CS686:
RRT

Sung-Eui Yoon
(242

O —

Course URL.:
http://sgvr.kaist.ac.kr/~sungeui/MPA

KAIST

Class Objectives

e Understand the RRT technique and its
recent advancements

e RRT*
e Kinodynamic planning

KAIST

Rapidl Iorln Random Trees
(RRT) [L E, alle 9

e Present an efficient randomized path
planning algorithm for single-query
problems

e Converges quickly
e Probabilistically complete

e Works well in high-dimensional C-space

— —___‘/
\-\(;
4
. (
= .}-u_ﬁw‘; __J
L1
i
v
(]

Rapidly-Exploring Random Tree

e A growing tree from an initial state

KAIST

RRT Construction Algorithm

e Extend a new vertex in each iteration

KAIST

Overview — Planning with RRT

e Extend RRT until a nearest vertex is close
enough to the goal state

e Biased toward unexplored space
e Can handle nonholonomic constraints and high
degrees of freedom

e Probabilistically complete, but does not
converge

Voronoi Region

e An RRT is biased by large Voronoi regions
to rapidly explore, before uniformly
covering the space

KAIST

Overview — With Dual RRT

e Extend RRTs from both initial and goal
states

e Find path much more quickly

737 nodes are used

KAIST

Overview — With RRT-Connect

e Aggressively connect the dual trees using a
greedy heuristic

e Extend & connect trees alternatively

42 nodes are used

KAIST

RRT Construction Algorithm

BUILD _RRT (q;nit)
1 7 .mit(Ginit);
2 fork=1to K do
3 Grand — RANDOM_CONFIG();
4 EXTEND(T , @rand);
5 Return 7

EXTEND(T.q)
1 Gnear — NEAREST_NEIGHBOR(q. 7):
2 if NEW_CONFIG(q. Grear: Gnew) then

3 T .add_vertex(¢new):

4 7T .add_edge(gnear; Qnew);
5 if ¢ye0 = q then

6 Return Reached:;

7 else

8 Return Advanced:;

9 Return Trapped:
10 L KAIST

11

RRT Connect Algorithm

CONNECT(7,q)
I repeat
2

3
4

S «— EXTEND(T,q);
until not (S = Advanced)
Return S;

RRT_CONNECT_PLANNER(¢;nit; 9g0at)

1
9

= L2

iy |

=

o

8

Ta -iﬂit(fﬁ-nit) . TEJ Anit (qgﬂai \] :
for k=1to K do
Grand — RANDOM_CONFIG():
if not (EXTEND(7,, ¢rand) = Trapped) then
if (CONNECT(7p. gnew) =Reached) then
Return PATH(7,.73);
SWAP(7,.T):
Return Failure

KAIST

RRT*

e RRT does not converge to the optimal
solution

RRT -

-4
] 7

1| i) 17N
| | 4 "
. I

2 4 B8)

-8
Mo & - 4 = 0
(a) RRT in iteration 1,000 (b) RRT in iteration 3,000 (c) RRT in iteration 10,000

RRT*

KAIST

From Sertac’s homepage

RRT*

- Asymptotically optimal without a substantial
computational overhead

Theorem [Karaman & Frazzoli, IJRR 2011]
(i) The RRT* algorithm is asymptotically optimal

P({ lim YRR = cr}) =1

n—r o0

(i) RRT* algorithm has no substantial computational overhead when compared to the RRT:
M RRT™
n

RRT
MF

lim E[

n—roo

} = constant

- Y _RRT*: cost of the best path in the RRT*

%

- C : cost of an optimal solution

- M _RRT : # of steps executed by RRT at iteration n
- M _RRT": # of steps executed by RRT* at iteration n

KAIST

From DH’s homepage

Key Operation of RRT*

e RRT
e Just connect a new node to its nearest
neighbor node
e RRT*: refine the connection with re-
wiring operation
e Given a ball, identify neighbor nodes to the
new node

e Refine the connection to have a lower cost

KAIST

Example: Re-Wiring Operation

=

From ball tree paper

Example: Re-Wiring Operation
[

Generate a new sample

From ball tree paper

Example: Re-Wiring Operation

|ldentify nodes in a ball

From ball tree paper

Example: Re-Wiring Operation

|dentify which parent
gives the lowest cost

From ball tree paper

Example: Re-Wiring Operation

=

From ball tree paper

Example: Re-Wiring Operation
[

|dentify which child
gives the lowest cost

gy <

From ball tree paper

Example: Re-Wiring Operation
[

Video showing benefits
with real robot

& <

From ball tree paper

22

Kinodynamic Path Planning

ALSO GIVEN: h;(q.q.¢) <0, hi(q.q.q) = 0, ...
FIND: 7 that satisfies fi(q), gi(q,q), hi(q, q,)

e Consider kinematic + dynamic constraints

KAIST

23

State Space Formulation

e Kinodynamic planning — 2n-dimensional
state space

C denote the C-space
X denote the state space

x=(q,q9),forgeC,xe X

d% dgz dqn]
dt dt dt

x=[q, q, ... q,

KAIST

Constraints in State Space

h(q,q9,q9) =0 becomes G,(x,x)=0,
fori=1,..., m and m < 2n
e Constraints can be written in:

x = f(x,u)

uelU, U :Setof allowable controls or inputs

24 KAIST

25

Solution Trajectory

e Defined as a time-parameterized
continuous path

7:10,T]> X satisfies the constraints

free?

e Obtained by integrating x= f(x,u)
e Solution: Finding a control function

u:[0,T]—> U

KAIST

Rapidly-Exploring Random Tree

e Extend a new vertex in each iteration

26 KAIST

Results — 200MHz, 128MB

e 3D translating
e X=6 DOF

e 16,300 nodes
e 4.1min

e 3D TR+RO

e X=12 DOF

e 23,800 nodes
e 8.4min

27 KAIST

RRT at work: Urban Challenge

From MIT

Successful Parking Maneuver

RRT at work: Autonomous Forklift

Some Works of Our Group

e Narrow passages

e Identify narrow passage with a simple one-
dimensional line test, and selectively explore
such regions

e Selective retraction-based RRT planner for
various environments, Lee et al., T-RO 14

e http://sglab.kaist.ac.kr/SRRRT/T-RO.html

KAIST

Retration-based RRT
[Zhang & Manocha 08]

e Retraction-based RRT technique handling narrow passages

Free Space q,.®

X ;—D Free Space g~
L C-Obstacle 2 p
‘\Hﬂﬂ Contact
n Space L
./') q
T £ C-Obstacle

image from [Zhang & Manocha 08]

e General characteristic:
Generates more samples near the boundary of obstacles

32 KAIST

33

RRRT: Pros and Cons

Free Space

C-Obstacle

with narrow passages

Time (s) RRT

KAIST

RRRT: Pros and Cons

Free Space

without narrow passages
images from [Zhang & Manocha 08]

Time (s)
RRRT

KAIST

35

I?ﬂdge line-test [Lce et al., T-RO

e To identify narrow passage regions

e Bridge line-test
1. Generate a random line
2. Check whether the line meets any obstacle

_KAIST

Results

Time (s) - Time (s)
i : RRRT 8050
80 RRT 500
60: - SR-RRT 400
300
40
200 RRRT
20 - 100 SR-RRT
0 0]
S-tunnel 0.85 S-tunnel 1.3
Iy Video
K

37

Some Works of Our Group

e Handling narrow passages

e Improving low convergence to the optimal
solution

e Use the sampling cloud to indicate regions that lead to
the optimal path

e Cloud RRT* : Sampling Cloud based RRT*, Kim et al.,
ICRA 14

e http://sglab.kaist.ac.kr/CloudRRT/

KAIST

Examples of Sampling Cloud
[Kim et al., ICRA 14]

Initial state of sampling cloud After updated several times

Video

KAIST

Results: 4 squares

25
Uniform
A
2 & «LN
RRT*-Smart
’s \ Uniform + GVG
‘A «-RRT*-Smart + GVG
. ‘ \t LN + GVG
- ., ¢ Ours
2 "\ ‘ z -~
37N
K -
S !. s
© . A X¥ T+ y
8 ... AAA‘ .‘. 4+**+
A . . -
O *“3 ‘AAAA A R T S
19 “ l‘ ot VY Yee o e
%o ’!'ll. A““"XA"'---.
‘....*\!... “A““ii‘i;Aii
18 *ele < TWEguy
@ o oS’ v ...
I L T e it | T T oo —

£ o MM
’0..:‘0.. & 2 XXM 3

17

1 6 " 16 21 26 3N 36
Computation time (x 100 ms)

39

-

[=]
0004900800 T
l "l””0000000003
16 K

41 46

TN

1.8X
Improvement

KAIST

Recent Works of Our Group

e Handling narrow passages

e Improving low convergence to the optimal
solution

e Handling uncertainty and dynamic objects

e Anytime RRBT for handling uncertainty and
dynamic objects, IROS 16

KAIST

Handling Sensor Errors

e Uncertainty caused by:
e Various sensors
e Low-level controllers

Heat Exchanger Pl vs PID (Aggresswe Tunlng)

Process: : Heat Exchanger Cont.: PID (P=DA, I= ARW, D= Ideal (meas), F = off)
ol [| AU =W S N N I
I i H H H
|I|\‘[|\|“H" |]| i ‘||HIH'| Il‘|| ‘ TN | U N 15 0, T -
AR i -
il L | P e
[I i ‘! il - 2 . Piconrol PID Control -
‘ || | ‘ M | ||‘ i [e Ke=-17 Ti=13 | Ke=-31 Ti=17 Td=0.31 |
l‘ ‘] gl [| = titered 60 - : :
30

10 20 30 40
Time (mins)

Sensor noise Controller noise

KAIST

Rapidly-exploring Random Belief Tree
[Bry et al., ICRA 11]

»Use Kalman filter to propagate Gaussian states
» Improve solutions toward optimal

Multiple belief nodes
In the same vertex

S0
804130 \ 8! {}S;‘r‘;

13

f

Measurement regions

500 1000 1500

INGBEEGHISEonM) Preserve optimal path
45 KAIST

Main Contribution: Anytime
Extension [Yang et al.,IROS 16]

Measurement
region

Goal
region

Bigger circle means
higher uncertainty

The robot computes
. better path while
executing the path

(c) After 3 seconds (d) After 5 seconds

46 KAIST

Main Contribution:
Anytime Extension

48

Velocity Obstacle:
Local Geometric Analysis

When v for Robot is in the VO, we will have collision
VOgo=1V|3t > 0:t(v—vo) € Disc(Po — Pr,r/r +710) }

(a) Velocity obstacle

“The hybrid reciprocal velocity obstacle” TRO11 J Snape, J van den Berg, SJ Guy
“Reciprocal velocity obstacles for real-time multi-agent navigation” J van den Berg MIST
“Generalized Velocity Obstacles” IROS09, D Wilkie, J Van den Berg

49

Uncertainty-aware Velocity Obstacle
as Local Geometry Analysis

Conservative collision checking

(a) Velocity obstacle (b) Uncertainty-aware velocity obstacle

“The hybrid reciprocal velocity obstacle” TRO11 J Snape, J van den Berg, SJ Guy
“Reciprocal velocity obstacles for real-time multi-agent navigation” J van den Berg I(AIST
“Generalized Velocity Obstacles” IROS09, D Wilkie, J Van den Berg

50

Intersection scene — with UVO

KAIST

51

Result — Crowd scene

=
un

Distance [m]
=
=

25 30 35
Distance [m]

(b)

45

KAIST

52

Result — Crowd scene

KAIST

53

Class Objectives were:

e Understand the RRT technique and its
recent advancements

e RRT* for optimal path planning
e Kinodynamic planning

KAIST

54

No More HWs on:

e Paper summary and questions submissions

e Instead:

e Focus on your paper presentation and project
progress!

KAIST

Summary

C-space formulation

Basic framework /_Discretization
Graph searching (A*)

Roadmaps (visibility graph)

Classics / _cCell decompositions (octrees)
_ Potential field

Degrees of freedom {dof)

C-SDE&E{ SO(n) and SE {n)

Minkowski Sum for C-Obstacle
Geometric and topological concepts {(e,q, Homotopy)

Motion planning

Collision detection
Distance computation
Bounding volume hierarchy
t Grid based approaches for point clouds

Proximity queries

Probablistic roadmaps

Probabilistic approaches / RRT and RRT*
Kinodynamic planning

ST

