CS686: RRT

Sung-Eui Yoon (윤성의)

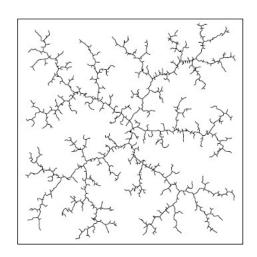
Course URL: http://sgvr.kaist.ac.kr/~sungeui/MPA

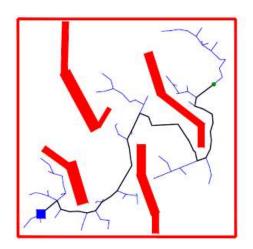
Class Objectives

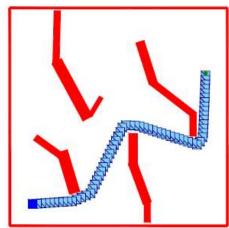
- Understand the RRT technique and its recent advancements
 - RRT*
 - Kinodynamic planning

Rapidly-exploring Random Trees (RRT) [LaValle 98]

- Present an efficient randomized path planning algorithm for single-query problems
 - Converges quickly
 - Probabilistically complete
 - Works well in high-dimensional C-space

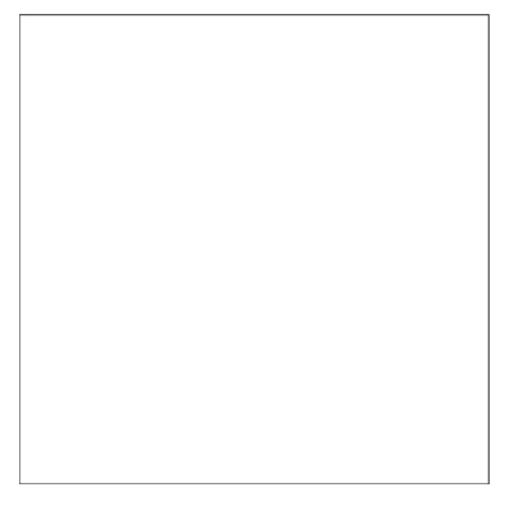






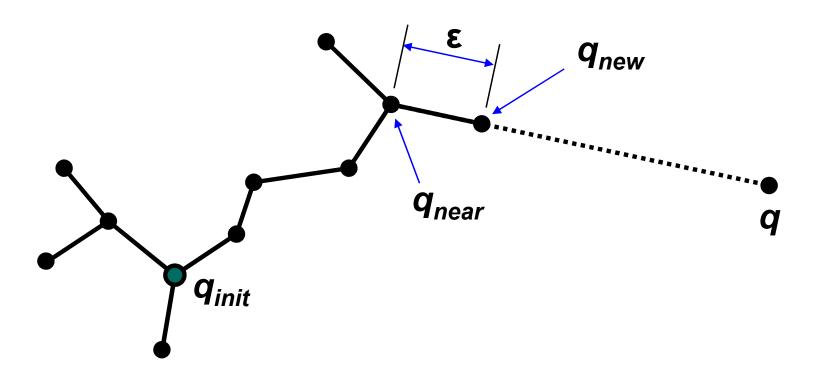
Rapidly-Exploring Random Tree

A growing tree from an initial state



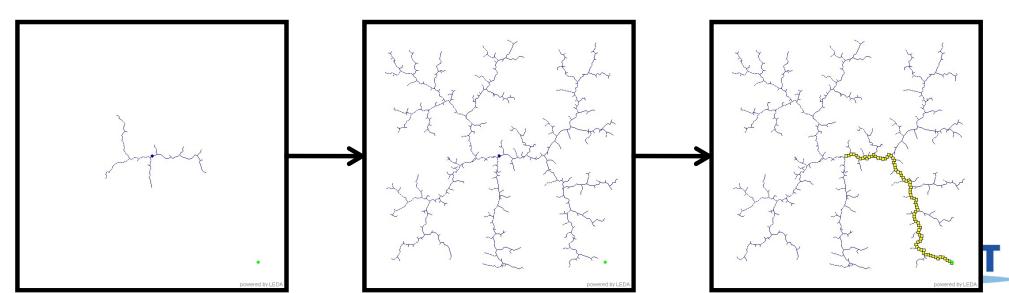
RRT Construction Algorithm

Extend a new vertex in each iteration



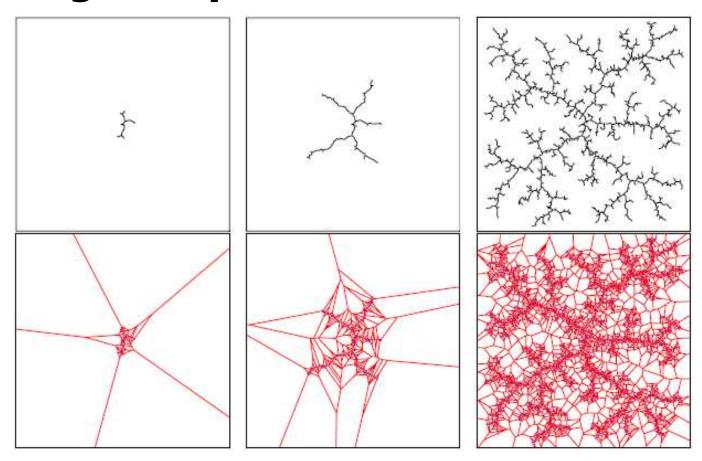
Overview – Planning with RRT

- Extend RRT until a nearest vertex is close enough to the goal state
 - Biased toward unexplored space
 - Can handle nonholonomic constraints and high degrees of freedom
- Probabilistically complete, but does not converge



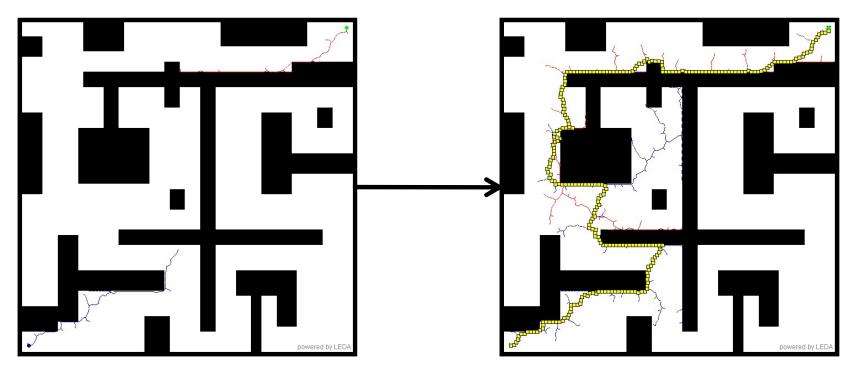
Voronoi Region

 An RRT is biased by large Voronoi regions to rapidly explore, before uniformly covering the space



Overview – With Dual RRT

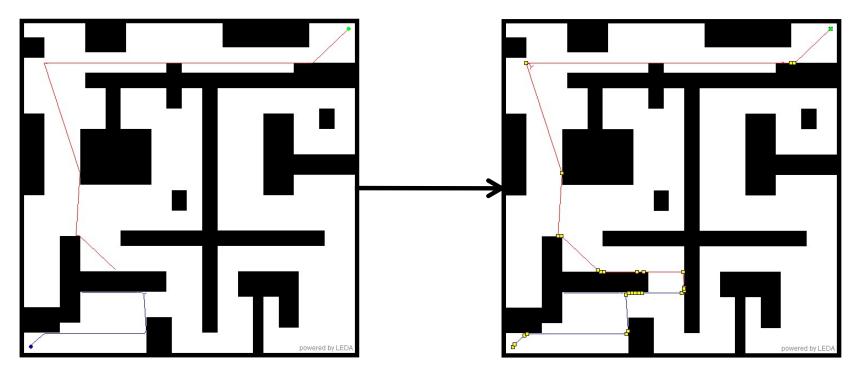
- Extend RRTs from both initial and goal states
- Find path much more quickly



737 nodes are used

Overview – With RRT-Connect

- Aggressively connect the dual trees using a greedy heuristic
- Extend & connect trees alternatively



42 nodes are used

RRT Construction Algorithm

```
BUILD_RRT(q_{init})

1 \mathcal{T}.init(q_{init});

2 for k = 1 to K do

3 q_{rand} \leftarrow RANDOM\_CONFIG();

4 EXTEND(\mathcal{T}, q_{rand});

5 Return \mathcal{T}
```

```
EXTEND(\mathcal{T}, q)

1 q_{near} \leftarrow \text{NEAREST\_NEIGHBOR}(q, \mathcal{T});

2 if \text{NEW\_CONFIG}(q, q_{near}, q_{new}) then

3 \mathcal{T}.\text{add\_vertex}(q_{new});

4 \mathcal{T}.\text{add\_edge}(q_{near}, q_{new});

5 if q_{new} = q then

6 \text{Return } Reached;

7 else

8 \text{Return } Advanced;

9 \text{Return } Trapped;
```


RRT Connect Algorithm

```
CONNECT(T, q)

1 repeat

2 S \leftarrow \text{EXTEND}(T, q);

3 until not (S = Advanced)

4 Return S;
```

```
RRT_CONNECT_PLANNER(q_{init}, q_{goal})

1 \mathcal{T}_a.init(q_{init}); \mathcal{T}_b.init(q_{goal});

2 for k = 1 to K do

3 q_{rand} \leftarrow RANDOM\_CONFIG();

4 if not (EXTEND(\mathcal{T}_a, q_{rand}) = Trapped) then

5 if (CONNECT(\mathcal{T}_b, q_{new}) = Reached) then

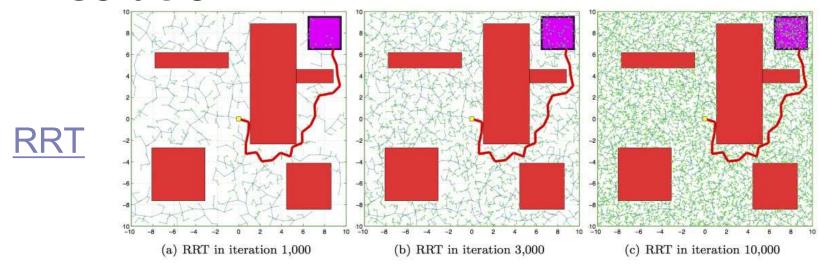
6 Return PATH(\mathcal{T}_a, \mathcal{T}_b);

7 SWAP(\mathcal{T}_a, \mathcal{T}_b);

8 Return Failure
```


RRT*

RRT does not converge to the optimal solution



RRT*

RRT*

- Asymptotically optimal without a substantial computational overhead

Theorem [Karaman & Frazzoli, IJRR 2011]

(i) The RRT* algorithm is asymptotically optimal

$$\mathbb{P}\Big(\big\{\lim_{n\to\infty}Y_n^{\mathrm{RRT}^*}=c^*\big\}\Big)=1$$

(ii) RRT* algorithm has no substantial computational overhead when compared to the RRT:

$$\lim_{n \to \infty} \mathbb{E}\left[\frac{M_n^{\text{RRT}^*}}{M_n^{\text{RRT}}}\right] = \text{constant}$$

Y_n^{RRT*}: cost of the best path in the RRT*
 c*: cost of an optimal solution

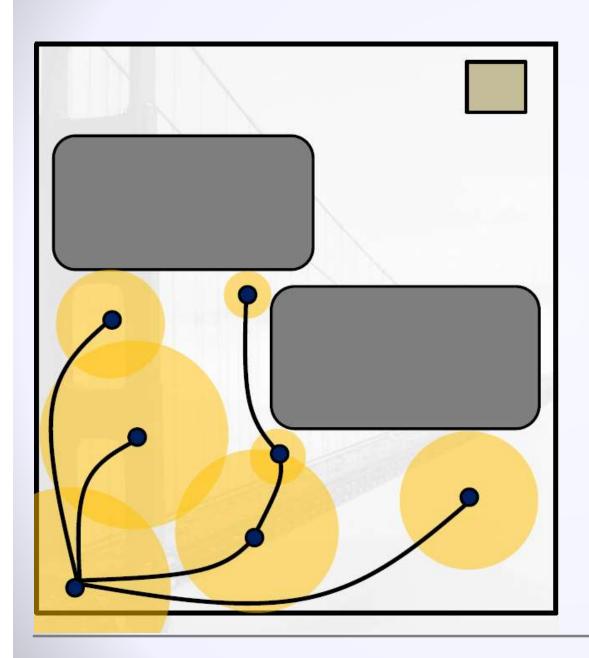
- M_n^{RRT}: # of steps executed by RRT at iteration n

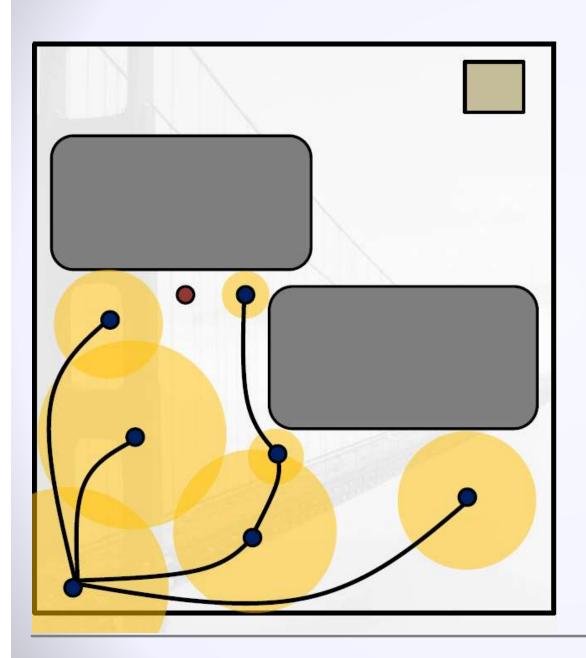
- MnRRT*: # of steps executed by RRT* at iteration n

Key Operation of RRT*

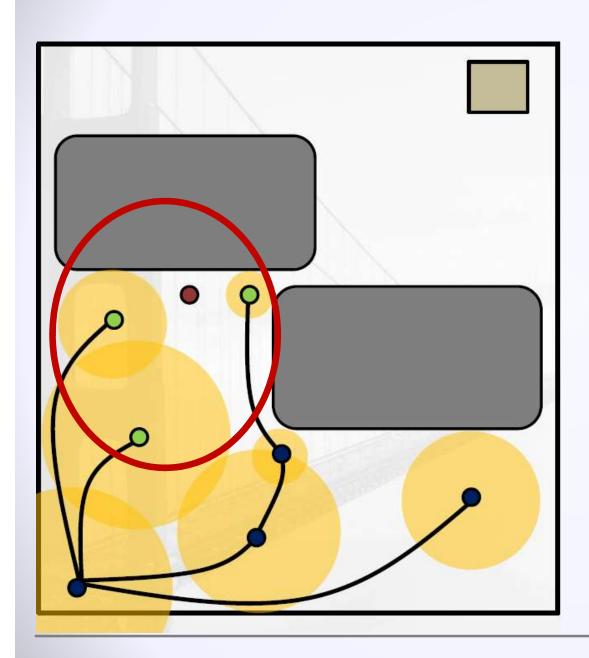
RRT

- Just connect a new node to its nearest neighbor node
- RRT*: refine the connection with rewiring operation
 - Given a ball, identify neighbor nodes to the new node
 - Refine the connection to have a lower cost

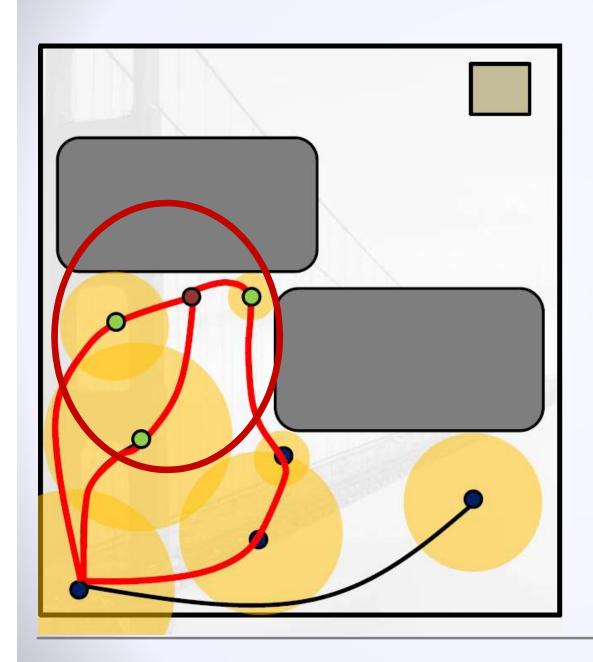




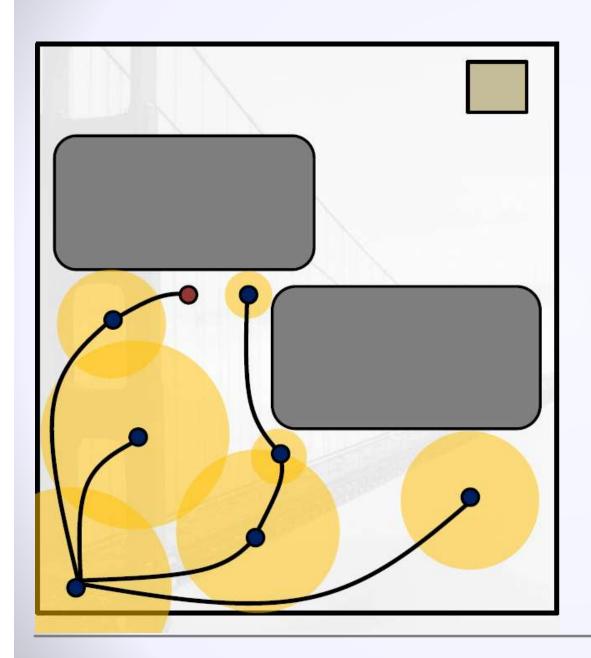
Generate a new sample

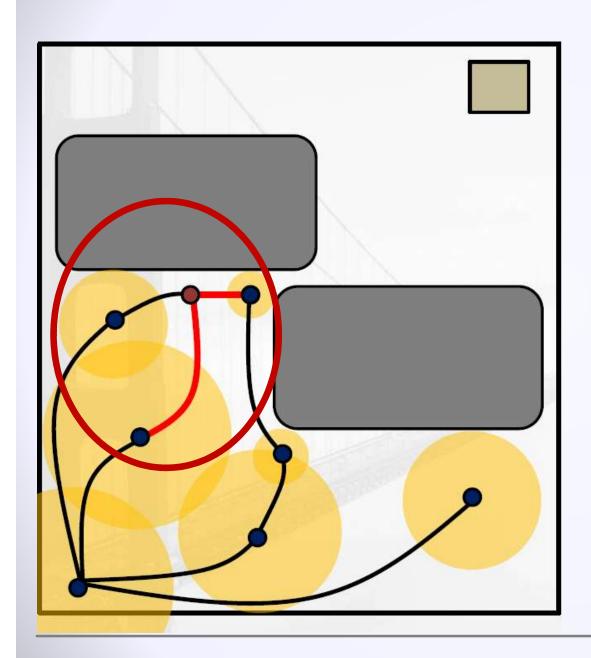


Identify nodes in a ball

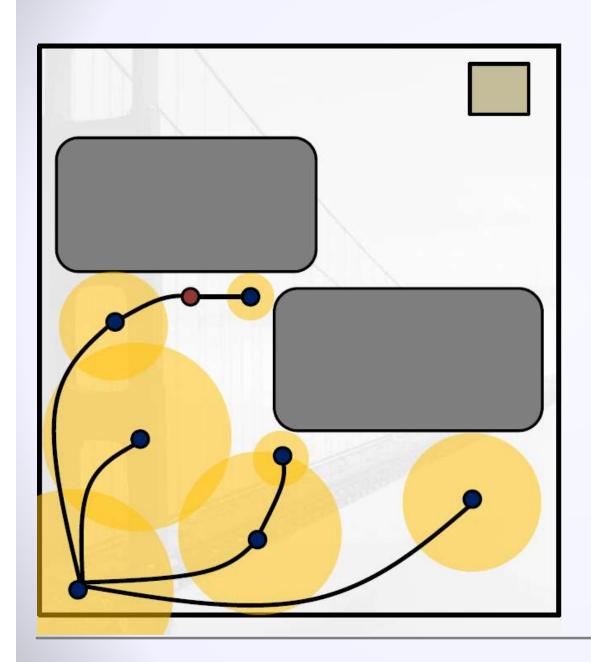


Identify which parent gives the lowest cost





Identify which child gives the lowest cost



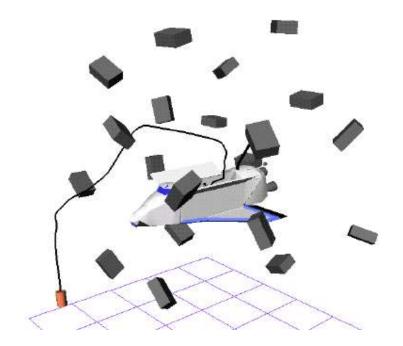
Video showing benefits with real robot

Kinodynamic Path Planning

ALSO GIVEN: $h_i(q, \dot{q}, \ddot{q}) \leq 0, h_i(q, \dot{q}, \ddot{q}) = 0, \dots$

FIND: τ that satisfies $f_i(q)$, $g_i(q,\dot{q})$, $h_i(q,\dot{q},\ddot{q})$

Consider kinematic + dynamic constraints



State Space Formulation

 Kinodynamic planning → 2n-dimensional state space

C denote the C-space

X denote the state space

$$x = (q, \dot{q}), \text{ for } q \in C, x \in X$$

$$x = [q_1 \ q_2 \ \dots \ q_n \ \frac{dq_1}{dt} \ \frac{dq_2}{dt} \ \dots \ \frac{dq_n}{dt}]$$

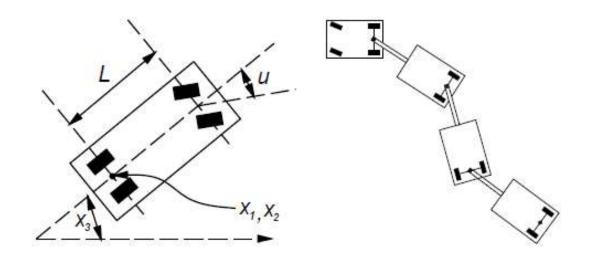
Constraints in State Space

$$h_i(q, \dot{q}, \ddot{q}) = 0$$
 becomes $G_i(x, \dot{x}) = 0$,
for $i = 1, ..., m$ and $m < 2n$

Constraints can be written in:

$$\dot{x} = f(x, u)$$

 $u \in U$, U: Set of allowable controls or inputs



Solution Trajectory

Defined as a time-parameterized continuous path

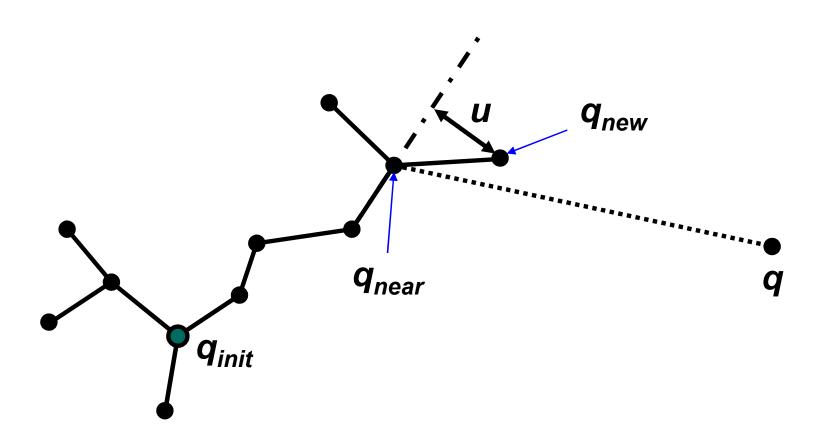
 $\tau:[0,T] \to X_{free}$, satisfies the constraints

- Obtained by integrating $\dot{x} = f(x, u)$
- Solution: Finding a control function

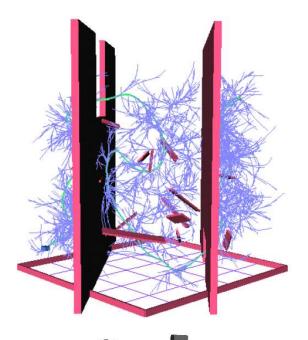
$$u:[0,T] \to U$$

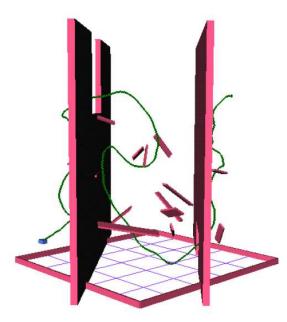
Rapidly-Exploring Random Tree

Extend a new vertex in each iteration

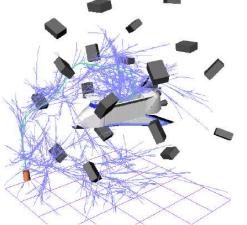


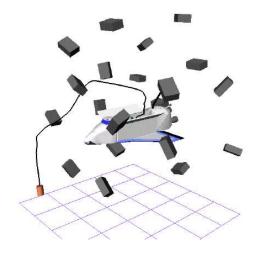
Results – 200MHz, 128MB





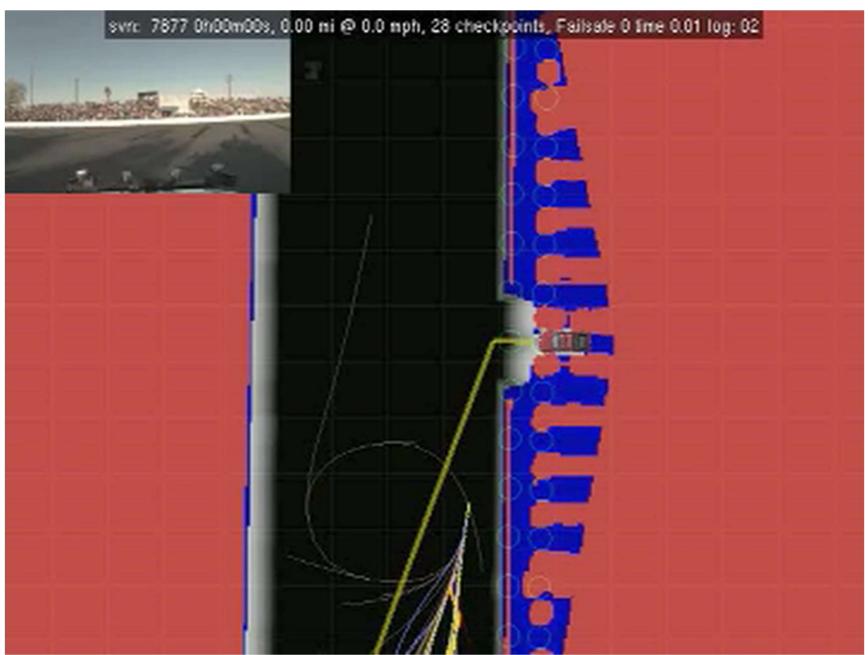
- X=6 DOF
- 16,300 nodes
- 4.1min



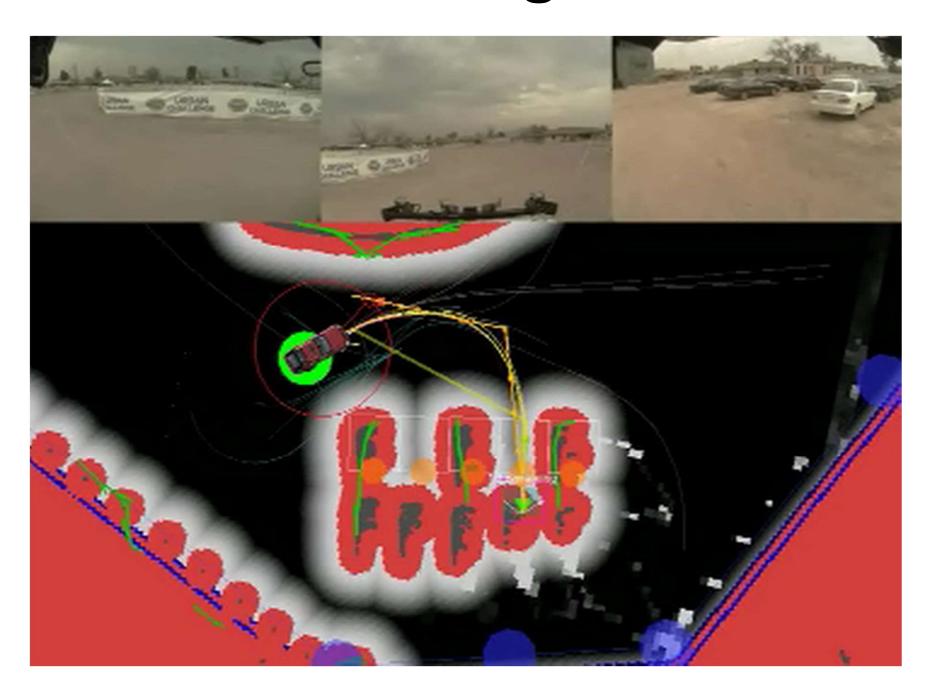


- 3D TR+RO
- X=12 DOF
- 23,800 nodes
- 8.4min

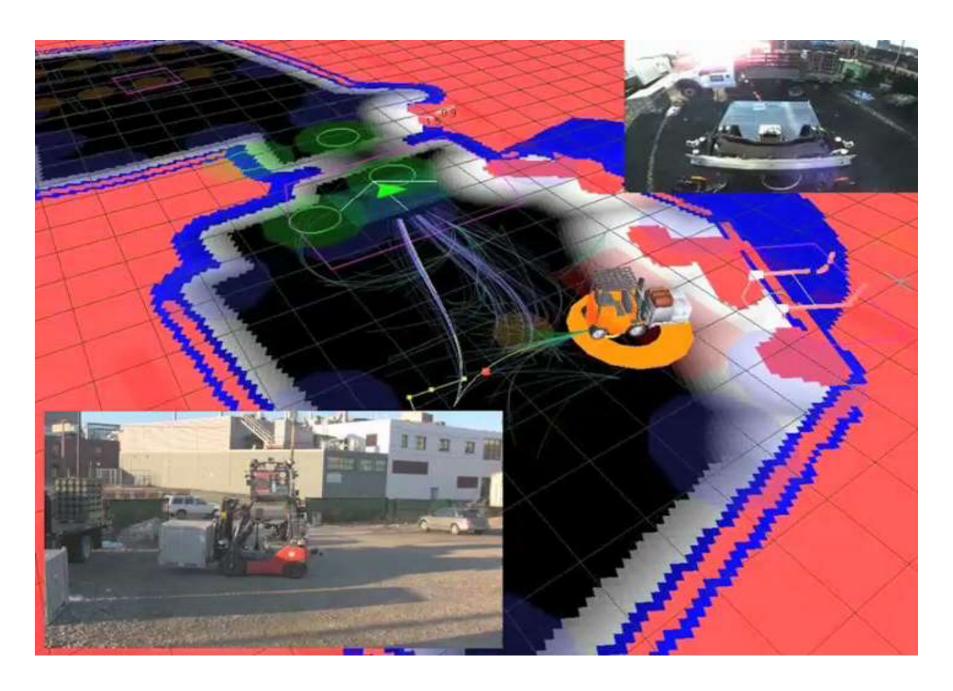
RRT at work: Urban Challenge



Successful Parking Maneuver



RRT at work: Autonomous Forklift

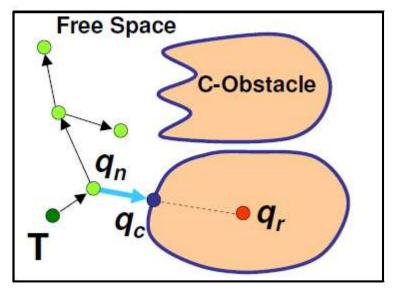


Some Works of Our Group

- Narrow passages
 - Identify narrow passage with a simple onedimensional line test, and selectively explore such regions
 - Selective retraction-based RRT planner for various environments, Lee et al., T-RO 14
 - http://sglab.kaist.ac.kr/SRRRT/T-RO.html

Retration-based RRT [Zhang & Manocha 08]

Retraction-based RRT technique handling narrow passages



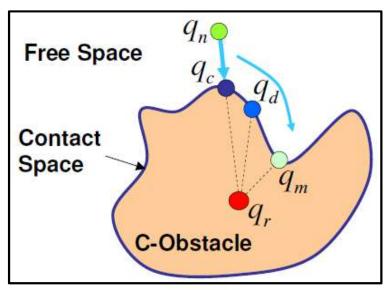
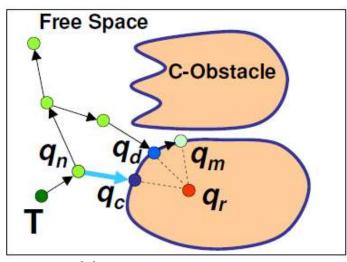


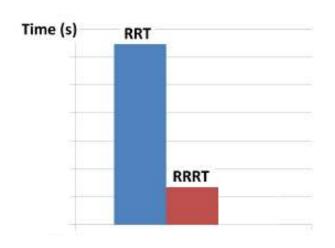
image from [Zhang & Manocha 08]

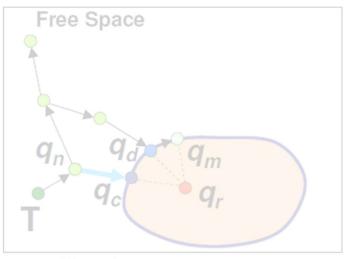
General characteristic:
 Generates more samples near the boundary of obstacles

RRRT: Pros and Cons



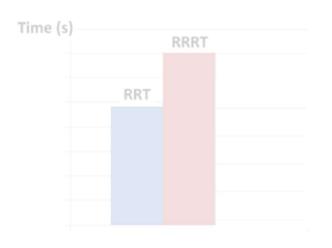
with narrow passages



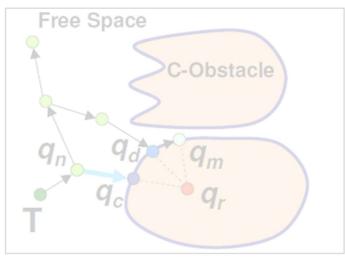


without narrow passages

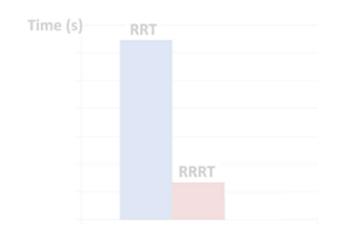
images from [Zhang & Manocha 08]

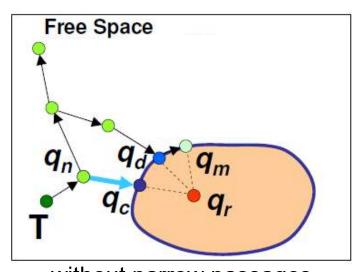


RRRT: Pros and Cons



with narrow passages



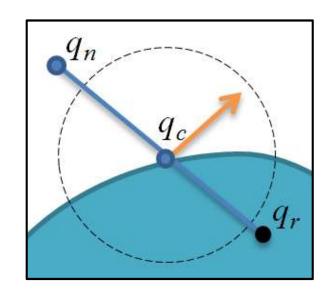


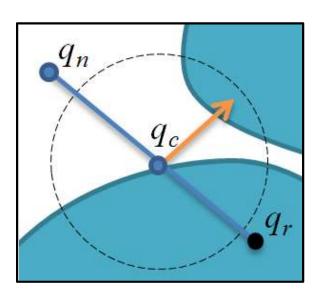
without narrow passages
images from [Zhang & Manocha 08]

RRRT RRT

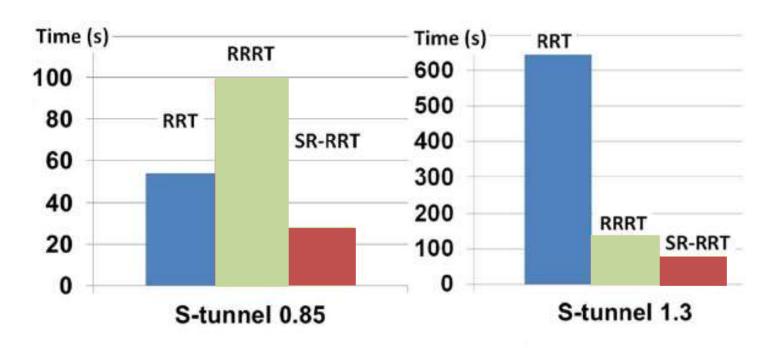
Bridge line-test [Lee et al., T-RO 14]

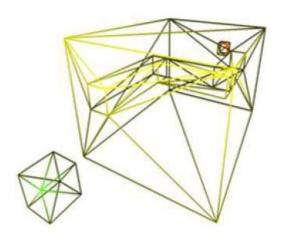
- To identify narrow passage regions
- Bridge line-test
 - 1. Generate a random line
 - 2. Check whether the line meets any obstacle





Results





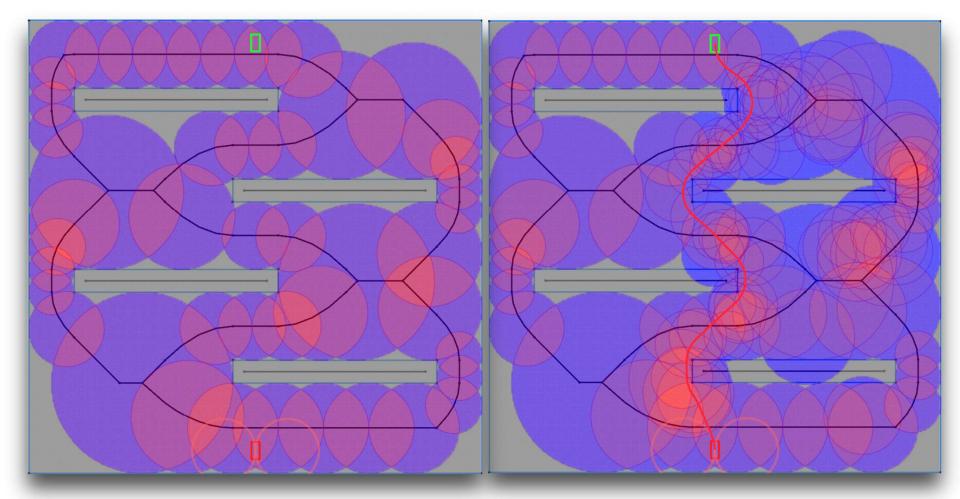
Video

Some Works of Our Group

Handling narrow passages

- Improving low convergence to the optimal solution
 - Use the sampling cloud to indicate regions that lead to the optimal path
 - Cloud RRT*: Sampling Cloud based RRT*, Kim et al.,
 ICRA 14
 - http://sglab.kaist.ac.kr/CloudRRT/

Examples of Sampling Cloud [Kim et al., ICRA 14]

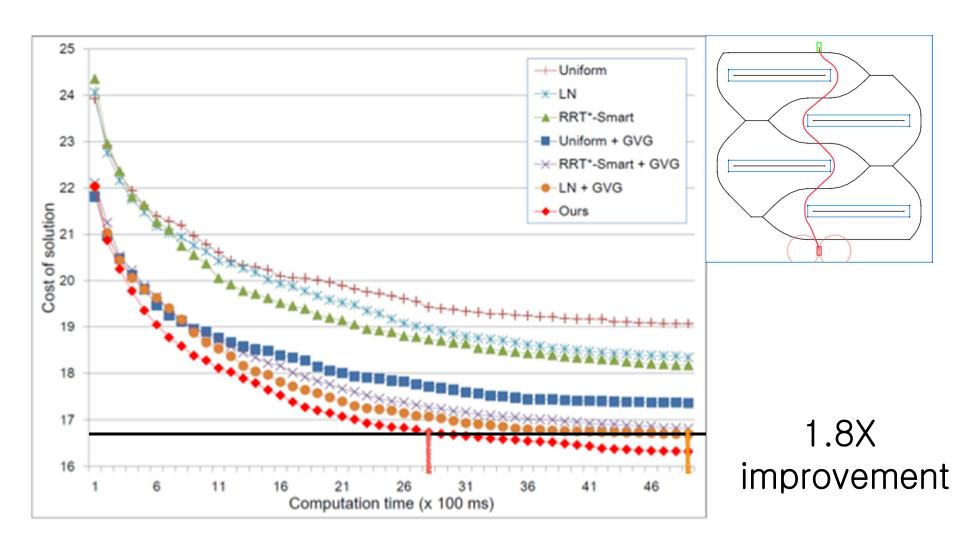


Initial state of sampling cloud

After updated several times

Video

Results: 4 squares

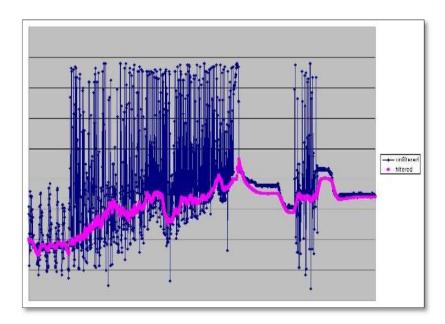


Recent Works of Our Group

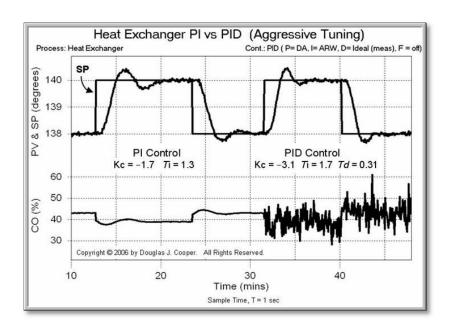
- Handling narrow passages
- Improving low convergence to the optimal solution
- Handling uncertainty and dynamic objects
 - Anytime RRBT for handling uncertainty and dynamic objects, IROS 16

Handling Sensor Errors

- Uncertainty caused by:
 - Various sensors
 - Low-level controllers



Sensor noise



Controller noise

Rapidly-exploring Random Belief Tree

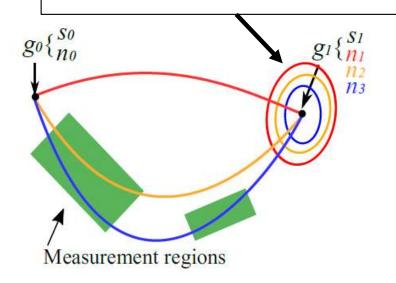
[Bry et al., ICRA 11]

- Use Kalman filter to propagate Gaussian states
- Improve solutions toward optimal

500 1000 1500

Number of iteration

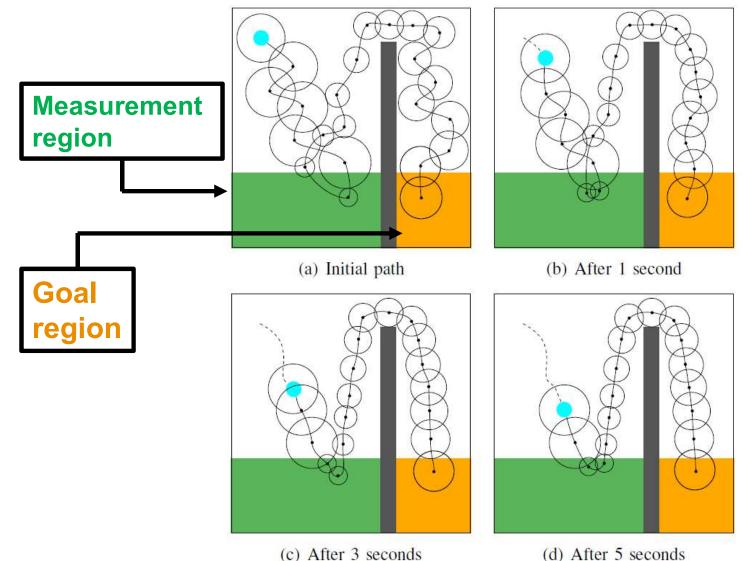
Multiple belief nodes in the same vertex



Preserve optimal path

Main Contribution: Anytime Extension [Yang et al., IROS 16]

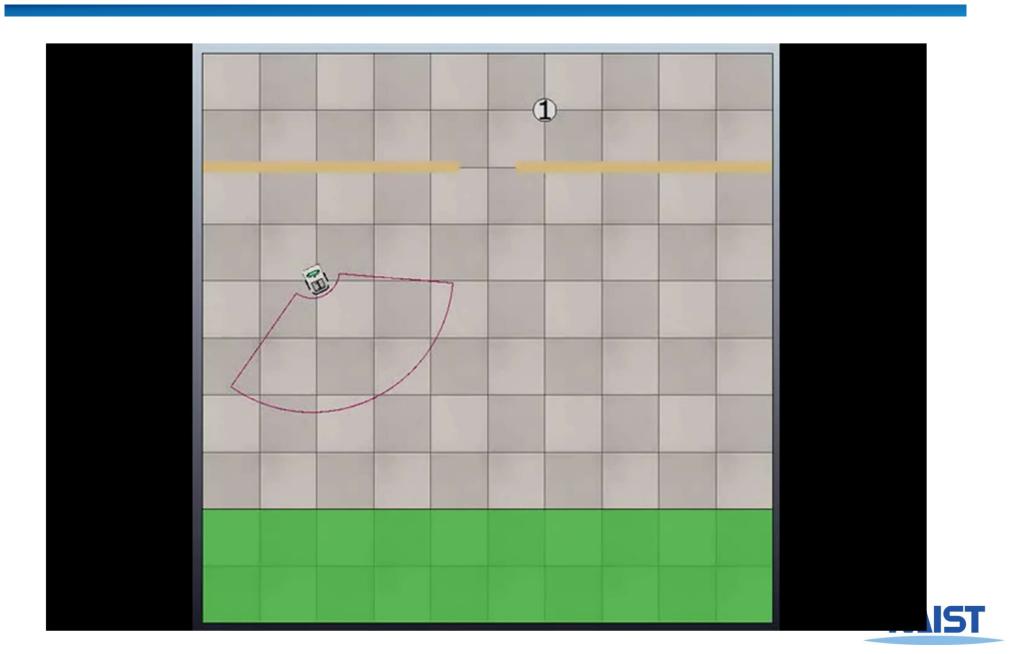
(d) After 5 seconds



Bigger circle means higher uncertainty

The robot computes better path while executing the path

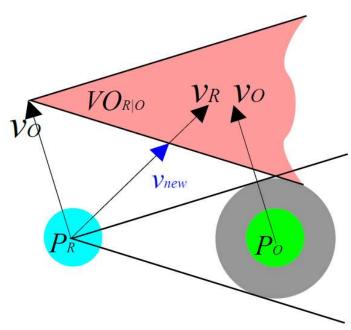
Main Contribution: Anytime Extension



Velocity Obstacle: Local Geometric Analysis

When v for Robot is in the VO, we will have collision

$$VO_{R|O} = \{v | \exists t > 0 : t(v - v_O) \in Disc(P_O - P_R, r_R + r_O)\}$$

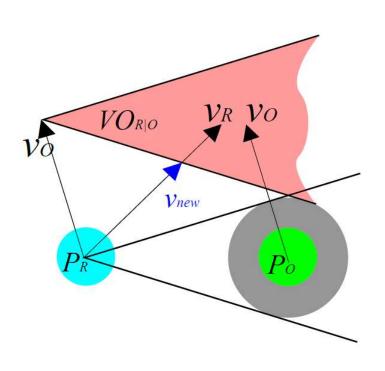


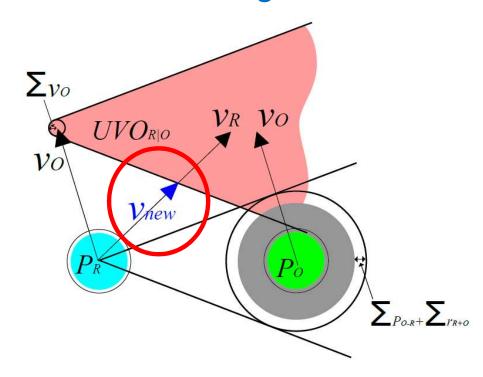
(a) Velocity obstacle

[&]quot;The hybrid reciprocal velocity obstacle" **TRO11** J Snape, J van den Berg, SJ Guy "Reciprocal velocity obstacles for real-time multi-agent navigation" J van den Berg "Generalized Velocity Obstacles" **IROS09**, D Wilkie, J Van den Berg

Uncertainty-aware Velocity Obstacle as Local Geometry Analysis

Conservative collision checking



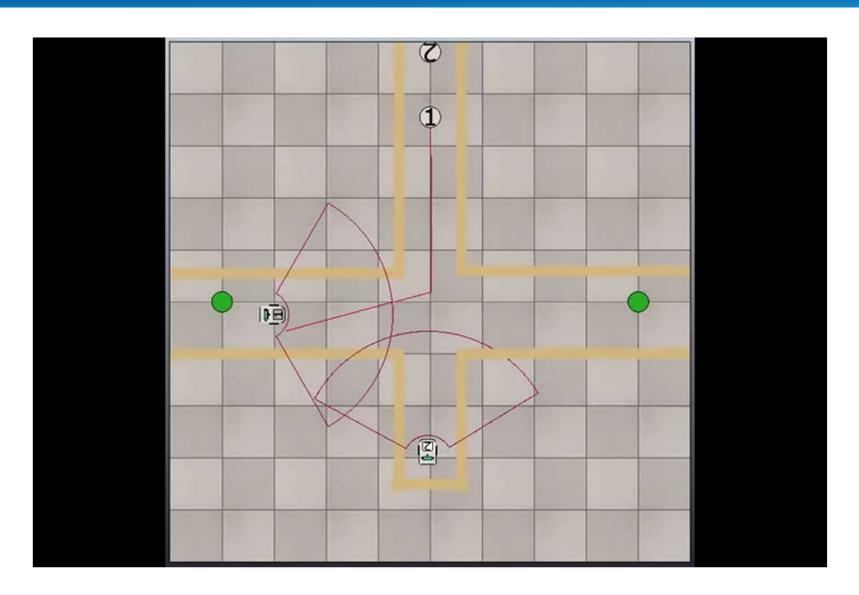


(a) Velocity obstacle

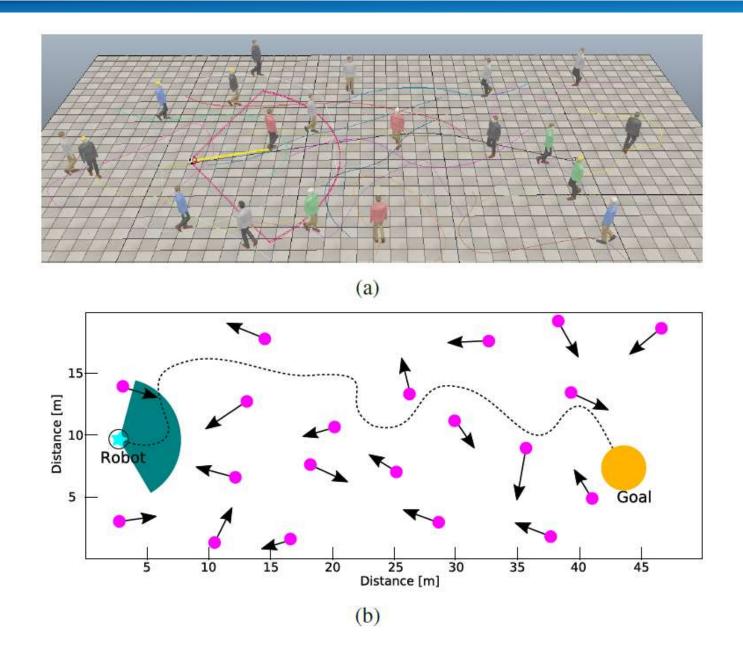
(b) Uncertainty-aware velocity obstacle

[&]quot;The hybrid reciprocal velocity obstacle" **TRO11** J Snape, J van den Berg, SJ Guy "Reciprocal velocity obstacles for real-time multi-agent navigation" J van den Berg "Generalized Velocity Obstacles" **IROS09**, D Wilkie, J Van den Berg

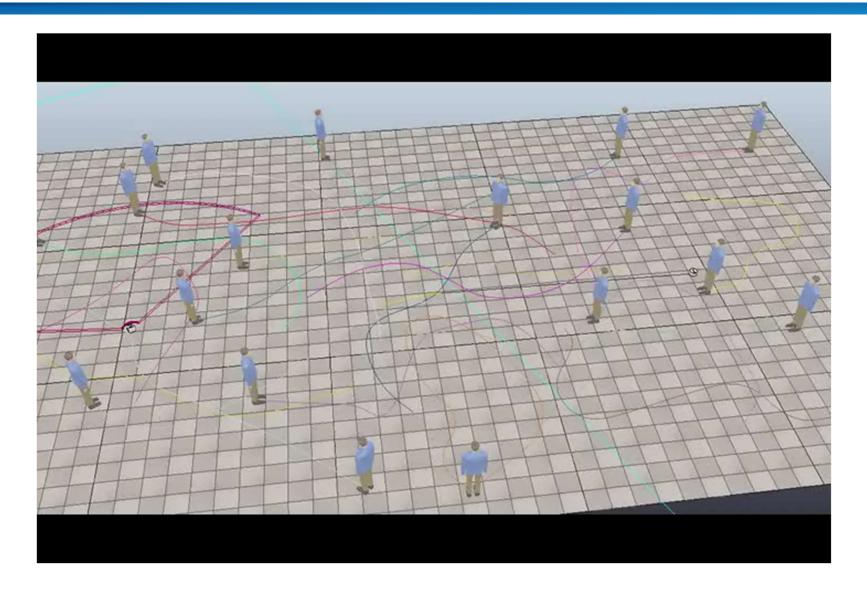
Intersection scene – with UVO



Result - Crowd scene



Result - Crowd scene



Class Objectives were:

- Understand the RRT technique and its recent advancements
 - RRT* for optimal path planning
 - Kinodynamic planning

No More HWs on:

Paper summary and questions submissions

- Instead:
 - Focus on your paper presentation and project progress!

Summary

