CS686: Classic Motion Planning Methods

Sung-Eui Yoon (윤성의)

Course URL: http://sgvr.kaist.ac.kr/~sungeui/MPA

Class Objectives

Classic motion planning approaches

- Roadmap
- Cell decomposition
- Potential field

Classic Path Planning Approaches

Roadmap

- Represent the connectivity of the free space by a network of 1-D curves
- Cell decomposition
 - Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells

Potential field

 Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent

Classic Path Planning Approaches

Roadmap

- Represent the connectivity of the free space by a network of 1-D curves
- Cell decomposition
 - Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells

Potential field

 Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent

Roadmap Methods

- Visibility Graph
 - Shakey project, SRI [Nilsson 69]

Voronoi diagram

- Introduced by computational geometry researchers
- Generate paths that maximize clearance
- O(n log n) time and O(n) space for 2D points

Fast Computation of Generalized Voronoi Diagrams Using Graphics Hardware

Kenneth E. Hoff III, Tim Culver, John Keyser, Ming Lin, and Dinesh Manocha

> of North Carolina at Chapel Hil SIGGR AP11 199

What is a Voronoi Diagram?

Given a collection of geometric primitives, it is a subdivision of space into cells such that all points in a cell are *closer* to one primitive than to any other

Adopted from: Fast Computation of GVD using Graphics Hardware, Hoff et al., SIGGRAPH 1999

Ordinary

- Point sites
- Nearest Euclidean distance

Generalized

- Higher-order site geometry
- Varying distance metrics

What Makes Them Useful? "Ultimate" Proximity Information

Nearest Site

Density Estimation

Maximally Clear Path

Nearest Neighbors

Cone Drawing

To visualize Voronoi diagram for points in 2D...

Perspective, 3/4 view

Parallel, top view

Dirichlet 1850 & Voronoi 1908

3D Voronoi Diagrams

Slices of the distance function for a 3D point site

Distance meshes used to approximate slices

Other Roadmap Methods

- Visibility graph
- Voronoi diagram
- Silhouette
 - First complete general method that applies to spaces of any dimension and is singly exponential in # of dimensions [Canny, 87]; e.g., $O\left(n^{2^{f(k)}}\right) \rightarrow O(n^k)$
- Probabilistic roadmaps

Cloud RRT* [Kim et al., ICRA]

 Use Voronoi diagram to bias sampling for achieving better convergence to optimal path

https://www.youtube.com/wat ch?v=NSuDtd1amC4

Classic Path Planning Approaches

Roadmap

- Represent the connectivity of the free space by a network of 1-D curves
- Cell decomposition
 - Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells

Potential field

 Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent

Cell-Decomposition Methods

- Two classes of methods:
 - Exact and approximate cell decompositions

- Exact cell decomposition
 - The free space F is represented by a collection of non-overlapping cells whose union is exactly F
 - Example: trapezoidal decomposition

critical events \rightarrow criticality-based decomposition KAIST

Cell-Decomposition Methods

- Two classes of methods:
 - Exact and approximate cell decompositions
- Exact cell decomposition
- Approximate cell decomposition
 - The free space F is represented by a collection of non-overlapping cells whose union is contained in F
 - Cells usually have simple, regular shapes (e.g., rectangles and squares)
 - Facilitates hierarchical space decomposition

Quadtree decomposition

Octree decomposition

Sketch of Algorithm

- 1. Decompose the free space F into cells
- 2. Search for a sequence of mixed or free cells that connect that initial and goal positions
- 3. Further decompose the mixed
- 4. Repeat 2 and 3 until a sequence of free cells is found

Classic Path Planning Approaches

Roadmap

- Represent the connectivity of the free space by a network of 1-D curves
- Cell decomposition
 - Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells

Potential field

 Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent

Potential Field Methods

- Initially proposed for real-time collision avoidance [Khatib, 86]
 - Use a scalar function, potential field, over the free space
 - Compute a force proportional to the negated gradient of the potential field

Workspace

Attractive and Repulsive fields

Attractive field towards the goal

Repulsive field away from obstacles

Ideal Potential Field

- The ideal one
 - Has the global minimum at the goal
 - Has no local minima
 - Grows to infinity near obstacles
 - Is smooth
- Can we compute the one?

Local Minima

• What can we do?

Svenstrup

 Escape from local minima by taking random walks

Sketch of Algorithm

- Place a regular grid G over the configuration space
- Compute the potential field over G
- Search G using a best-first algorithm with potential field as the heuristic function

Completeness

- A complete motion planner always returns a solution when one exists and indicates that no such solution exists otherwise
 - Is the visibility algorithm complete? Yes
 - How about the exact cell decomposition algorithm and the potential field algorithm?

Homework: PA1

- Install <u>Open Motion Planning Library</u> (OMPL)
- Create a scene and a robot
- Find a collision-free path and visualize the path

Homework

- Deadline: 11:59pm, Mar.-26
- Submit at KLMS:
 - An image that shows a scene with a robot with a computed path

Conf. Deadline

- ICRA: Sep.-15 2019
- RSS: Jan(?), IROS: March

Welcome to ICRA 2020 International Conference on Robotics and Automation From 31 May to 4 June 2020 Palais des Congrès de Paris - FRANCE Ret mre +

Class Objectives were:

Classic motion planning approaches

- Roadmap
- Cell decomposition
- Potential field

Homework

Browse 2 ICRA/IROS/RSS/CoRL/TRO/IJRR papers

- Prepare two summaries and submit at the beginning of every Tue. class, or
- Submit it online before the Tue. Class

• Example of a summary (just a paragraph) Title: XXX XXXX XXXX Conf./Journal Name: ICRA, 2015 Summary: this paper is about accelerating the performance of collision detection. To achieve its goal, they design a new technique for reordering nodes, since by doing so, they can improve the coherence and thus improve the overall performance.

Homework for Every Class

- Go over the next lecture slides
- Come up with one question on what we have discussed today and submit at the end of the class
 - 1 for typical questions
 - 2 for questions with thoughts or that surprised me
- Write a question 3 times before the midterm exam

Next Time....

Configuration spaces

