Constrained Path Optimization with Bézier Curve Primitives [ICRA 2015]

Ji-Wung Choi and Kalevi Huhtala

Heechan Shin

2017. 05. 30 CS686

TaeHyoung Kim's

System Overview

- For every time step,
 - Belief tacking
 - Path planning
 - Speed planning

Bai, Haoyu, et al. "Intention-aware online POMDP planning for autonomous driving in a crowd." Robotics and Automation (ICRA), 2015 IEEE International Conference on. IEEE, 2015.

Contents

- Problem of the paper
- Framework
- Methods
- Result
- Conclusion
- Quiz

Problem of the paper

• Problem

 path planning for non-holonomic wheeled vehicle moving on a plane

Motivation

- To make autonomous wheeled loaders pick up the pallet
- Kalevi Huhtala
 - Professor of Tampere University at Finland
 - CEO of transportation company 'Huhtala'

Framework

- To compute finite set of segments of offline feasible motions
- Using A*, Finding the path of sequence of segments
- Optimizing the global path and merging consecutive curves.

- Converting workspace to 2D state lattice
- Number of motion segments is arbitrary
- To generate smoothing segments, bezier cuvers are used

$$\mathbf{B}(t) = \sum_{i=0}^{n} \binom{n}{i} (1-t)^{n-i} t^{i} \mathbf{B}_{i}, \quad t \in [0,1].$$

- To satisfy their minimum requirements, quintic Bezier curve is used
 - Minimum requirements
 - Passing through beginning and end point
 - Specified orientations θ and curvature κ
- Therefore, six control points are used

•
$$q_s = (x_s, y_s, \theta_s, \kappa_s)^T$$
 is beginning state
• $q_f = (x_f, y_f, \theta_f, \kappa_f)^T$ is end state

• $p_s = (x_s, y_s)^T$ is beginning position = B_0 • $p_f = (x_f, y_f)^T$ is beginning position = B_5

• Bezier curve is tangent at the end points • $\widehat{\theta_s} = \frac{1}{a}(B_1 - B_0)$ therefore, $B_1 = a\widehat{\theta_s} + p_s$

•
$$\widehat{\theta_f} = \frac{1}{d}(B_4 - B_5)$$
 therefore, $B_4 = d\widehat{\theta_f} + p_f$

Curvatures at end of the bezier curve are

$$\kappa(0) = \frac{(n-1)g}{n \|\mathbf{B}_1 - \mathbf{B}_0\|^2}, \quad \kappa(1) = \frac{(n-1)h}{n \|\mathbf{B}_n - \mathbf{B}_{n-1}\|^2}$$

• Then, we can get

$$\mathbf{B}_{2} = \mathbf{p}_{s} + (a + b)\hat{\theta}_{s} + \frac{5}{4}a^{2}\kappa_{s}\dot{\hat{\theta}}_{s},$$
$$\mathbf{B}_{3} = \mathbf{p}_{f} - (c + d)\hat{\theta}_{f} + \frac{5}{4}d^{2}\kappa_{f}\dot{\hat{\theta}}_{f}$$

 The curve is spanned by 12-tuple parameters

$$\lambda = (x_s, y_s, \theta_s, \kappa_s, a, b, c, d, x_f, y_f, \theta_f, \kappa_f)$$

$$\lambda = (\underbrace{x_s, y_s, \theta_s, \kappa_s}_{\text{determined}}, a, b, c, d, \underbrace{x_f, y_f, \theta_f, \kappa_f}_{\text{determined}})$$

- Four degree of freedom
 h = (a, b, c, d)^T
- To calculate optimal control distance vector h^{*}

Minimize:
$$J(\mathbf{h}) = \sum_{j=0}^{k-1} \left[w_s \cdot s_j(\mathbf{h}) + w_\kappa \cdot \kappa_j^2(\mathbf{h}) \right]$$

subject to: $\kappa_j^2 < \kappa_{max}^2$.
Path length

Minimize:
$$J(\mathbf{h}) = \sum_{j=0}^{k-1} \left[w_s \cdot s_j(\mathbf{h}) + w_{\kappa} \cdot \kappa_j^2(\mathbf{h}) \right]$$

subject to: $\kappa_j^2 < \kappa_{max}^2$.

- Adapting Method-of-Moving Asymptotes(MMA)
 - Proximity of the initial guess to the optima
 - Computational efficiency
- Empirically, they found quarter of the curve length to be good

$$\mathbf{h}_{guess} = \|\mathbf{p}_f - \mathbf{p}_s\| \begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}^T$$

Methods – Collision avoidance

Minimize:
$$J(\mathbf{h}) = \sum_{j=0}^{k-1} \left[w_s \cdot s_j(\mathbf{h}) + w_{\kappa} \cdot \kappa_j^2(\mathbf{h}) \right]$$

subject to: $\kappa_j^2 < \kappa_{max}^2$.

 Signed Distance Field(SDF) is used to avoiding collision

$$\gamma_j = \begin{cases} \|\mathbf{B}(t_j) - \mathbf{o}_j\|, & \text{if } \mathbf{B}(t_j) \in \mathcal{C}_{free}, \\ -\|\mathbf{B}(t_j) - \mathbf{o}_j\|, & \text{if } \mathbf{B}(t_j) \in \mathcal{C}_{obstacle} \end{cases}$$

• If $\gamma(q_j)$ is greater than $||q_j - q_{j-1}||$, no collision occurs along $q_j - q_{j-1}$

Methods – Global optimization

• Global path

$$P = B^{[0]}(t) \cup \dots \cup B^{[m]}(t)$$

$$= B(\lambda_0, t) \cup \dots \cup B(\lambda_m, t)$$
where $\lambda_i = (q_i^T, h_i^T, q_{i+1}^T)^T$

Parameter variable of global path

$$X = \left\{ B_0^{[0]} \cdots B_5^{[0]}, \cdots, B_0^{[m]} \cdots B_5^{[m]} \right\}$$
$$= (h_0^T q_1^T h_1^T q_2^T \cdots h_{m-1}^T q_m^T h_m^T)$$

From 12(m+1) to 8m+4

Methods – Global optimization

Global path

Minimize:
$$J(\mathbf{X}) = \sum_{i=0}^{m} L^{[i]}(\lambda_i),$$

subject to: $(\kappa_j^{[i]})^2 < \kappa_{max}^2,$
 $\gamma_j^{[i]} > s_{j-1}^{[i]} \text{ and } \gamma_j^{[i]} > s_j^{[i]}$

where

$$L^{[i]}(\lambda_i) = \sum_{j=0}^{k_i-1} \left[w_s \cdot s_j^{[i]} + w_\kappa \cdot \left(\kappa_j^{[i]}\right)^2 - \frac{w_\gamma \cdot \gamma_j^{[i]}}{\mathsf{SDF}} \right]$$

Also it can be normalized using maximum value of each term.

- Dividing global curve into segments
- And then merging it again

- Dividing global curve into segments
- And then merging it again

- Dividing global curve into segments
- And then merging it again

- Dividing global curve into segments
- And then merging it again

Experimental setting

- Obstacle map : 150m x 80m
- State lattice planner
 - Resolution : 1m
 - 16 discrete headings

 Their method(Bezier curves parametric Path Optimization: BPO) vs The previous method(Coordinates parametric Path Optimization: CPO)

- Experimental result
 - Given an initial guess, both methods optimize the solutions

BPO is more like voronoi diagram

Cusp-point CPO splits the path into forward/backward But BPO optimizes the overall path at once

- 4000 test cases in an identical environment
- Average path computing time
 - CPO : 3.28s
 - BPO : 300ms
- Improvement of curvature 8.9
- Improvement of dist.to.obstacle 1.295

Conclusion

- Benefits of proposed algorithm
 - Can generate bezier curve with few parameters
 - Can efficiently compute optimization of pathlength, smoothness, and collision clearance
 - Can achieve compactness with merging

QnA

Thank you!

