CS686:
 Configuration Space I

Sung-Eui Yoon (윤성의)

Course URL:

http://sgvr.kaist.ac.kr/~sungeui/MPA

KAIST

Announcements

- Make a project team of 1 to $\mathbf{3}$ persons for your project
- Each student needs a clear role
- Declare team members at KLMS by Sep-28; you don't need to define the topic by then
- Each student
- Present two papers related to the project; 15 min for each talk
- Declare your papers at KLMS by Oct-12
- Each team
- Give a mid-term presentation for the project
- Give the final project presentation

Tentative schedule

- Oct. 27, 29: Student Presentation 1 \& 2
- 2 to $\mathbf{3}$ talks per each class; $\mathbf{1 0}$ students in the class
- Nov. 3: SP3 (Nov. 5: no class due to interview process)
- Nov. 10: SP 4
- Nov 12 (Th) , Nov 17 (Tu): Mid-term project presentation
- Nov. 19 (Th) : SP 5
- Nov. 24, 26: SP 6 \& 7
- Dec 1, 3: SP 8 \& 9
- Dec. 8, 10: Final-term project presentation
- Dec. 15, 17: reservation for now (exam period, no class for now)

Class Objectives

- Configuration space
- Definitions and examples
- Obstacles
- Paths
- Metrics
- Last time:
- Classic motion planning approaches including roadmap, cell decomposition and potential field

Questions

- Are all path planning problems solved by graph navigation problems?
- Trajectory optimization is also useful

TORM: Fast and Accurate Trajectory Optimization of Redundant Manipulator given an End-Effector Path, by Mincheul Kang, Heechan Shin, Donghyuk Kim, and Sung-Eui Yoon
http://sqlab.kaist.ac.kr/TORM/

Paper Summary

- Submodular Trajectory Optimization for Aerial 3D Scanning, Conference name: ICCV, 2017
- Applying Asynchronous Deep Classification Networks and Gaming Reinforcement LearningBased Motion Planners to Mobile Robots, ICRA 2018
- RL-RRT: Kinodynamic Motion Planning via Learning Reachability Estimators from RL Policies
- Learning Patch Reconstructability for Accelerating Multi-View Stereo, Conference name: CVPR, 2018
- Relation to robotics should be clearly mentioned in the

What is a Path?

A box robot

Linked robot

Rough Idea of C-Space

- Represent degrees-of-freedom (DoFs) of rigid robots, articulated robots, etc. into points
- Apply algorithms in that space, in addition to the workspace

Mapping from the Workspace to the Configuration Space

Workspace

${ }^{92}$ Configuration space

Configuration Space

- Definitions and examples
- Obstacles
- Paths
- Metrics

Configuration Space (C-space)

- The configuration of a robot is a complete specification of the position of every point on the robot
- Usually a configuration is expressed as a vector of position \& orientation parameters: $q=\left(q_{1}, q_{2}, \ldots, q_{\mathrm{n}}\right)$
- The configuration space C is the set of all possible configurations
- A configuration is a point in C

C-space formalism:
Lozano-Perez ‘79

Examples of Configuration Spaces

Examples of Configuration Spaces

Consider the end-effector in the workspace?

This is not a valid C-space!

Examples of Configuration Spaces

The topology of C is usually not that of a Cartesian space R^{n}.

$$
\mathbf{S}^{1} \times \mathbf{S}^{1}=\mathbf{T}^{2}
$$

Examples of Circular Robot

KAIST

Dimension of Configuration Space

- The dimension of the configuration space is the minimum number of parameters needed to specify the configuration of the object completely
- It is also called the number of degrees of freedom (dofs) of a moving object

Example: Rigid Robot in 2-D Workspace

- 3-parameter specification: $q=(x, y, \theta)$ with $\theta \in[0,2 \pi)$.
- 3-D configuration space

Example: Rigid Robot in 2-D workspace

- 4-parameter specification: $q=(x, y, u, v)$ with $u^{2}+v^{2}=1$. Note $u=\cos \theta$ and $v=\sin \theta$
- dim of configuration space $=3$
- Does the dimension of the configuration space (number of dofs) depend on the parametrization?

Holonomic and Non-Holonomic Constraints

- Holonomic constraints
- $g(q, t)=0$
- E.g., pendulum motion: $x^{2}+y^{2}=L^{2}$
- Non-holonomic constraints
- $\mathbf{g}\left(\mathbf{q}, \mathbf{q}^{\prime}, \mathbf{t}\right)=\mathbf{0}\left(\right.$ or $\mathbf{q}^{\prime}=\mathbf{f}(\mathbf{q}, \mathbf{u})$, where \mathbf{u} is an action parameter)
- This is related to the kinematics of robots
- To accommodate this, the C-space is extended to include the position and its velocity

Example of Non-Holonomic Constraints

See Kinematic Car Model of my draft

$$
\begin{aligned}
& \tan (\theta)=\frac{\sin (\theta)}{\cos (\theta)}=\frac{d y}{d x} \\
& \sin (\theta) d x-\cos (\theta) d y=0 \\
& \frac{d x}{d t}=v \cdot \cos (\theta), \quad \frac{d y}{d t}=v \cdot \sin (\theta) \\
& \frac{d \theta}{d t}=\frac{v}{L} \tan (\phi)
\end{aligned}
$$

Note that $\boldsymbol{v}, \boldsymbol{\phi}$ are action parameters

Holonomic and Non-Holonomic Constraints

- Dynamic constraints
- Dynamic equations are represented as $\mathbf{G}\left(\mathbf{q}, \mathbf{q}^{\prime}\right.$, $\left.q^{\prime \prime}\right)=0$
- These constraints are reduced to nonholonomic ones when we use the extended C space such as the state space:

$$
S=\left(X, X^{\prime}\right), \text { where } X=\left(q, q^{\prime}\right)
$$

Computation of Dimension of CSpace

- Suppose that we have a rigid body that can translate and rotate in 2D workspace
- Start with three points: A, B, C (6D space)
- We have the following (holonomic) constraints
- Given A, we know the dist to $B: d(A, B)=|A-B|$
- Given A and B, we have similar equations:

$$
d(A, C)=|A-C|, d(B, C)=|B-C|
$$

- Each holonomic constraint reduces one dim.
- Not for non-holonomic constraint

Example: Rigid Robot in 3-D Workspace

- We can represent the positions and orientations of such robots with matrices (i.e., SO (3) and SE (3))

SO (n) and SE (n)

- Special orthogonal group, SO(n), of $\mathbf{n} \times \mathbf{n}$ matrices R,

$$
R=\left(\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right)
$$

that satisfy:

$$
\begin{aligned}
& r_{1 \mathrm{i}}^{2}+r_{2 \mathrm{i}}^{2}+r_{3 \mathrm{i}}^{2}=1 \text { for all } i, \\
& r_{1 \mathrm{i}} r_{1 \mathrm{j}}+r_{2 \mathrm{i}} r_{2 \mathrm{j}}+r_{3 \mathrm{i}} r_{3 \mathrm{j}}=0 \text { for all } i \neq j, \\
& \operatorname{det}(R)=+1
\end{aligned}
$$

Refer to the 3D Transformation at the undergraduate computer graphics. http://sgvr.kaist.ac.kr/~sungeui/render/raster/transformation.pdf

- Given the orientation matrix R of SO (n) and the position vector p, special Euclidean group, SE (n), is defined as:

$$
\left[\begin{array}{cc}
R & p \\
0 & 1
\end{array}\right]
$$

Example: Rigid Robot in 3-D Workspace

- $q=($ position, orientation $)=(x, y, z, ? ? ?)$
- Parametrization of orientations by matrix: $q=\left(r_{11}, r_{12}, \ldots, r_{33}, r_{33}\right)$ where $r_{11}, r_{12}, \ldots, r_{33}$ are the elements of rotation matrix

$$
R=\left(\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right) \in S O(3)
$$

Example: Rigid Robot in 3-D Workspace

- Parametrization of orientations by Euler angles:
(ϕ, θ, ψ)

Example: Rigid Robot in 3-D Workspace

- Parametrization of orientations $\quad \mathbf{n}=\left(n_{x}, n_{y}, n_{z}\right)$ by unit quaternion: $\boldsymbol{u}=\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}, \boldsymbol{u}_{4}\right)$ with $u_{1}{ }^{2}+u_{2}{ }^{2}+u_{3}{ }^{2}+u_{4}{ }^{2}=1$.
- $\operatorname{Note}\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=$ $\left(\cos \theta / 2, n_{x} \sin \theta / 2, n_{y} \sin \theta / 2, n_{z} \sin \theta / 2\right)$ with $n_{x}^{2}+n_{y}^{2}+n_{z}^{2}=1$
- Compare with representation of orientation in 2-D:
$\left(u_{1}, u_{2}\right)=(\cos \theta, \sin \theta)$

Example: Rigid Robot in 3-D Workspace

- Advantage of unit quaternion representation
- Compact
- No singularity (no gimbal lock indicating two axes are aligned)
- Naturally reflect the topology of the space of orientations
- Number of dofs $=6$
- Topology: $\mathbf{R}^{3} \mathbf{x}$ SO(3)

Cyrille Fauvel

Example: Articulated Robot

- $q=\left(q_{1}, q_{2}, \ldots, q_{2 n}\right)$
- Number of dofs $=\mathbf{2 n}$
- What is the topology?

An articulated object is a set of rigid bodies connected at the joints.

Class Objectives were:

- Configuration space
- Definitions and examples
- Obstacles
- Paths
- Metrics

Next Time....

- Configuration space
- Definitions and examples
- Obstacles
- Paths
- Metrics

Homework

- Come up with one question on what we have discussed today
- https://forms.gle/R2ZcS9pZ9me9RzmKA
- Write a question two times before the midterm exam
- Browse two papers
- Submit their summaries online before the Tue. Class
- https://forms.gle/2jdXkgYu5snyAb3s8

