## Probabilistic 3D Sound Source Mapping using Moving Microphone Array

## Sasaki et al., IROS 2016

Inkyu An

## Content

1. Background

- What is the Sound Source Localization?

2. Motivation
3. Approach
4. Result
5. Limitation

## Content

1. Background

- What is the Sound Source Localization?

2. Motivation
3. Approach
4. Result
5. Limitation

## Background <br> What is the Sound Source Localization?



## Background <br> What is the Sound Source Localization?

2. With S.S.L.

Hey, R2D2 Give me water !

## Let's compute the Sound Source Localization

침실3
7.70

## Background <br> What is the Sound Source Localization?



## Background | Sound Source Localization

- Occurred a sound source


## MIC 1

## Sound!!



## MIC 1

## Background | Sound Source Localization



## Background | Sound Source Localization

Calculate the difference between arrival times
MIC 1
Arrival time to MIC1
$=100 \mu \mathrm{~s}$

Arrival time to MIC2

$$
=70 \mu s
$$



Sound source

## Background | Sound Source Localization



## Background | Sound Source Localization

- Find a direction of sound source



## Content

1. Backgiround

- What is the Sound Source Localization?

2. Motivation
3. Approach
4. Result
5. Limitation

## Motivation | Sound Source Localization



- The limitation
$\rightarrow$ S.S.L. only can find the direction of the sound



## Motivation | Sound Source Localization



## Content

## 1. Background

- What is the Sound Source Localization?

2. Motivation
3. Approach
4. Result
5. Limimation

## Approach | Probabilistic 3D Sound ...



## Approach | Probabilistic 3D Sound ...

Find the conversion region


## < Requirements >

1. Could find the hardware position on the map, when the hardware was moving (held by the person).
2. Detect directions of the sound source while the robot moved.
3. Determine the conversion region.

## Approach Probabilistic 3D Sound ...



## Related works | Probabilistic 3D Sound ...



- Build the 3D map and find the robot's position


## Related works | Probabilistic 3D Sound ...

- They could detect 2D observation surfaces with 2D Microphone Array = Directions of sound must be contained by 2D observation surface



The sound source is independent of the z-coordinate.

- They accumulated 2D observation surfaces while they moved along the straight line


## Related works | Probabilistic 3D Sound ...



## Related works | Probabilistic 3D Sound ...

- The particle filters approximate the posterior with particles. (Bayes filter)

Input: previous particles, measurement, recent control


- Sampling : Sample new particles which are moved by recent control
- Importance Sampling: Calculate weights of each particle
- Resampling : increase the samples in the high weighted-region, and decrease the samples in the low weighted-region.


## Related works | Probabilistic 3D Sound ...

- The example of the Particle filter in one-dimensional hallway example (The robot can detect the door)

- Distance from the new observation plane

$$
\begin{array}{r}
d_{i}=\frac{\left|a x_{p, i}+b y_{p, i}+c z_{p, i}-\left(a x_{o}+b y_{o}+c z_{o}\right)\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}, \\
\vec{v}=[a, b, c]^{T},
\end{array}
$$

- Weight (Likelihood, $p\left(o_{t} \mid x_{t}\right)$ )

using robot motion
$p(z \mid x)$ : Measurement model $\operatorname{bel}(x)$ : Distribution of particles



## Related works | Probabilistic 3D Sound ...

2D map (Top view)
 weight

- Sampling particles using the sound model $\boldsymbol{p}\left(\boldsymbol{x}_{\boldsymbol{t}} \mid \boldsymbol{x}_{\boldsymbol{t}-1}\right)$.
(0) : particles
(- $)$ ) : Sound source
(\%ْ\%) : MIC Array
... Observation plane
KAIST


## Related works | Probabilistic 3D Sound ...

## 2D map (Top view)



1. Delete low weightedparticles
2. Add particles in the high weighted-region, and reduce the weight

## Related works | Probabilistic 3D Sound ...

## 2D map (Top view)



1. Delete low weightedparticles
2. Add particles in the high weighted-region, and reduce the weight

## Related works | Probabilistic 3D Sound ...

## 2D map (Top view)



## Related works | Probabilistic 3D Sound ...

- They collected the observation planes for walking at each frame.
- If they don't walk, They couldn't get the conversion point.
- Also, If they don't shake the hardware during the walking, They couldn't get the conversion point



## Content

1. Background

- What is the Sound Source Localization?

2. Motivation
3. Approach
4. Result
5. Limitation

## Result | Probabilistic 3D Sound ...

- There are four existence regions


Type 1: Initial shap (no shaking, walking)

Type 4: All axes converged (shaking, walking)

## Result | Probabilistic 3D Sound ...




a) Overview

c) Y view

b) X view


a) Overview

c) Y view

b) X view


## Content

1. Background

- What is the Sound Source Localization?

2. Motivation
3. Approach
4. Result
5. Limitation

## Related works | Probabilistic 3D Sound ...

<limitations of this paper>

1) The robot has to moving and shaking while detecting a sound position.
2) Reflections sometimes could be detected.

a) Overview

b) Reflections Tכותהז

Thank you for your attention

