
CS686 Motion Planning Paper Presentation

20193085 Min Kim
Paper 1: Deep Reinforcement Learning for Robotic Manipulation with Asynchronous Off-Policy Updates
Paper 2: Learning dexterous in-hand manipulation

Paper Overview

Deep Reinforcement Learning for Robotic Manipulation
with Asynchronous Off-Policy Updates Learning dexterous in-hand manipulation

Paper Overview

Opening a door autonomously Rolling a cube to required position

Basic Knowledge of Reinforcement Learning

Paper 1:
Deep Reinforcement Learning for Robotic Manipulation with
Asynchronous Off-Policy Updates

Paper 2:
Rolling a cube to required position

Contents

Introduction to Reinforcement Learning

Reinforcement Learning

Agent

Environment

Action 𝑎𝑎𝑡𝑡State 𝑠𝑠𝑡𝑡 reward 𝑟𝑟𝑡𝑡

𝑟𝑟𝑡𝑡+1

𝑠𝑠𝑡𝑡+1

Reinforcement Learning: State-Value Function

Total Reward = 𝑟𝑟𝑡𝑡+1 + 𝑟𝑟𝑡𝑡+2 + 𝑟𝑟𝑡𝑡+3 + …

Goal: Maximize our total reward

Reward received now would be more valuable than that
of future => we apply discount 𝛾𝛾 < 1

Total Reward = 𝑟𝑟𝑡𝑡+1 + 𝛾𝛾𝑟𝑟𝑡𝑡+2 + 𝛾𝛾2𝑟𝑟𝑡𝑡+3 + … = ∑𝑘𝑘−1∞ 𝛾𝛾𝑘𝑘𝑟𝑟𝑡𝑡+𝑘𝑘+1

Rewards depend on current state and action

𝑟𝑟𝑡𝑡 := 𝑟𝑟𝑡𝑡(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡)

Reinforcement Learning: State-Value Function

What is expectation of total rewards?

𝑉𝑉𝜋𝜋 𝑠𝑠 = 𝐸𝐸[�
𝑡𝑡=0

∞

𝛾𝛾𝑡𝑡𝑟𝑟 𝑠𝑠𝑡𝑡 ,𝜋𝜋 𝑠𝑠𝑡𝑡 | 𝑠𝑠0 = 𝑠𝑠 ; 𝜋𝜋]

Policy: 𝜋𝜋 The strategy that our agent will follow

𝑎𝑎𝑡𝑡 = 𝜋𝜋(𝑠𝑠𝑡𝑡)

𝜋𝜋∗ ∈ 𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝜋𝜋𝑉𝑉𝜋𝜋

Goal: Find an optimal strategy that maximize total rewards

Reinforcement Learning: Q-function

𝑉𝑉𝜋𝜋 𝑠𝑠 = 𝐸𝐸[�
𝑡𝑡=0

∞

𝛾𝛾𝑡𝑡𝑟𝑟 𝑠𝑠𝑡𝑡 ,𝜋𝜋 𝑠𝑠𝑡𝑡 | 𝑠𝑠0 = 𝑠𝑠 ; 𝜋𝜋]

State-Value function only determines what is a “good state”, not evaluate “action”

Q-function (state-action value function) – Off policy

𝑄𝑄𝜋𝜋 𝑠𝑠, 𝑎𝑎 = 𝐸𝐸[�
𝑡𝑡=0

∞

𝛾𝛾𝑡𝑡𝑟𝑟 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 | 𝑠𝑠0 = 𝑠𝑠, 𝑎𝑎0 = 𝑎𝑎, 𝑎𝑎𝑡𝑡 =𝜋𝜋 𝑠𝑠𝑡𝑡]

Reinforcement Learning: Bellman Operators

Definition: For any W, the Bellman operator 𝑇𝑇𝜋𝜋 is defined as

𝑄𝑄𝜋𝜋 𝑠𝑠, 𝑎𝑎 = 𝐸𝐸[�
𝑡𝑡=0

∞

𝛾𝛾𝑡𝑡𝑟𝑟 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 | 𝑠𝑠0 = 𝑠𝑠, 𝑎𝑎0 = 𝑎𝑎, 𝑎𝑎𝑡𝑡 =𝜋𝜋 𝑠𝑠𝑡𝑡]

𝑇𝑇𝜋𝜋𝑊𝑊 𝑥𝑥 = 𝑟𝑟 𝑥𝑥,𝜋𝜋 𝑥𝑥 + 𝛾𝛾�
𝑦𝑦
𝑝𝑝 𝑦𝑦 𝑥𝑥,𝜋𝜋 𝑥𝑥 𝑊𝑊(𝑦𝑦)

(Monotonicity, Offset, Contraction, Fixed point)

Reinforcement Learning: Bellman Operators

Q-iteration
1. Let 𝑄𝑄0 be any Q-function
2. At each iteration k =1, 2, … ,K

Compute 𝑄𝑄𝑘𝑘+1 = 𝑇𝑇𝑄𝑄𝑘𝑘
3. Return the greedy policy

𝜋𝜋𝐾𝐾 𝑥𝑥 = 𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑎𝑎∈𝐴𝐴𝑄𝑄(𝑠𝑠, 𝑎𝑎)

Asynchronous VI
1. Let 𝑄𝑄0 be any Q-function
2. At each iteration k =1, 2, … ,K

Choose a state 𝑠𝑠𝑘𝑘 , 𝑎𝑎𝑘𝑘
Compute 𝑄𝑄𝑘𝑘+1(𝑠𝑠𝑘𝑘 , 𝑎𝑎𝑘𝑘) = 𝑇𝑇𝑄𝑄𝑘𝑘(𝑠𝑠𝑘𝑘 , 𝑎𝑎𝑘𝑘)

3. Return the greedy policy
𝜋𝜋𝐾𝐾 𝑥𝑥 = 𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑎𝑎∈𝐴𝐴𝑄𝑄(𝑠𝑠, 𝑎𝑎)

Policy Gradient

We assume that policy 𝜋𝜋 is differentiable with respect to some parameter 𝜃𝜃 that 𝑑𝑑𝜋𝜋(𝑠𝑠,𝑎𝑎)
𝑑𝑑𝜃𝜃

exists

Then for total reward 𝜌𝜌:
𝑑𝑑𝜌𝜌
𝑑𝑑𝜃𝜃

= ∑𝑠𝑠 𝑑𝑑𝜋𝜋(𝑠𝑠)∑𝑎𝑎
𝑑𝑑𝜋𝜋 𝑠𝑠,𝑎𝑎
𝑑𝑑𝜃𝜃

𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎)

= E[𝑑𝑑
𝑑𝑑𝜃𝜃
𝑙𝑙𝑙𝑙𝑎𝑎𝜋𝜋(𝑠𝑠, 𝑎𝑎)𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎)]

But, taking expectation over infinite number of cases is impractical => sampling

E[𝑑𝑑
𝑑𝑑𝜃𝜃
𝑙𝑙𝑙𝑙𝑎𝑎𝜋𝜋(𝑠𝑠, 𝑎𝑎)𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎)] ≈ 1

𝐾𝐾+1
∑𝑡𝑡=0𝑘𝑘 𝑑𝑑

𝑑𝑑𝜃𝜃
𝑙𝑙𝑙𝑙𝑎𝑎𝜋𝜋(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡)𝑄𝑄𝜋𝜋(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡)

To estimate Q with low bias => we need large K => large variance

Policy Gradient

Actor-critic algorithms:
Use critic to estimate the action-value function 𝑄𝑄𝜋𝜋 𝑠𝑠,𝑎𝑎 ≈ 𝑄𝑄𝜋𝜋 𝑠𝑠,𝑎𝑎,𝑤𝑤

Critic: Update action-value function parameters w

Actor update policy parameters 𝜃𝜃, in direction suggested by critic

Deep Reinforcement Learning for Robotic
Manipulation with Asynchronous Off-Policy Updates

Paper 1: Discrete to Continuous

Robot opens door in a continuous space, but original methods are designed for Discrete space

Require large amount of training time with multiple trial and error.

Discrete Continuous

NAF (Normalized Advantage Function)

𝑄𝑄 𝑠𝑠, 𝑎𝑎 𝜃𝜃𝑄𝑄 = 𝐴𝐴 𝑠𝑠, 𝑎𝑎 𝜃𝜃𝐴𝐴 + 𝑉𝑉(𝑠𝑠|𝜃𝜃𝑉𝑉)

Represent Q-function by value function V and advantage term A produced by neural network

Training Process:
1.Initialize state 𝑠𝑠0,
2.Iteratively select action 𝑎𝑎𝑡𝑡 = 𝜋𝜋(𝑠𝑠𝑡𝑡|𝜃𝜃𝜋𝜋)
3. Generate transition (𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡, 𝑟𝑟𝑡𝑡, 𝑠𝑠𝑡𝑡+1) and store in the buffer
4. sample random minibatch from buffer and do below for multiple times

set target 𝑦𝑦𝑖𝑖 = 𝑟𝑟𝑖𝑖 + 𝛾𝛾𝑉𝑉𝑉(𝑠𝑠𝑖𝑖+1|𝜃𝜃𝑄𝑄′)
update 𝜃𝜃𝑄𝑄 by minimize loss L = 1

𝑁𝑁
∑𝑖𝑖(𝑦𝑦𝑖𝑖 − 𝑄𝑄(𝑠𝑠𝑖𝑖 , 𝑎𝑎𝑖𝑖|𝜃𝜃𝑄𝑄))2

update the target network: 𝜃𝜃𝑄𝑄′ ← 𝜏𝜏𝜃𝜃𝑄𝑄 + (1 − 𝜏𝜏)𝜃𝜃𝑄𝑄′

Collect

Train

Gu, Shixiang, et al. "Continuous deep q-learning with model-based acceleration." International Conference on Machine Learning. 2016.

Paper Title

Deep Reinforcement Learning for Robotic Manipulation
with Asynchronous Off-Policy Updates

Deep Reinforcement Learning

Asynchronous

Off-Policy

Robotic Manipulation

Asynchronous NAF

Asynchronous NAF

(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡, 𝑟𝑟𝑟𝑟 ,𝑥𝑥𝑡𝑡+1, 𝑡𝑡) (𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡, 𝑟𝑟𝑟𝑟 ,𝑥𝑥𝑡𝑡+1, 𝑡𝑡) (𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡, 𝑟𝑟𝑟𝑟 ,𝑥𝑥𝑡𝑡+1, 𝑡𝑡) (𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡, 𝑟𝑟𝑟𝑟 ,𝑥𝑥𝑡𝑡+1, 𝑡𝑡)

R

L = 1
𝑁𝑁
∑𝑖𝑖(𝑦𝑦𝑖𝑖 − 𝑄𝑄(𝑥𝑥𝑖𝑖 ,𝑢𝑢𝑖𝑖|𝜃𝜃𝑄𝑄))2

Collector

Trainer Off-policy, continuous

Tasks

1. Simulation Tasks:
For showing effectiveness of Asynchronous NAF with multiple collecting threads

Door Pushing and Pulling Reaching, Pick and Place

IMU sensor => door angle, positions

Results: Comparing different models

Even when only one robot arms are used

NAF performs much better than other types of networks

Results: Comparing Number of Workers

Using Asynchronous Training:

As the number of worker increase, success rate increase

As the task gets more complicated,
more workers => high success rate

Results: Real World Experiments

Target Reaching Task Door Opening Task

Target Reaching:
2, 4 workers significantly improves learning
speed over 1 worker

Door Opening:
2 workers:
needed 2.5 hours to learn to 100%

success rate across 20 consecutive trials
1 workers:
needed more than 4 hours

1. Real world opening door

Ways to Improve

1. They specified reward function to guide learning
algorithm, limiting exploration and learning speed.

2. Incapable of dealing with multiple situations such as
door with different types.

3. Require multiple expensive robot arms to train
network to work in a real world

Learning Dexterous In-Hand Manipulation

Experiment Environment

System Overview

System Overview

Randomization:

1. Observation Noise:
Gaussian noise to policy observation

2. Physics randomization:
Physical parameters like friction are randomized for each
episode

3. Unmodeled effects
To demonstrate unexpected effects in real-world, added
random motor backlash and action delays.

4. Visual appearance randomization
Randomize camera positions, lighting conditions, hand
and object poses

Transferable Simulations

Policy model: LSTM
Required memory augmented policy to identify properties of the current environment and
adapt its behavior accordingly

Policy Architecture

Training: Proximal Policy Optimization (PPO)
on-policy RL algorithm that uses ratio of the probability of taking the given action under
the current policy 𝜋𝜋 to the probability of taking the same action under the old behavioral policy.
Encourages the policy to take actions which are better than average while discouraging
bigger changes to the policy

Rewards:
𝑟𝑟𝑡𝑡 = 𝑑𝑑𝑡𝑡 − 𝑑𝑑𝑡𝑡−1, where d is the rotation angles between the desired and current orientations
+5 when a goal is achieve, -20 whenever the object is dropped

Qualitative Results:
Without Human demonstration, many different grasp types are learned by the policy:

Results

Tip Pinch Grasp Tripod Grasp Power Grasp

Quantitative Results:
Number of successful consecutive rotations in simulation and physical world

Results

Effect of Randomization

Number of successful consecutive rotations with various
randomization in physical environment

1. Even with randomization: there are still gaps between
performance in simulation and physical worlds

2. Cannot accomplish more dexterous motions such as rotating a
pan around fingers only with vision data

Limitations

Thank you

	CS686 Motion Planning Paper Presentation
	Paper Overview
	Paper Overview
	Contents
	Introduction to Reinforcement Learning
	Reinforcement Learning
	Reinforcement Learning: State-Value Function
	Reinforcement Learning: State-Value Function
	Reinforcement Learning: Q-function
	Reinforcement Learning: Bellman Operators
	Reinforcement Learning: Bellman Operators
	Policy Gradient
	Policy Gradient
	Deep Reinforcement Learning for Robotic Manipulation with Asynchronous Off-Policy Updates
	Paper 1: Discrete to Continuous
	NAF (Normalized Advantage Function)
	Paper Title
	Asynchronous NAF
	Asynchronous NAF
	Tasks
	Results: Comparing different models
	Results: Comparing Number of Workers
	Results: Real World Experiments
	Ways to Improve
	Learning Dexterous In-Hand Manipulation
	Experiment Environment
	System Overview
	System Overview
	Transferable Simulations
	Policy Architecture
	Results
	Results
	Effect of Randomization
	Limitations
	Thank you

