

[IROS 2016]

Multi-Target Rendezvous Search

Malika Meghjani, Sandeep Manjanna and Gregory Dudek

2017. 05. 29 Presented By Suzi Kim

Background

Rendezvous Problem

How two players randomly placed in a known search region X can move at speed one to find each other in least expected time?

Background

Applications of Rendezvous Problem

- Search and rescue
- Environmental assessment
- Threat detection

Problem Description

Goal

Searching for one or more targets for which we either have an *initial probability distribution* describing their suspected initial location or sparse information.

- Minimizing the time to detect targets
- Maximizing the likelihood of detecting targets

Problem Description

Problem Setting

- Marine environments
- Finding a drifting target with a mobile searcher, a robot boat
- Constraints on the communication range

Search Strategies

- (1) Global Maxima Search
- (2) Heuristic Local Maxima Search
- (3) Spiral Search

Search Strategies: (1) Global Maxima Search

- Visiting search region with highest probability
- Method:
 - Discretize search region into grids
 - Assign with a value equal to the integral of the probability under that grid-cell.
 - Visit the grid-cell with highest value until the target is found or the search region is covered.

Search Strategies: (1) Global Maxima Search

Drawback: Multiple overlapping segments

Search Strategies: (2) Heuristic Local Maxima Search

- Visiting search region with highest probability within a local maxima-search radius
- To avoid getting stuck in local maxima and increase the success rate, heuristic method is added.
 - When stuck in local maxima, *iteratively increase the maxima-search radius* until the searcher recovers from the local maxima or the radius becomes equal to the radius of the entire search region.

Search Strategies: (2) Heuristic Local Maxima Search

Search Strategies: (3) Spiral Search

- Does not require the discretization of the search region.
- Spiral equation:

$$\begin{pmatrix} x_r(t) \\ y_r(t) \end{pmatrix} = b\theta \begin{pmatrix} \cos\theta \\ \sin\theta \end{pmatrix}$$

b: a parameter to determine the distance between two consecutive spiral rounds

- Two variants: inward and outward spirals
 - Inward spiral search: minimize the escape of the targets
 - Outward spiral search: minimize the search time for a greedy search

Search Strategies: (3) Spiral Search

Experiments Setting

- Assuming the target to be a point object, and the searcher to be a disk or a point with a communication radius R_{comm} .
- Radius of search region: 100 meters
- Maximum speed of the ASV: 1.2m/s
- Target speed: 0.2m/s
- Maximum communication range of the robot: 5 meters
- 1,000 trials for each search strategy.

Probability Distribution of Search Region

Cost Analysis

- Performance Factors
 - (1) Mean Time to Find (MTTF)
 - (2) Failure Rate
- Score Function

$$C = \sum_{i=1}^{n} (\mathbf{1}_{\mathbf{Found_i}} * t_i + \mathbf{1}_{\mathbf{Found_i^C}} * \beta)$$

$$\mathbf{1_{Found_i}} = \begin{cases} 1 & \text{if target } i \text{ is found} \\ 0 & \text{if target } i \text{ is not found,} \end{cases}$$

$$\mathbf{1_{Found_i^C}} = 1 - \mathbf{1_{Found_i}}$$

Single Target Search

Multi-Target Search

Global Maxima

Heuristic Local Maxima

Spiral

Multi-Target Search

Field Trials

- Searcher Robot
 - Catamaran style Autonomous Surface Vehicle (ASV)
- Target Drifter
 - Equipped with a miniPC (Android MK-802), GPS receiver

Field Trials

Global Maxima

Heuristic Local Maxima

Spiral

Field Trials

Conclusion

- Compare the performance of three search strategies: Global Maxima, Heuristic Local Maxima, Spiral Search
- Outward spiral search outperforms the other search strategies for both single-target and multi-target experiments.

Conclusion

Future Work

 In multi-target search, transition between targets should be welloptimized.

Conclusion

Future Work

Combining with Coverage Path Planning (CPP), if it requires

exhaustive search anyway.

Thank you!

Q&A

[Appendix] Performance Bounds

• The total number of circular rounds (n_s) that robot needs to complete for clearing the entire search region of radius r:

$$n_s = \left\lceil \frac{r}{b} \right\rceil$$

• The time taken to clear one circular round with radius r':

$$\tau = \frac{2\pi r'}{s_r}$$

Total time taken by the robot to clear the complete search area :

$$\tau_{tot} = \frac{2\pi n_s}{s_r} \sum_{i=0}^{(n_s - 1)} (r - ib)$$

[Appendix] Performance Bounds

Guaranteed Capture

Capture speed of the robot:

$$s_{cap} = \frac{2\pi r s_d}{b}$$

The condition of robot speed for a guaranteed capture:

$$s_r > \frac{2\pi r s_d}{b}$$

[Appendix] Performance Bounds

Minimum Time Capture

• Minimized time to capture the target :

$$\tau_{min} = \frac{2\pi n_s}{s_r} (r - (n_s - 1)b)$$
$$\tau_{min} = \frac{2\pi b n_s}{s_r}$$

• The robot should start with an initial radius, $\tau_{min} = b$ and incrementally expand outwards by a factor b.