Sensing Ability Based Exploration

Date : 2019.12.03 Presenter : Duckyu Choi ID : 20194554

Representing Space

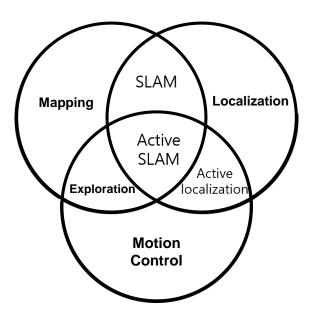
As for most sensors the perception stops at surfaces, hollow spaces or narrow pockets can sometimes not be explored with a given setup. This residual space denoted by V_{res}

3D space $V \subset \mathbb{R}^3$ initially unmapped space $V_{unm} \stackrel{init.}{=} V$ free $V_{free} \subset V$ or occupied $V_{occ} \subset V$

Purpose of Exploration

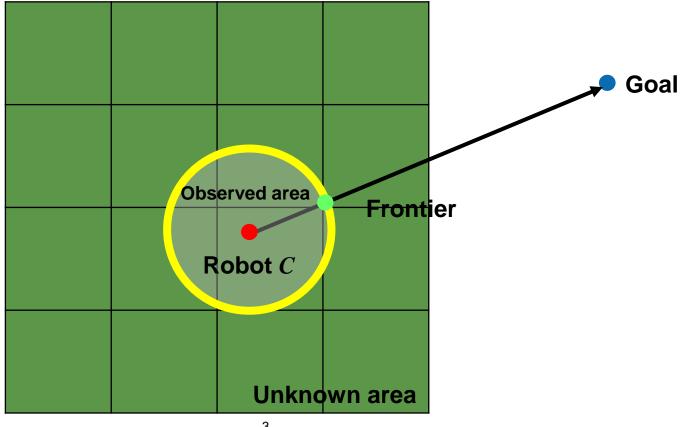
unmapped exploration area V_{unm} $V_{free} \cup V_{occ} = V \setminus V_{res}$

- Exploration
 - Map is used for both, collision free navigation and determination of the exploration progress



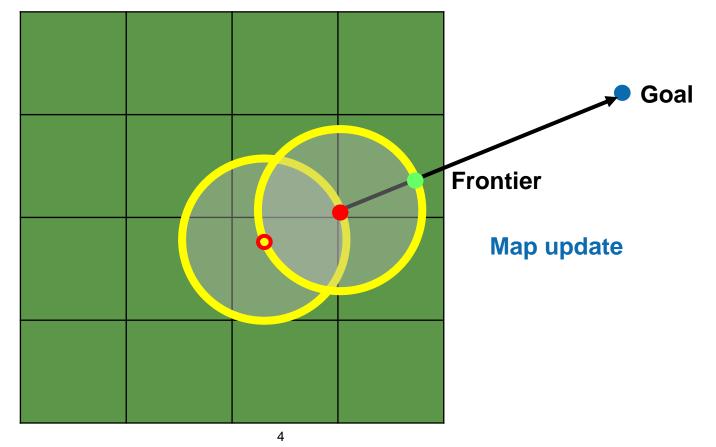
Previous Exploration Method

- Frontier Based Exploration is one of them
- To gain the most new information about the world, move to the boundary between known space and unknown space



Previous Exploration Method

- Frontier Based Exploration is one of them
- To gain the most new information about the world, move to the boundary between known space and unknown space



Octomap, Occupancy map

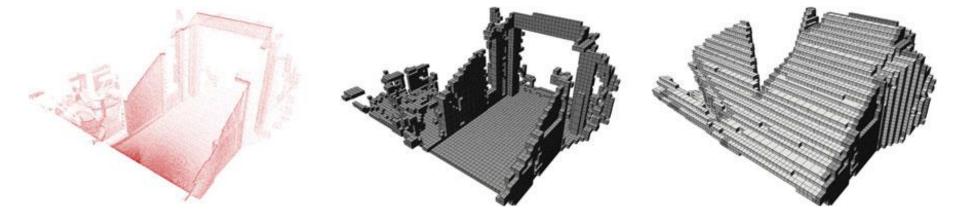
 "OctoMap: an efficient probabilistic 3D mapping framework based on octrees, Auton Robot (2013) 34:189–206"

$$P(n \mid z_{1:t}) = \left[1 + \frac{1 - P(n \mid z_t)}{P(n \mid z_t)} \frac{1 - P(n \mid z_{1:t-1})}{P(n \mid z_{1:t-1})} \frac{P(n)}{1 - P(n)}\right]^{-1}$$

 $L(n \mid z_{1:t}) = L(n \mid z_{1:t-1}) + L(n \mid z_t),$

with

$$\mathcal{L}(n) = \log\left[\frac{P(n)}{1 - P(n)}\right].$$



1. Receding Horizon "Next–Best–View" Planner for 3D Exploration

KAIS

Basic Framework

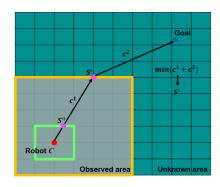


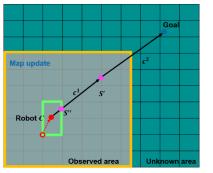
 Paths are only planned through known free space V_{free}, thus providing collision–free navigation

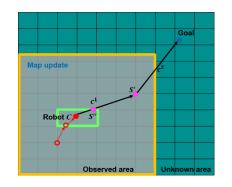
Model

Receding Horizon Planning (RHP)

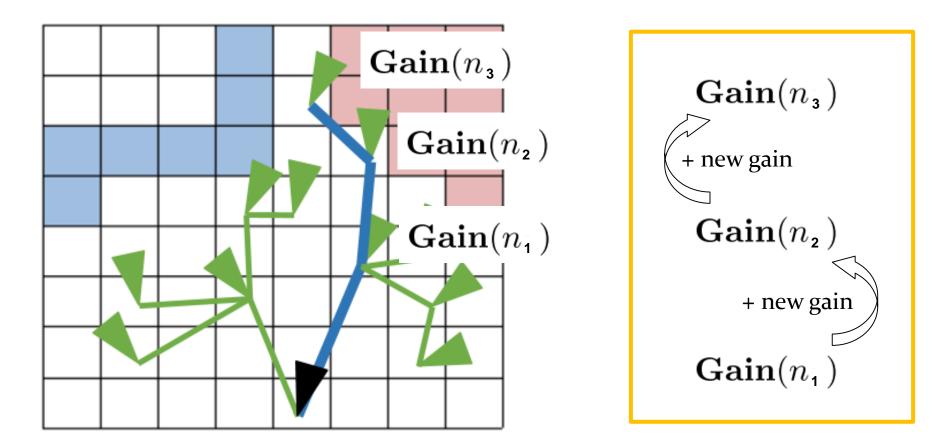
- Only the first waypoint is executed when the robot moves.
- The map is updated as more grids are explored, and the path is replanned if necessary.
- Able to plan a smooth path where waypoints can be located on any position on the edge of grids without linear interpolation, which may not work for a cost function that includes nonlinear factors.







Summation of Gain – Selecting Best Qualified Tree



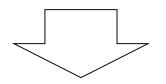
1. NBVP Euclidean distance $c(\sigma_{k-1}^k) = \sqrt{(x_k - x_{k-1})^2 + (y_k - y_{k-1})^2 + (z_k - z_{k-1})^2}$ Quality - collected information gain

a path is given by $\sigma : \mathbb{R} \to \xi$ from ξ_{k-1} to ξ_k by $\sigma_{k-1}^k(s)$ path cost is $c(\sigma_{k-1}^k)$

the world \mathcal{M} , visible and unmapped voxels from configuration ξ is denoted **Visible** (\mathcal{M}, ξ)

 $\mathbf{Gain}(n_k) = \mathbf{Gain}(n_{k-1}) + \mathbf{Visible}(\mathcal{M}, \xi_k) e^{-\lambda c(\sigma_{k-1}^k)}$

tuning factor λ penalizing high path costs



 $\mathbf{ExtractBestPathSegment}(n_{best})$

sensor limitation is d_{\max}^{sensor}

 $d_{\max}^{\text{planner}} \leq d_{\max}^{\text{sensor}}$

A lower $d_{\max}^{\text{planner}}$ ensures both robustness against suboptimal sensing conditions, as well as improved computational performance.

Algorithm 1 Exploration Planner - Iterative Step

- 1: $\xi_0 \leftarrow$ current vehicle configuration
- 2: Initialize \mathbb{T} with ξ_0 and, unless first planner call, also previous best branch
- 3: $g_{best} \leftarrow 0$ \triangleright Set best gain to zero
- 4: $n_{best} \leftarrow n_0(\xi_0)$ > Set best node to root
- 5: $N_{\mathbb{T}} \leftarrow$ Number of initial nodes in \mathbb{T}

6: while
$$N_{\mathbb{T}} < N_{\max}$$
 or $g_{best} = 0$ do

7: Incrementally build \mathbb{T} by adding $n_{new}(\xi_{new})$

8:
$$N_{\mathbb{T}} \leftarrow N_{\mathbb{T}} + 1$$

9: **if** $Gain(n_{new}) > g_{best}$ then

10:
$$n_{best} \leftarrow n_{new}$$

11:
$$g_{best} \leftarrow \mathbf{Gain}(n_{new})$$

- 12: if $N_{\mathbb{T}} > N_{TOL}$ then
- 13: Terminate exploration
- 14: $\sigma \leftarrow \mathbf{ExtractBestPathSegment}(n_{best})$
- 15: Delete \mathbb{T}
- 16: return σ

Computational Complexity

$$\mathcal{O}(\underline{N_{\mathbb{T}}\log(N_{\mathbb{T}})} + \underline{N_{\mathbb{T}}/r^{3}\log(V/r^{3})} + \underline{N_{\mathbb{T}}(d_{\max}^{\text{planner}}/r)^{4}\log(V/r^{3})})$$

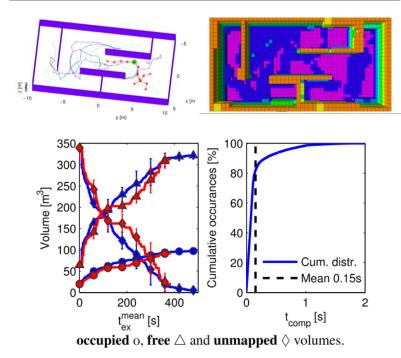
RRT complexity

Occupancy map complexity with $1/r^3$ scale

Gain computation complexity

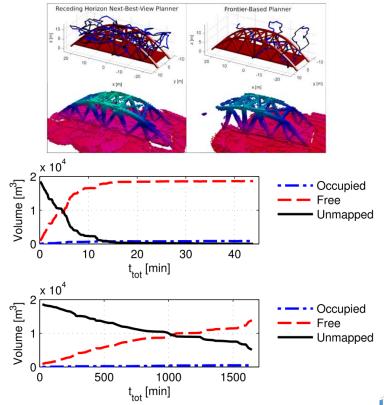
V: volume to explore r: resolution of occupancy map $d_{max}^{planner}$: sensor range N_T : number of nodes in the tree

Parameter	Value	Parameter	Value
Area	20x10x3m	Map resolution r	0.4m
v _{max}	0.2m/s	$\dot{\psi}_{max}$	0.75rad/s
FoV	[60, 90]°	Mounting pitch	15°
$d_{\max}^{\text{planner}}$	2m	d_{\max}^{sensor}	5m
λ	0.5	RRT max edge length	1m
N _{max}	15	Collision box	0.5x0.5x0.3m



Indoor Simulation Experiment Indoor Simulation Experiment

Parameter	Value	Parameter	Value
Area	50x26x14m	Map resolution r	0.25m
$v_{\rm max}$	0.5m/s	$\dot{\psi}_{ m max}$	0.75rad/s
FoV	$[60, 90]^{\circ}$	Mounting pitch	15°
$d_{\max}^{planner}$	2m	$d_{\max}^{ ext{sensor}}$	10m
λ	0.2	RRT max edge length	3m
N _{max}	30	Collision box	0.5x0.5x0.3m



Real World Experiment

Parameter	Value	Parameter	Value
Area	9x7x2m	Map resolution r	0.2m
v _{max}	0.25m/s	$\dot{\psi}_{max}$	0.3rad/s
FoV	[60, 90]°	Mounting pitch	15°
$d_{\max}^{\text{planner}}$	1m	d ^{sensor}	5m
λ	0.5	RRT max edge length	1.5m
N _{max}	20	Collision box	1.2x1.2x0.5m

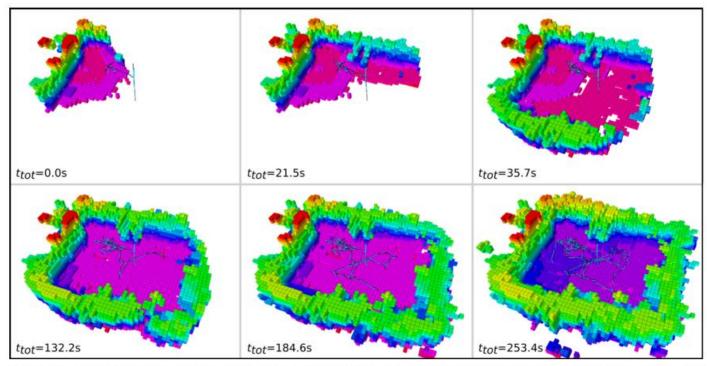
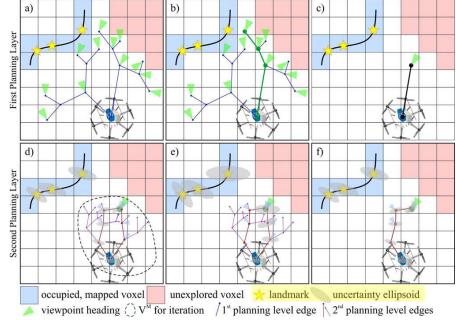


Fig. 8: The exploration experiment in a closed room is depicted. The colored voxels represent occupied parts of the occupancy map (colored according to height) while the computed path is given in black and the vehicle response in light blue. The initial phase of the exploration mission is dominated by yawing motions to maximize exploration without traveling large distances. Subsequently the MAV explores regions further away, to eventually accomplish its mission.

2. Uncertainty-aware Receding Horizon Exploration and Mapping using Aerial Robots

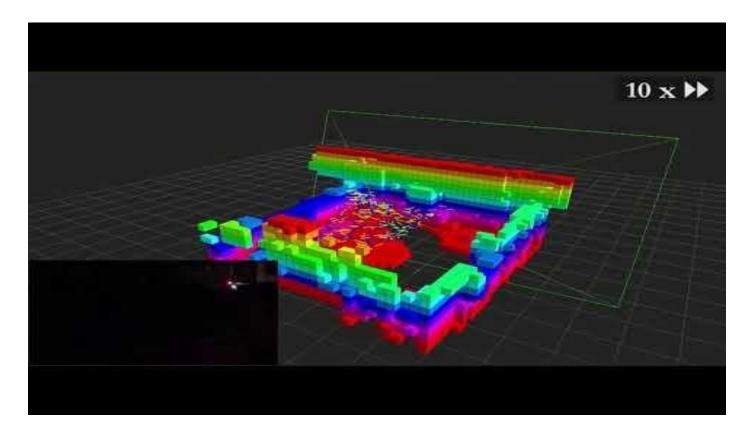
- Key requirements for the VIO to perform robustly
 - must reobserve landmarks with good confidence
 - better to follow trajectories that appropriately excite the inertial sensors



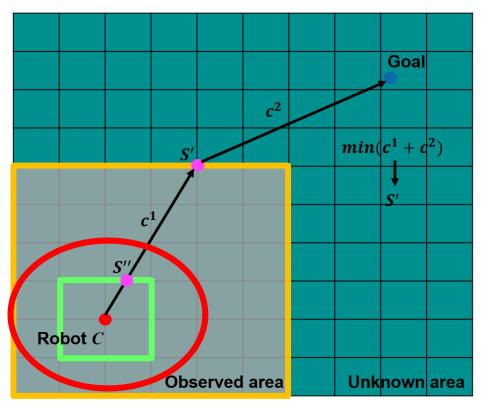
- This has two effects
 - improving the location estimate of the features
 - improving the pose estimate of the robot due to the statistical correlations that link the vehicle to the features.

- Especially when the robot explores an unknown environment, new features are initialized into the map.
- This imposes the need to reobserve previous features in order to reduce the growth in localization and mapping error

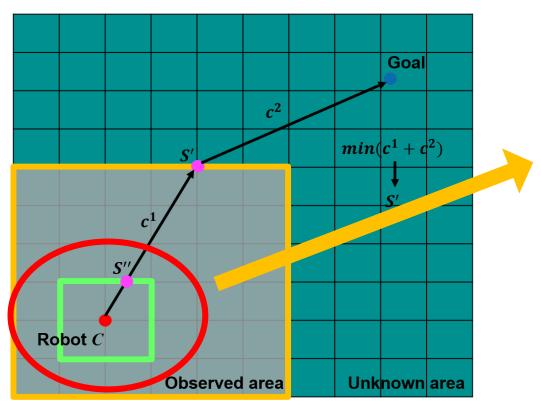
- First, receding horizon planner
- Second, belief space—based planner



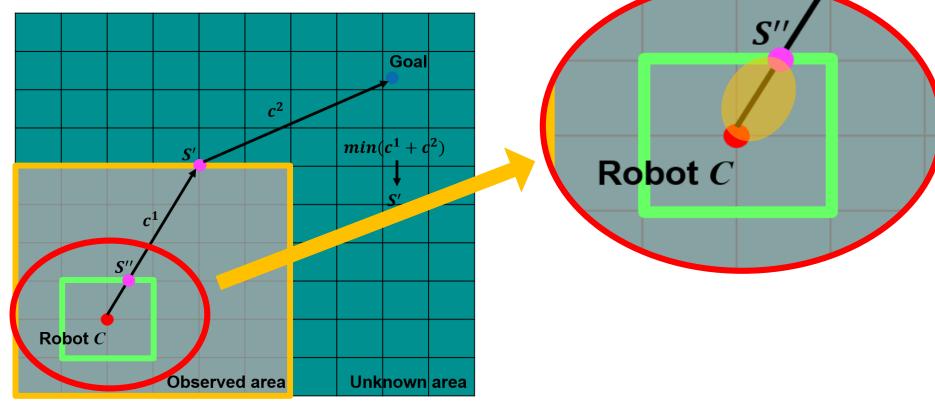
- S" has selected by receding horizon planner
- S" be the goal for nested second planner



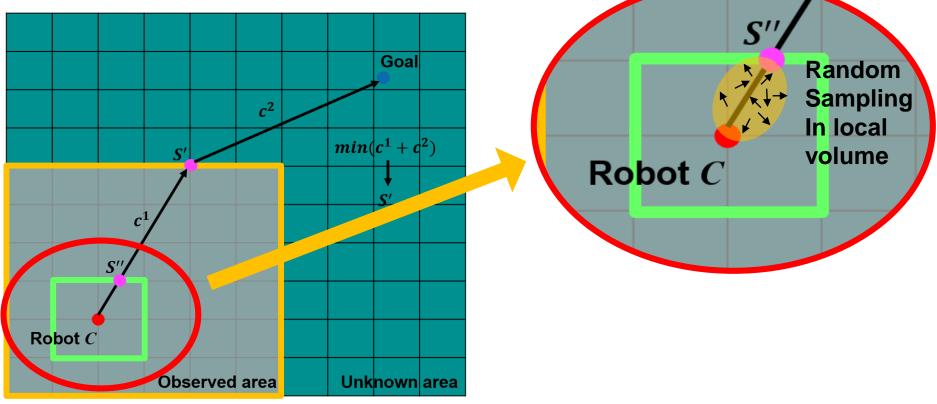
- S" has selected by receding horizon planner
- S" be the goal for nested second planner



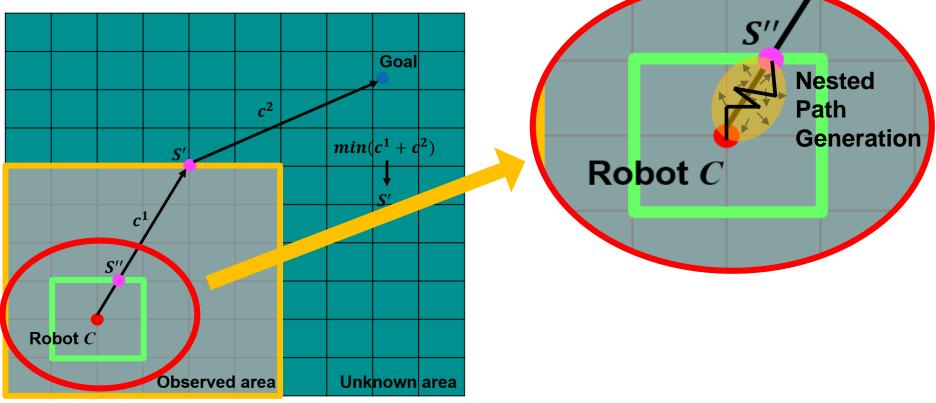
- S" has selected by receding horizon planner
- S" be the goal for nested second planner



- Make a local volume and sample the random tree
- Evaluating by D-optimality, generate nested path



- Make a local volume and sample the random tree
- Evaluating by D-optimality, generate nested path



Algorithm 1 Proposed Planner - Iterative Step 20: $\alpha \leftarrow 1$ \triangleright number of admissible paths 21: $g_{\alpha}^{M} \leftarrow \text{BeliefGain}(\sigma_{RH}^{E})$ 1: $\xi_0 \leftarrow$ current vehicle configuration 22: $g_{best}^{\tilde{M}} \leftarrow g_{\alpha}^{M}$ \triangleright straight path belief gain 23: $\sigma_{L}^{M} \leftarrow \sigma_{DH}^{M}$ \triangleright Set best belief path 2: Initialize \mathbb{T}^E with ξ_0 ▷ Set best exploration gain to zero 3: $g_{\underline{best}}^E \leftarrow 0$ 23: $\sigma_{best}^{\tilde{M}} \leftarrow \sigma_{RH}^{\tilde{M}}$ ▷ Set best belief path 4: $n_{best}^E \leftarrow n_0(\xi_0) \qquad \triangleright$ Set best exploration node to root 5: $N_{\mathbb{T}}^E \leftarrow$ Number of initial nodes in \mathbb{T}^E 24: while $N_{\mathbb{T}}^M < N_{\max}^M$ or $\mathbb{V}(\mathbb{T}^M) \cap \mathbb{S}_{\xi_{RH}} = \emptyset$ do Incrementally build \mathbb{T}^M by adding $n_{new}^M(\xi_{new})$ 25: 6: while $N_{\mathbb{T}}^E < N_{\max}^E$ or $g_{best}^E = 0$ do Propagate robot belief from current to planned vertex 26: Incrementally build \mathbb{T}^E by adding $n_{new}^E(\xi_{new})$ 7: if $\xi_{new} \in \mathbb{S}_{\xi_{BH}}$ then 27: $N_{\pi}^E \leftarrow N_{\pi}^E + 1$ 8: Add new vertex n_{new}^M at ξ_{RH} and connect 28: if ExplorationGain $(n_{new}^E) > g_{best}^E$ then 9: $\alpha \leftarrow \alpha + 1$ 29: $\begin{array}{c} n_{best}^{\bar{E}} \leftarrow n_{new}^{E} \\ g_{best}^{E} \leftarrow \mathbf{ExplorationGain}(n_{new}^{E}) \end{array}$ 10: $\sigma_{\alpha}^{M} \leftarrow \mathbf{ExtractBranch}(n_{new}^{M})$ 30: 11: $g^M_{\alpha} \leftarrow \mathbf{BeliefGain}(\sigma^M_{\alpha})$ 31: end if 12: $\begin{array}{c} \text{if} \quad g^M_\alpha < g^M_{best} \quad \text{then} \\ \sigma^M \leftarrow \sigma^M_\alpha \end{array} \end{array}$ 32: if $N_{\mathbb{T}}^E > N_{TOL}^E$ then 13: 33: Terminate planning 14: $g_{best}^M \leftarrow g_{\alpha}^M$ 34: end if 15: end if 35: 16: end while 17: $\sigma_{RH}^{E}, n_{RH}^{E}, \xi_{RH} \leftarrow \text{ExtractBestPathSegment}(n_{best}^{E})$ end if 36: 18: $\mathbb{S}_{\xi_{RH}} \leftarrow \text{LocalSet}(\xi_{RH})$ 37: end while 19: Propagate robot belief along σ_{BH}^{E} 38: return σ^M

Gain Function(1st planner)

$$\begin{split} \mathbf{ExplorationGain}(n_k^E) &= \mathbf{ExplorationGain}(n_{k-1}^E) + \\ \mathbf{VisibleVolume}(\mathcal{M}, \xi_k) \exp(-\lambda c(\sigma_{k-1,k}^E)) + \\ \mathbf{ReobservationGain}(\mathcal{M}, \mathcal{P}, \xi_k) \exp(-\lambda c(\sigma_{k-1,k}^E)) \end{split}$$

VisibleVolume (\mathcal{M}, ξ)

 $c(\sigma_{k-1,k}^{E})$ is the length of the path **ReobservationGain** $(\mathcal{M}, \mathcal{P}, \xi)$ their volume weighted by $(1 - \mathcal{P}(m))$ $\mathsf{P}(\mathsf{m}) := \mathsf{probability} \text{ of occupied voxel}$

• Gain Function(2nd planner)

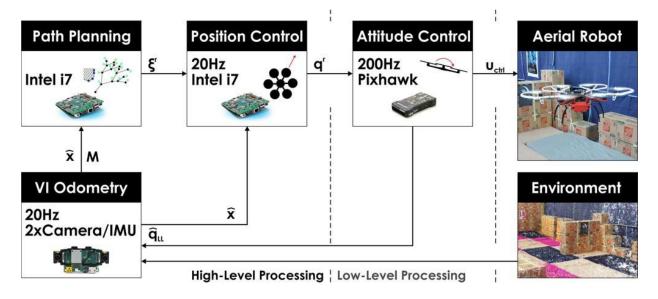
$$\mathbf{BeliefGain}(\sigma_{\alpha}^{M}) = D_{opt}(\sigma_{\alpha}^{M})$$
$$D_{opt}(\sigma^{M}) = \exp(\log([\det(\boldsymbol{\Sigma}_{p,f}(\sigma^{M})]^{1/(l_{p}+l_{f})}))$$

- $\Sigma_{p,f}$: Derived pose and tracked landmarks covariance matrix of robot and feature state, in the paper they used EKF covariance which is used with ROVIO image patch
- l_p, l_f : Dimensions of pose, robot state, features state

Computational Complexity

RRT construction	Collision checking	
	$\mathcal{O}(N_{\mathbb{T}}^S/r^3 \log(V^E/r^3)), \ S \to E, M$	
1^{st} planning level gain computation		
$\mathcal{O}(N_{\mathbb{T}}^{E}(d_{\max}^{\mathrm{planner}}/r)^{4}\log(V^{E}/r^{3}))$		
2^{nd} planning level gain computation		
$\mathcal{O}(N_{\mathbb{T}}^{M}(d_{\max}^{\text{sensor}}/r)^{4}\log(V^{E}/r^{3})l_{f} + n_{M}(l_{s}^{2.4} + l_{f}^{2}) + n_{M}(l_{p} + l_{f}))$		

-0-

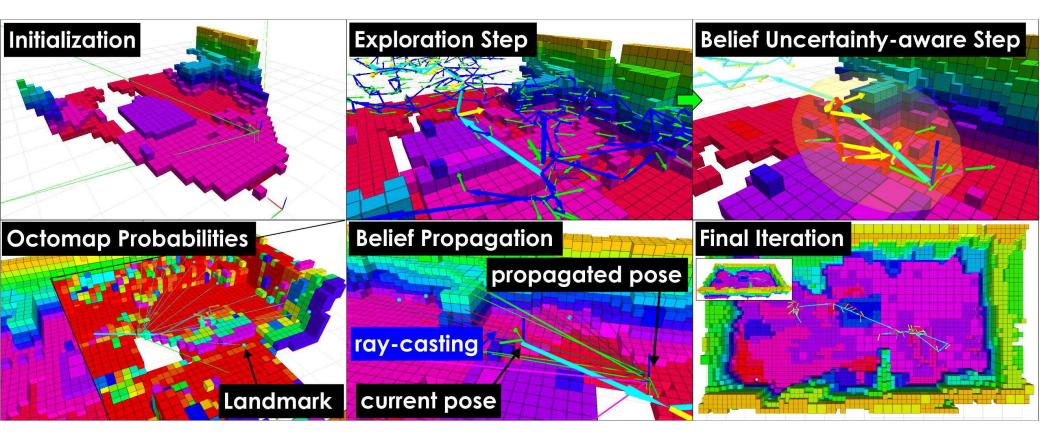


EXPERIMENTAL PARAMETERS

Parameter	Value	Parameter	Value
Volume	12x6.5x2m	Map resolution r	0.2m
v_{\max}	0.75m/s	$\dot{\psi}_{ m max}$	$\pi/4$ rad/s
FoV	$[60, 90]^{\circ}$	Mounting pitch	13.5°
$d_{\max}^{planner}$	3.5m	$d_{\max}^{ ext{sensor}}$	7.5m
λ	0.35	ℓ_E	1.5m
N_{\max}^E	250	ℓ_M	0.375m
N_{\max}^M	50	Collision box	1.2x1.2x0.6m
δ	1.5	l_f	25
T_s	0.1	p_{thres}	0.97

- 24

KAIST



-02

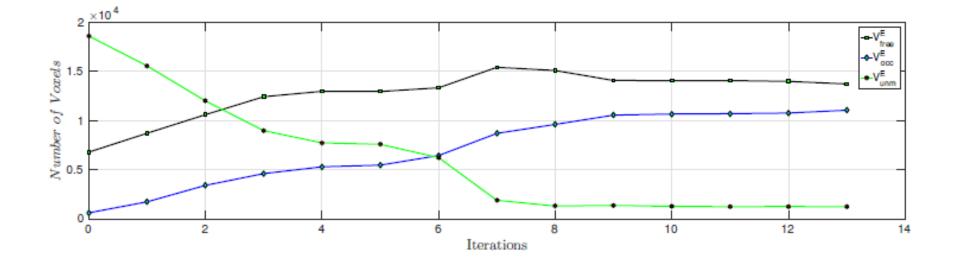


Fig. 6. Rate of exploration per iteration (upper plot, black line for explored free space, blue for explored occupied space and green for the unmapped space), best 2 D-opt gain calculations for the second, nested, planning layer

3. Conclusion

-0-

KAIST

Index		NBVP	UEP
Similar Point	Space Representation	Occupancy map(Octomap)	
	Path Randomness	RRT based sampling, Frequent back & forth movement	
Different Point	Considering Localization	No	YES(reobservation gain)
	Path Complexity	Low	High(second path planner)
	Exploration Time	Better than FE	Worse time performance

1) NBV-planner have visibility element on gain function. (T/F)

2) UEP is short name of 'Unsaturation Aware Planning'. (T/F)

Thank you