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Coming Schedule and Homework

e Browse recent papers (2015 ~ 2019)
e You need to present two papers at the class

e Declare your chosen 2 papers at the KLMS
by Oct-14 (Mon.)
e First come, first served
e Paper title, conf. name, publication year
e Student presentations will start right after
the mid-term exam
e 2 talks per each class; 25 min for each talk
e Each presenter needs two short quiz
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Class Objectives

e Configuration space
Definitions and examples
Obstacles

Paths

Metrics
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Obstacles in the Configuration Space

e A configuration ¢ is collision-free, or free, if
a moving object placed at ¢4 does not
intersect any obstacles in the workspace

e The free space F is the set of free
configurations

e A configuration space obstacle (C-obstacle)
Is the set of confiﬁurations where the
moving object collides with workspace
obstacles
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Disc in 2-D Workspace

workspace configuration
space
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Polygonal Robot Translating in 2-D
Workspace

configuration

workspace
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Polygonal Robot Translating & Rotating
in 2-D Workspace

workspace configuration
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Polygonal Robot Translating & Rotating
in 2-D Workspace
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C-Obstacle Construction

e Input:

e Polygonal moving object translating in 2-D
workspace

e Polygonal obstacles

e Output:

e Configuration space obstacles represented as
polygons
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Minkowski Sum

e The Minkowski sum of two sets P and O,
denoted by PDQ, is defined as

P¥Q={ptq|p eP,qe0} //q
D

e Similarly, the Minkowski difference is
defined as

Pe Q=1p—q|peP,qe}
= P9 -Q
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Minkowski Sum of Convex
Polygons

e The Minkowski sum of two convex
polygons P and O of m and » vertices
respectively is a convex polygon P< O of m
+ n vertices.

e The vertices of P® QO are the "sums” of vertices
of P and 0.
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Observation

e If P is an obstacle in the workspace and M

iIs a moving object. Then the C-space
obstacle corresponding to P is Po M
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Computing C-obstacles
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Computational efficiency

e Running time O(n+m)
e Space O(n+m)

e Non-convex obstacles

e Decompose into convex polygons (e.g.,
triangles or trapezoids), compute the
Minkowski sums, and take the union

o Complexity of Minkowksi sum O(n*m?)

e 3-D workspace
e Convex case: O(nm)
e Non-convex case: O(n’m?)
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Worst case example

e O(n*m*) complexity

2D example
Agarwal et al. 02
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444 tris

1,134 tris




Union of
66,667 primitives
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Main Message

e Computing the free or obstacle space in an
accurate way is an expensive and non-
trivial problem

e Lead to many sampling based methods

e Locally utilize many geometric concepts
developed for designing complete planners
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Approximation of Configuration

Free Space

e Dancing PRM* : Simultaneous Planning of

Sampling and Optimization with
Configuration Free Space Approximation

e Approximate C-Space and perform planning
e Improve the quality in an iterative manner
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Sensors!

sonar rangefinder

Robots” link to the external world... —

Tl Sensors, sensors, sensors!

oo and tracking what is sensed: world models

compass

IR rangefinder S CMU cam with on-
sonar rangefinder board processing

odometry. - 16-735, Howie Choset with slides from G.D. Hager and Z. Dodds



Laser Ranging

Sick Laser

LIDAR

LIDAR map

16-735, HowilénH3&&Aith slides from G.D. Hager and Z. Dodds
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Kinect and Xtion

¢ Kinect resolution
e 640x%x480 pixels @ 30 Hz (RGB camera)

e 640x480 pixels @ 30 Hz (IR depth-finding
camera)
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Whole Picture

e Sensor
e Point clouds as obstacle map
e Control
e Compute force controls given a
computed path r(t) e(t)
e SLAM (Simultaneous '
Localization and Mapping)

Plant /
Process

y()

e Path/motion planner
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Configuration space

e Definitions and examples
e Obstacles

e Paths

e Metrics

KAIST
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Paths in the configuration space

92

workspace configuration space

w

NN

S A pathinCisa contmuous curve connecting two
configurations 4 and ¢ ”:

7:5€[0,l]>7(s)eC

such that 7(0) =¢ and #«(1)=¢".
26 KAIST



Constraints on paths

e A trajectory is a path parameterized by time:
7:t€|0,T]>7(t)eC

e Constraints
e Finite length

Bounded curvature
Smoothness
Minimum length
Minimum time
Minimum energy

KAIST
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Free Space Topology

e A free path lies entirely in the free space F

e The moving object and the obstacles are
modeled as closed subsets, meaning that they
contain their boundaries.

e One can show that the C-obstacles are closed
subsets of the configuration space C as well

e Consequently, the free space Fis an open
subset of C
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Semi-Free Space

e A configuration ¢4 is semi-free if the moving
object placed 4 touches the boundary, but
not the interior of obstacles.

e Free, or
e In contact

e The semi-free space is a closed subset of C
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Example
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Homotopic Paths

e Two paths t and t’ (that map from U to V) with the same
endpoints are homotopic if one can be continuously
deformed into the other:

h:Ux[0,1] >V
with 4(s,0) = t(s) and h(s,1) = t°(s). L

e A homotopic class of paths
contains all paths that are
homotopic to one another
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Connectedness of C-Space

e C Is path-connected Iif every two
configurations can be connected by a path.

e CIs simply-connected if any two paths
connecting the same endpoints are
homotopic.

Examples: R2or R3

e Otherwise C is multiply-connected.
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Configuration space

e Definitions and examples
e Obstacles

e Paths

e Metrics
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Metric in Configuration Space

e A metric or distance function d in a
configuration space Cis a function

d:(q.g)eC*—>d(qg,q")>0
such that (q.9") (4.9")

e dig,q)=0ifandonly if g =¢’,
® dq,q’)=4d(q’, q),
e d(q,q')<d(q,q")+d(q".q").
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Example

e Robot 4 and a point x on 4

¢ x(q): position of x in the workspace when 4
Is at configuration ¢

e A distance d In C is defined by
d(q, q°) = max,_ || x(q) —x(q’) ||,

where | |x-y| | denotes the Euclidean
distance between points x and y in the
workspace.

N 4
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Lp Metrics

e L,: Euclidean metric
e L,: Manhattan metric
oL.:Max (| x;—x;|)
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Examples in R? x S’

e Consider R2 x S!
e q=(x,00,q9 ="y’ &) with g & < [0,2n)
e a=min{ |6-6],2r-]0-0"] }

° d(g, ¢°) =sqrt( (x-x’)* + (y-p’)* +a?))

KAIST



39

Class Objectives were:

e Configuration space
Definitions and examples
Obstacles

Paths

Metrics
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Summary

rCTion planning

C-space formulation

Basic framewark{ Discretization

(Graph searching {&+)

Roadrnaps (visibility graph)

Classics / Cell decompositions (octrees)

Fotential field

Degrees of freedom {dof)

S00ny and SE in)

Minkowski Sum for C-Obstacle

C—Snace{

Gearnettic and topological concepts (e, g, Homotopy)
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Next Time....

e Collision detection and distance
computation
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Homework

e Submit summaries of 2
ICRA/IROS/RSS/CoRL/TRO/IJRR papers

e Go over the next lecture slides

e Come up with 3 questions before the mid-
term exam
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