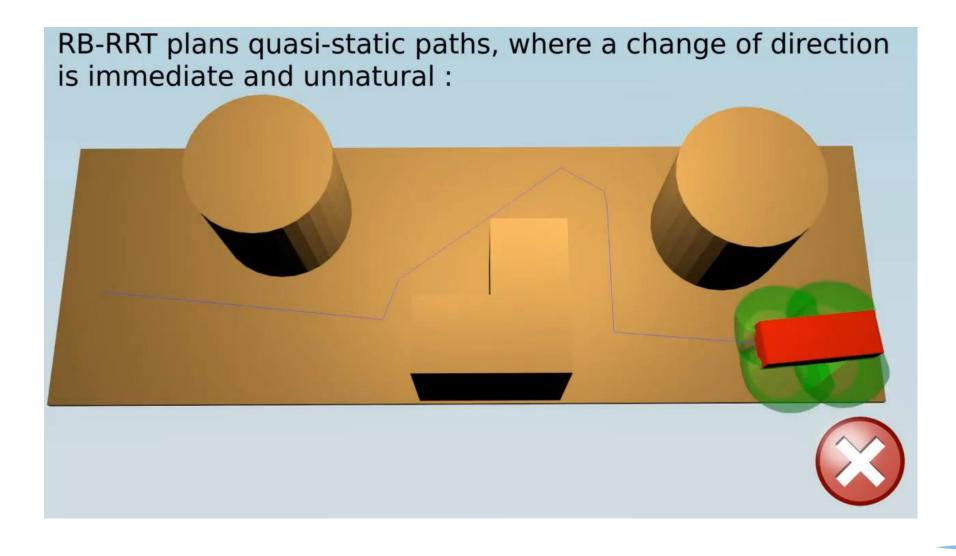
- If contact force at jumping is in the centroidal convex cone, slip would not occur.
- 3) Compute a trajectory from S_0 to S_{to} , and connect with 2).



- Generating dynamic contact configurations (\wp_2)
 - Using same approach from paper 1, but in this work, authors are using an LP solving dynamic constraints to generate dynamically feasible contact configurations.
- Trajectory interpolation(\wp_3) could be applied same with [Paper 1].







KΛ

Conclusion

- They presented a method for synthesizing collision-free, various dynamic behaviors for multi-contact robots.
- Their contributions are
 - An extension of the static equilibrium contact planner to dynamic cases, faster than previous approaches.
 - An efficient LP to determine the acceleration bounds on the COM of a robot, given its active contacts and a desired direction of acceleration.

