Constrained Path Optimization with Bézier Curve Primitives [ICRA 2015]

Ji-Wung Choi and Kalevi Huhtala

Heechan Shin

$$
\begin{gathered}
\text { 2017. 05. } 30 \\
\text { CS686 }
\end{gathered}
$$

TaeHyoung Kim's

System Overview

- For every time step,
- Belief tacking
- Path planning
- Speed planning

Contents

- Problem of the paper
- Framework
- Methods
- Result
- Conclusion
- Quiz

Problem of the paper

- Problem
- path planning for non-holonomic wheeled vehicle moving on a plane
- Motivation
- To make autonomous wheeled loaders pick up the pallet
- Kalevi Huhtala
-Professor of Tampere University at Finland CEO of transportation company 'Huhtala'

Framework

- To compute finite set of segments of offline feasible motions
- Using A^{*}, Finding the path of sequence of segments
- Optimizing the global path and merging consecutive curves.

Methods - Computing segment

- Converting workspace to 2D state lattice
- Number of motion segments is arbitrary
- To generate smoothing segments, bezier cuvers are used

$$
\mathbf{B}(t)=\sum_{i=0}^{n}\binom{n}{i}(1-t)^{n-i} t^{i} \mathbf{B}_{i}, \quad t \in[0,1] .
$$

Methods - Computing segment

- To satisfy their minimum requirements, quintic Bezier curve is used
- Minimum requirements
- Passing through beginning and end point
- Specified orientations $\boldsymbol{\theta}$ and curvature к
- Therefore, six control points are used

Methods - Computing segment

- $q_{s}=\left(x_{s}, y_{s}, \theta_{s}, \kappa_{s}\right)^{T}$ is beginning state
- $\boldsymbol{q}_{f}=\left(\boldsymbol{x}_{f}, \boldsymbol{y}_{f}, \boldsymbol{\theta}_{f}, \kappa_{f}\right)^{T}$ is end state
- $p_{s}=\left(x_{s}, y_{s}\right)^{T}$ is beginning position $=B_{0}$
- $p_{f}=\left(x_{f}, y_{f}\right)^{T}$ is beginning position $=B_{5}$

Methods - Computing segment

- Bezier curve is tangent at the end points
- $\widehat{\boldsymbol{\theta}_{s}}=\frac{1}{a}\left(B_{1}-B_{0}\right)$ therefore, $B_{1}=\square \widehat{\theta_{s}}+\boldsymbol{p}_{s}$
- $\widehat{\theta_{f}}=\frac{1}{d}\left(B_{4}-B_{5}\right)$ therefore, $B_{4}=\boldsymbol{d} \widehat{\theta_{f}}+p_{f}$

Methods - Computing segment

- Curvatures at end of the bezier curve are

$$
\kappa(0)=\frac{(n-1) g}{n\left\|\mathbf{B}_{1}-\mathbf{B}_{0}\right\|^{2}}, \quad \kappa(1)=\frac{(n-1) h}{n\left\|\mathbf{B}_{n}-\mathbf{B}_{n-1}\right\|^{2}}
$$

- Then, we can get

$$
\begin{aligned}
& \mathbf{B}_{2}=\mathbf{p}_{s}+(a+b) \hat{\theta}_{s}+\frac{5}{4} a^{2} \kappa_{s} \dot{\hat{\theta}}_{s}, \\
& \mathbf{B}_{3}=\mathbf{p}_{f}-(\mathbb{c}+d) \hat{\theta}_{f}+\frac{5}{4} d^{2} \kappa_{f} \dot{\hat{\theta}}_{f}
\end{aligned}
$$

- The curve is spanned by 12-tuple parameters

$$
\lambda=\left(x_{s}, y_{s}, \boldsymbol{\theta}_{s}, \kappa_{s}, a, b, c, d, x_{f}, y_{f}, \boldsymbol{\theta}_{f}, \kappa_{f}\right)
$$

Methods - Computing segment

$$
\lambda=\frac{\left(\boldsymbol{x}_{\boldsymbol{s}}, \boldsymbol{y}_{s}, \boldsymbol{\theta}_{\boldsymbol{s}}, \boldsymbol{\kappa}_{\boldsymbol{s}}, a, b, c, d, \frac{\left.\boldsymbol{x}_{f}, \boldsymbol{y}_{f}, \boldsymbol{\theta}_{f}, \boldsymbol{\kappa}_{\boldsymbol{f}}\right)}{\text { determined }}\right)}{\text { dermined }}
$$

- Four degree of freedom
- $h=(a, b, c, d)^{T}$
- To calculate optimal control distance vector h^{*}

Minimize: $J(\mathbf{h})=\sum_{j=0}^{k-1}\left[w_{s} \cdot s_{j}(\mathbf{h})+w_{\kappa} \cdot \kappa_{j}^{2}(\mathbf{h})\right.$
subject to: $\kappa_{j}^{2}<\kappa_{\text {max }}^{2}$.
Path length

Methods - Computing segment

$$
\begin{aligned}
& \text { Minimize: } J(\mathbf{h})=\sum_{j=0}^{k-1}\left[w_{s} \cdot s_{j}(\mathbf{h})+w_{\kappa} \cdot \kappa_{j}^{2}(\mathbf{h})\right] \\
& \text { subject to: } \kappa_{j}^{2}<\kappa_{\max }^{2} .
\end{aligned}
$$

- Adapting Method-of-Moving Asymptotes(MMA)
- Proximity of the initial guess to the optima
- Computational efficiency
- Empirically, they found quarter of the curve length to be good

$$
\mathbf{h}_{\text {guess }}=\left\|\mathbf{p}_{f}-\mathbf{p}_{s}\right\|\left(\begin{array}{llll}
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4}
\end{array}\right)^{T}
$$

Methods - Collision avoidance

$$
\text { Minimize: } J(\mathbf{h})=\sum_{j=0}^{k-1}\left[w_{s} \cdot s_{j}(\mathbf{h})+w_{\kappa} \cdot \kappa_{j}^{2}(\mathbf{h})\right]
$$ subject to: $\kappa_{j}^{2}<\kappa_{\max }^{2}$.

- Signed Distance Field(SDF) is used to avoiding collision

$$
\gamma_{j}=\left\{\begin{aligned}
\left\|\mathbf{B}\left(t_{j}\right)-\mathbf{o}_{j}\right\|, & \text { if } \mathbf{B}\left(t_{j}\right) \in \mathcal{C}_{\text {free }}, \\
-\left\|\mathbf{B}\left(t_{j}\right)-\mathbf{o}_{j}\right\|, & \text { if } \mathbf{B}\left(t_{j}\right) \in \mathcal{C}_{\text {obstacle }}
\end{aligned}\right.
$$

- If $\gamma\left(q_{i}\right)$ is greater than $\left\|q_{j}-q_{j-1}\right\|$, no collision occurs along $q_{j}-q_{j-1}$

Methods - Global optimization

- Global path

$$
\begin{aligned}
& P=B^{[0]}(t) \cup \cdots \cup B^{[m]}(t) \\
& =B\left(\lambda_{0}, t\right) \cup \cdots \cup B\left(\lambda_{m}, t\right) \\
& \text { where } \lambda_{i}=\left(q_{i}^{T}, h_{i}^{T}, q_{i+1}^{T}\right)^{T}
\end{aligned}
$$

- Parameter variable of global path

$$
\begin{aligned}
& X=\left\{B_{0}^{[0]} \cdots B_{5}^{[0]}, \cdots, B_{0}^{[m]} \cdots B_{5}^{[m]}\right\} \\
& =\left(h_{0}^{T} q_{1}^{T} h_{1}^{T} q_{2}^{T} \cdots h_{m-1}^{T} q_{m}^{T} h_{m}^{T}\right)
\end{aligned}
$$

- From 12(m+1) to 8m+4

Methods - Global optimization

- Global path

Minimize: $J(\mathbf{X})=\sum_{i=0}^{m} L^{[i]}\left(\lambda_{i}\right)$,
subject to: $\left(\kappa_{j}^{[i]}\right)^{2}<\kappa_{\text {max }}^{2}$,

$$
\gamma_{j}^{[i]}>s_{j-1}^{[i]} \text { and } \gamma_{j}^{[i]}>s_{j}^{[i]}
$$

where
$L^{[i]}\left(\boldsymbol{\lambda}_{i}\right)=\sum_{j=0}^{k_{i}-1}\left[w_{s} \cdot s_{j}^{[i]}+w_{\kappa} \cdot\left(\kappa_{j}^{[i]}\right)^{2}-\frac{w_{\gamma} \cdot \gamma_{j}^{[i]}}{\text { SDF }}\right]$

- Also it can be normalized using maximum value of each term.

Methods - Merging

- Using divide and conquer
- Dividing global curve into segments
- And then merging it again

```
Algorithm 1 Merge Bézier Curves Comprising A Path
    procedure MERGECURVES \(\left(\left\{\mathbf{q}_{0}, \mathbf{h}_{0}, \ldots, \mathbf{h}_{m}, \mathbf{q}_{m+1}\right\}\right)\)
        \(\mathcal{K}\) is normalized motion segment set.
        if \(m \leq 0\) then
            return \(\left\{\mathbf{q}_{0}, \mathbf{h}_{0}, \ldots, \mathbf{h}_{m}, \mathbf{q}_{m+1}\right\}\)
        else
            \(\tilde{c} \Leftarrow\left\lfloor\frac{m+2}{2}\right\rfloor\)
            left \(\Leftarrow\) MergeCurves \(\left(\left\{\mathbf{q}_{0}, \mathbf{h}_{0}, \ldots, \mathbf{h}_{\tilde{c}-1}, \mathbf{q}_{\tilde{c}}\right\}\right)\)
            right \(\Leftarrow \operatorname{MergeCurves}\left(\left\{\mathbf{q}_{\tilde{c}}, \mathbf{h}_{\tilde{c}}, \ldots, \mathbf{h}_{m}, \mathbf{q}_{m+1}\right\}\right)\)
            return Merge(left, right)
        end if
    end procedure
    procedure \(\operatorname{MERGE}\left(\right.\) left \(=\left\{\mathbf{q}_{c_{0}}, \ldots, \mathbf{h}_{\tilde{c}-1}, \mathbf{q}_{\tilde{c}}\right\}\), right \(=\)
    \(\left\{\mathbf{q}_{\tilde{c}}, \mathbf{h}_{\tilde{c}}, \ldots, \mathbf{q}_{c_{f}}\right\}\) )
        \(\mathbf{h}^{*} \Leftarrow\) LookUpClosestControl \(\left(\mathbf{q}_{\tilde{c}-1}, \mathbf{q}_{\tilde{c}+1}, \mathcal{C}\right)\)
        \(\mathbf{B}^{*} \Leftarrow \mathbf{B}\left(\mathbf{q}_{\tilde{c}-1}, \mathbf{h}^{*}, \mathbf{q}_{\tilde{c}+1}\right)\)
        if CollisionFree \(\left(\mathbf{B}^{*}\right)=\) true \(\wedge \kappa\left(\mathbf{B}^{*}\right)<\kappa_{\max }\) then
            return \(\left\{\mathbf{q}_{c_{0}}, \ldots, \mathbf{q}_{\tilde{c}-1}, \mathbf{h}^{*}, \mathbf{q}_{\tilde{c}+1}, \ldots, \mathbf{q}_{c_{f}}\right\}\)
        else
            return \(\left\{\mathbf{q}_{c_{0}}, \ldots, \mathbf{h}_{\tilde{c}-1}, \mathbf{q}_{\tilde{c}}, \mathbf{h}_{\tilde{c}}, \ldots, \mathbf{q}_{c_{f}}\right\}\)
        end if
    end procedure
```


Methods - Merging

- Using divide and conquer
- Dividing global curve into segments
- And then merging it again

```
\(\tilde{c} \Leftarrow\left\lfloor\frac{m+2}{2}\right\rfloor\)
left \(\Leftarrow \operatorname{MergeCurves}\left(\left\{\mathbf{q}_{0}, \mathbf{h}_{0}, \ldots, \mathbf{h}_{\tilde{c}-1}, \mathbf{q}_{\tilde{c}}\right\}\right)\)
right \(\Leftarrow \operatorname{MergeCurves}\left(\left\{\mathbf{q}_{\tilde{c}}, \mathbf{h}_{\tilde{c}}, \ldots, \mathbf{h}_{m}, \mathbf{q}_{m+1}\right\}\right)\)
```


Methods - Merging

- Using divide and conquer
- Dividing global curve into segments
- And then merging it again

Merge(left,right)

Methods - Merging

- Using divide and conquer
- Dividing global curve into segments
- And then merging it again

```
\mp@subsup{h}{}{*}}\Leftarrow\mathrm{ LookUpClosestControl ({}\mp@subsup{\mathbf{q}}{\tilde{c}-1}{},\mp@subsup{\mathbf{q}}{\tilde{c}+1}{},\mathcal{C}
B}\mp@subsup{}{}{*}\Leftarrow\mathbf{B}(\mp@subsup{\mathbf{q}}{\tilde{c}-1}{},\mp@subsup{\mathbf{h}}{}{*},\mp@subsup{\mathbf{q}}{\tilde{c}+1}{}
if CollisionFree (\mp@subsup{\mathbf{B}}{}{*})=\mathrm{ true }\wedge\kappa(\mp@subsup{\mathbf{B}}{}{*})<\mp@subsup{\kappa}{\operatorname{max}}{}\mathrm{ then}
    return {\mp@subsup{\mathbf{q}}{\mp@subsup{c}{0}{}}{},\ldots,\mp@subsup{\mathbf{q}}{\tilde{c}-1}{},\mp@subsup{\mathbf{h}}{}{*},\mp@subsup{\mathbf{q}}{\tilde{c}+1}{},\ldots,\mp@subsup{\mathbf{q}}{\mp@subsup{c}{f}{}}{}}
else
    return {\mp@subsup{\mathbf{q}}{\mp@subsup{c}{0}{}}{},\ldots,\mp@subsup{\mathbf{h}}{\tilde{c}-1}{},\mp@subsup{\mathbf{q}}{\tilde{c}}{},\mp@subsup{\mathbf{h}}{\tilde{c}}{},\ldots,\mp@subsup{\mathbf{q}}{\mp@subsup{c}{f}{}}{}}
end if
```


Result

- Experimental setting
- Obstacle map : 150m x 80m
- State lattice planner -Resolution : 1m -16 discrete headings

- Their method(Bezier curves parametric Path Optimization:BPO)
VS
The previous method(Coordinates parametric Path Optimization:CPO)

Result

- Experimental result
- Given an initial guess, both methods optimize the solutions

CPO

Result

BPO is more like voronoi diagram

Result

- 4000 test cases in an identical environment
- Average path computing time
- CPO : 3.28s
- BPO : 300ms
- I mprovement of curvature 8.9
- I mprovement of dist.to.obstacle 1.295

Conclusion

- Benefits of proposed algorithm
- Can generate bezier curve with few parameters
- Can efficiently compute optimization of pathlength, smoothness, and collision clearance
- Can achieve compactness with merging

QnA

Thank you!

