Intention-Aware Online POMDP Planning for Autonomous Driving in a Crowd

Bai, Haoye, et al. ICRA 2015

TaeHyoung Kim(김태형)

Review

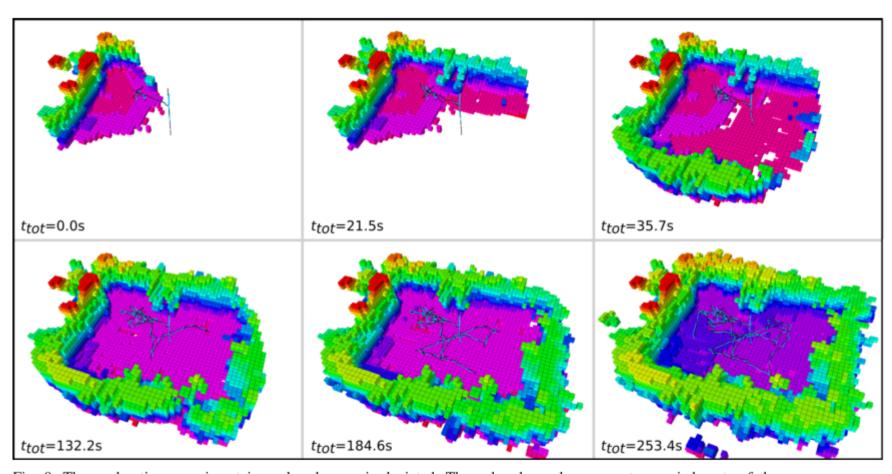


Fig. 8: The exploration experiment in a closed room is depicted. The colored voxels represent occupied parts of the occupancy map (colored according to height) while the computed path is given in black and the vehicle response in light blue. The initial phase of the exploration mission is dominated by yawing motions to maximize exploration without traveling large distances. Subsequently the MAV explores regions further away, to eventually accomplish its mission.

Intention-Aware Online POMDP Planning for Autonomous Driving in a Crowd

Bai, Haoye, et al. ICRA 2015

TaeHyoung Kim(김태형)

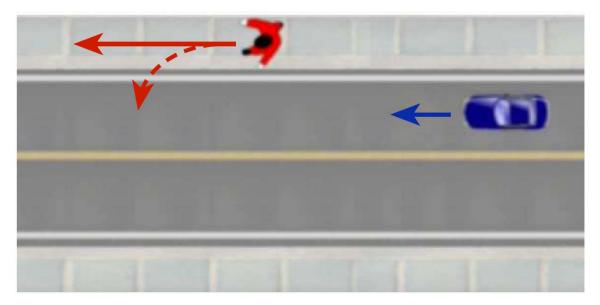
Abstract

- Goal: Autonomous driving among many pedestrians effectively and safely.
- Main contribution:
 - Online planning
 - Consider long-term effect of action
 C.f.) Reactive control

Reactive controller

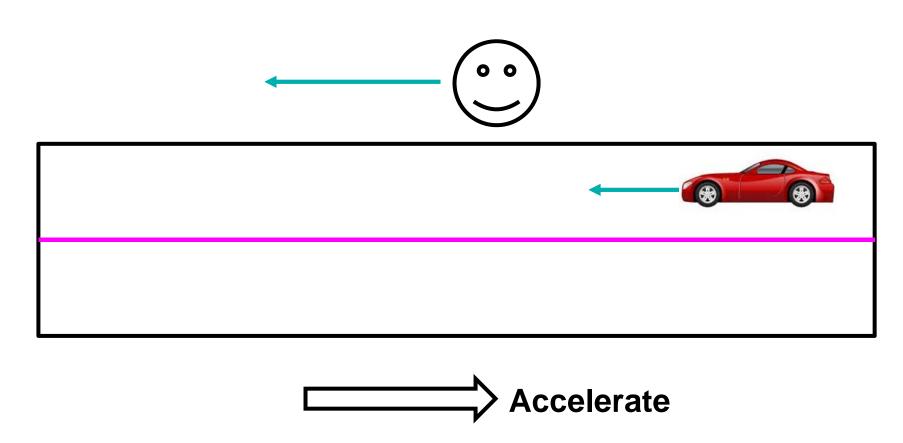
- Two state for pedestrian behavior
 - Stays on side walk
 - Crosses the road

Belief (p, 1-p)

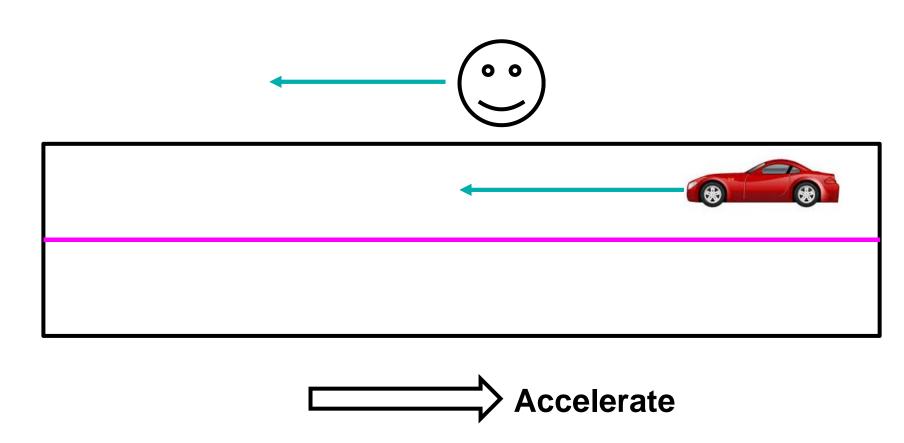


Bai, Haoyu, et al. "Intention-aware online POMDP planning for autonomous driving in a crowd." Robotics and Automation (ICRA), 2015 IEEE International Conference on. IEEE, 2015.

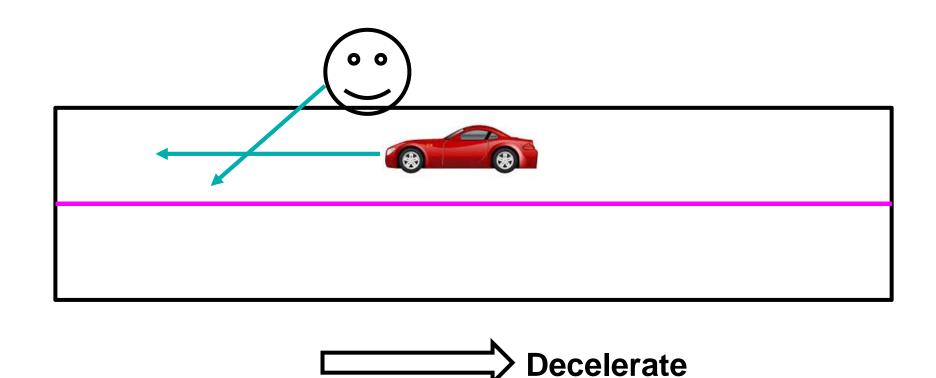
For time n, Belief~(0.51,0.49)



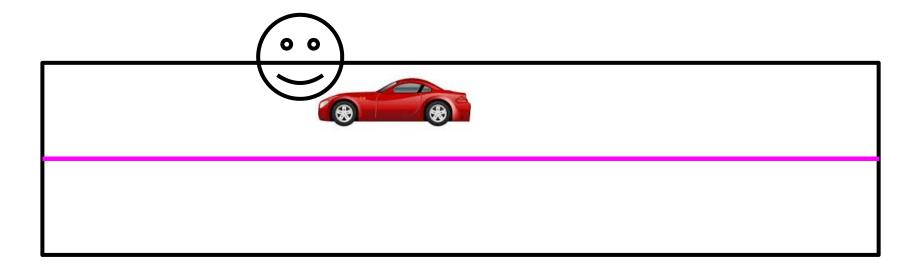
For time n, Belief~(0.51,0.49)



• For time n+1, Belief ~ (0.35,0.65)



• For time n+1, Belief ~ (0.35,0.65)



Too late...

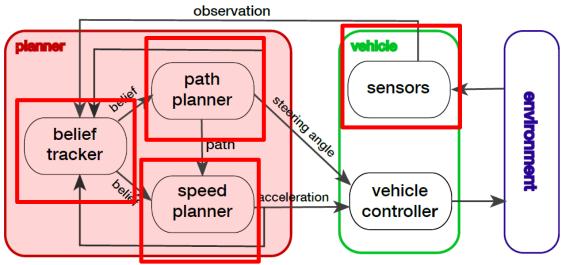
System overview

System models

- Vehicle Model
 - Position (x, y)
 - Orientation θ
 - Instantaneous speed v
- Pedestrian Model
 - Position (x_i, y_i)
 - Instantaneous speed v_i
 - Goal g_i (intention Explained later)
- Sensor Model
 - Vehicle position, speed
 - Positions of all pedestrians

System Overview

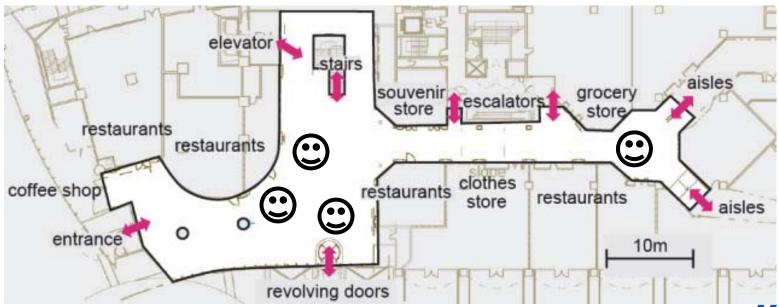
- For every time step,
 - Belief tacking
 - Path planning
 - Speed planning



Belief Tracker

Sub-goal Concept

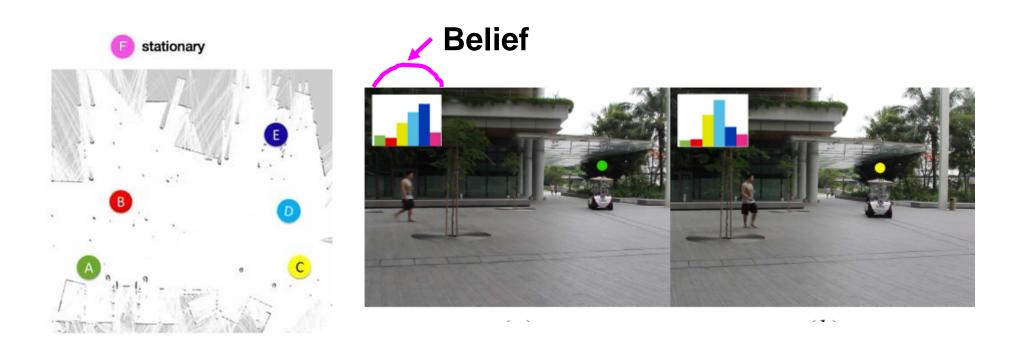
- From human science studies.
- Sub-goal
 - points in a space that pedestrians are walking toward
 - landmarks of environment



Ikeda, Tetsushi, et al. "Modeling and prediction of pedestrian behavior based on the sub-goal concept." Robotics (2013):137.

Belief of Pedestrians' intention

- Belief of Pedestrians' intention
 - Probability distribution for each sub-goals



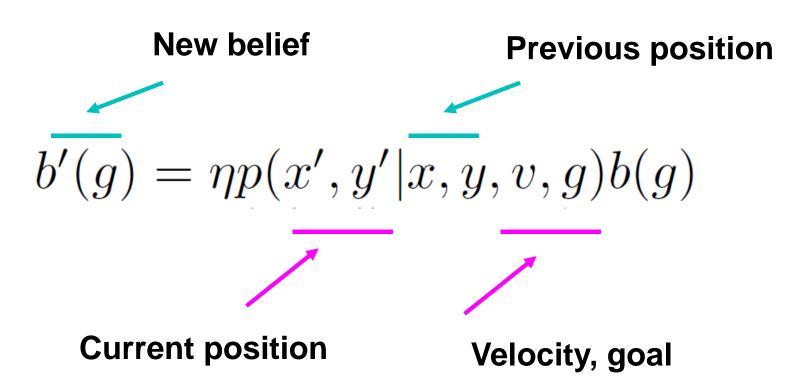
Pedestrian model

- Pedestrian Model
 - Position (x_i, y_i)
 - Instantaneous velocity, v_i
 - Goal g_i

The Highest possible sub-goal position in Belief

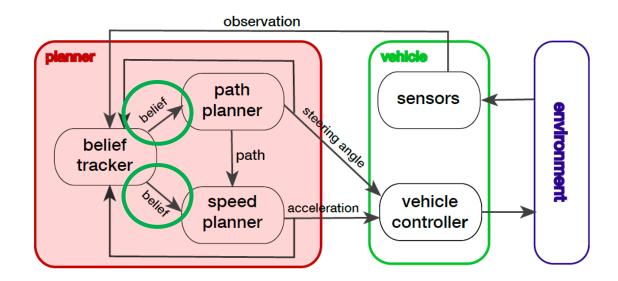
Belief Tracker

- Using observed pedestrian's movement
 - Bayer's rule



Belief Tracker

- Use Belief
 - Utilized in path planning & speed planning
 - Up to 7 Pedestrians



Path Planning

Path planning

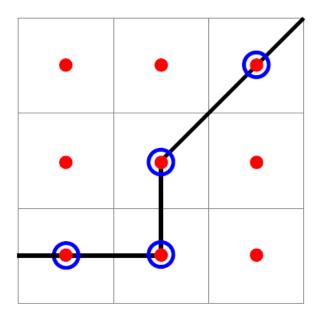
- Grid World + Grid search
 - Path, ρ : $(x_0, y_0) (x_1, y_1) (x_2, y_2)$...
 - Path cost, $C(\rho)$

$$C(\rho) = \sum_{i=0}^{n} \lambda^{i} C_{\rm st}(x_{i}, y_{i}) + \sum_{i=0}^{n} \lambda^{i} C_{\rm ped}(x_{i}, y_{i}) + \sum_{i=1}^{n-1} \lambda^{i} C_{\rm sm}(\rho, i)$$
Static obstacle
Pedestrians
Smoothness
$$\lambda: discount \ constant$$

Potential Field

Path Planning – Grid Search

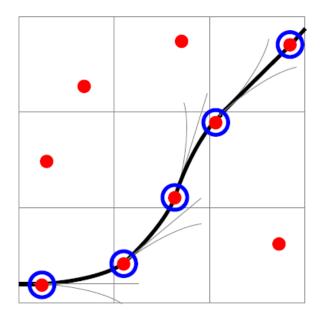
- Grid Search
 - Regular A*
 - Does not consider non-holonomic constraint



Petereit, Janko, et al. "Application of Hybrid A* to an autonomous mobile robot for path planning in unstructured outdoor environments." *Robotics; Proceedings of ROBOTIK 2012; 7th German Conference on.* VDE, 2012.

Path Planning – Hybrid A*

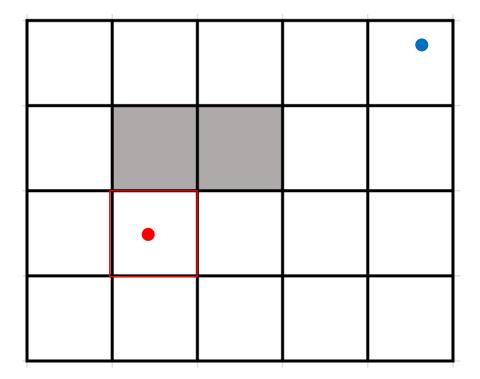
- Hybrid A*
 - For each cell, also contains continuous position.



Petereit, Janko, et al. "Application of Hybrid A* to an autonomous mobile robot for path planning in unstructured outdoor environments." *Robotics; Proceedings of ROBOTIK 2012; 7th German Conference on.* VDE, 2012.

In detail procedure

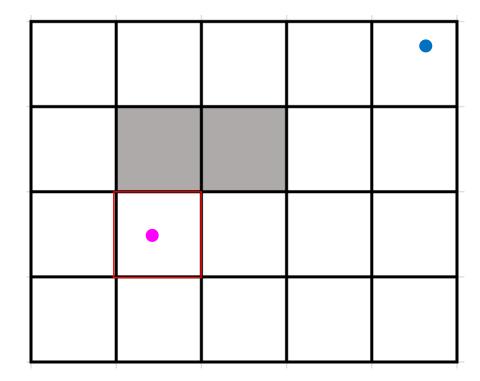
- Open set
- Close set



Initial situation

In detail procedure

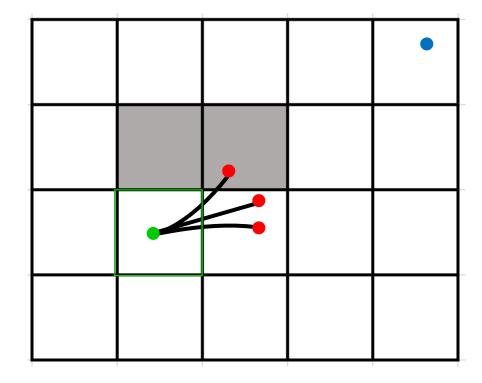
- Open set
- Close set



Select node from open set to expand

In detail procedure

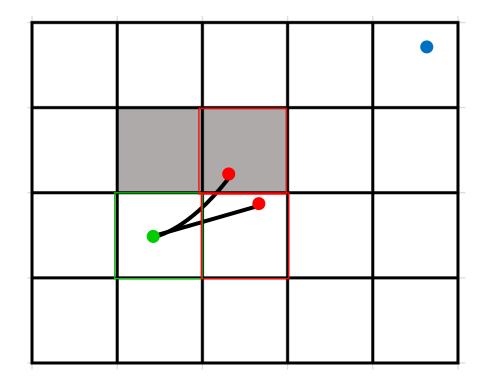
- Open set
- Close set



Expand node

In detail procedure

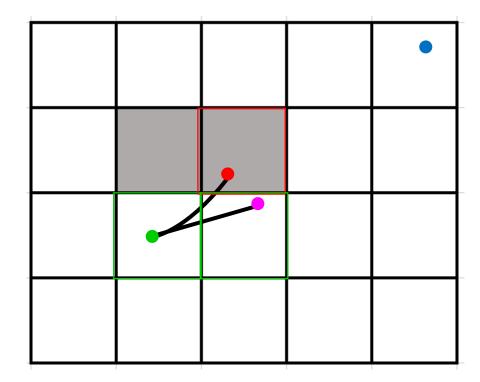
- Open set
- Close set



Select one point in each cell

In detail procedure

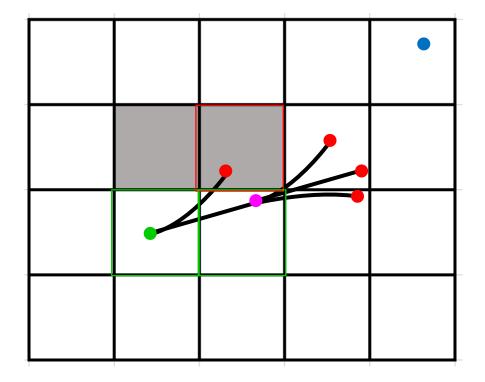
- Open set
- Close set



Select node from open set to expand

In detail procedure

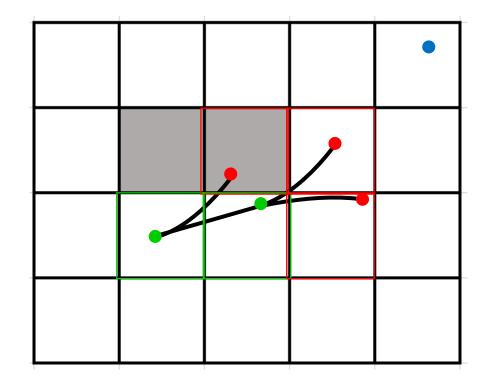
- Open set
- Close set



Expand node

In detail procedure

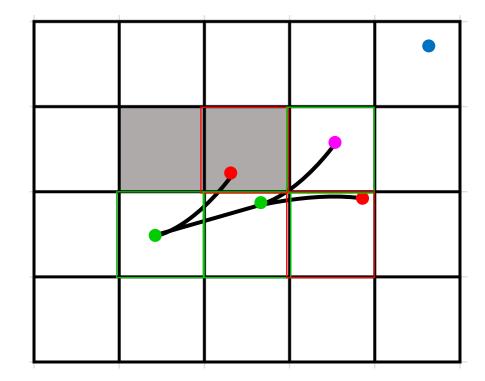
- Open set
- Close set



Select one point in each cell

In detail procedure

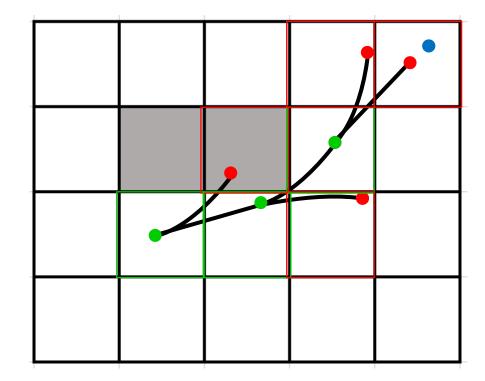
- Open set
- Close set



Select node from open set to expand

In detail procedure

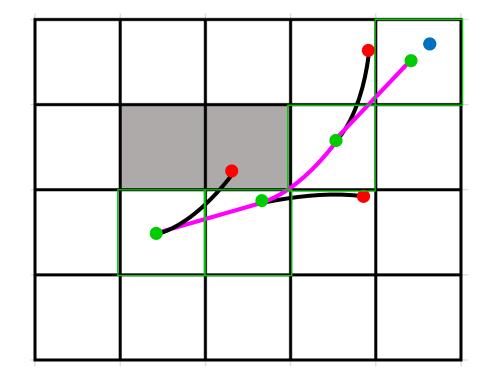
- Open set
- Close set



Expand & Select one point in each cell

In detail procedure

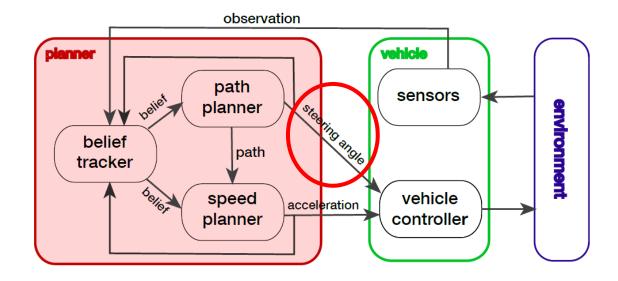
- Open set
- Close set



Find continuous path

Path Planning

- Set current steering angle
 - Situation is continuously changing



Speed Planner

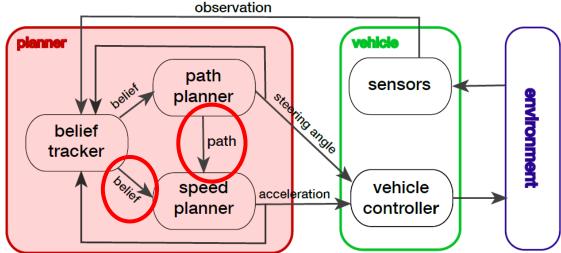
- Collision Avoidance

Speed planning

- Assumption
 - Pedestrian walks toward it's goal
 - Pedestrian speed is constant during planning cycle
 - Perfect sensor

Collision Avoidance

- Select Acceleration
 - Action: ACCEL. / MAINTAIN / DECEL.
- Utilize
 - Path from path planner
 - Belief from belief tracker For penalty

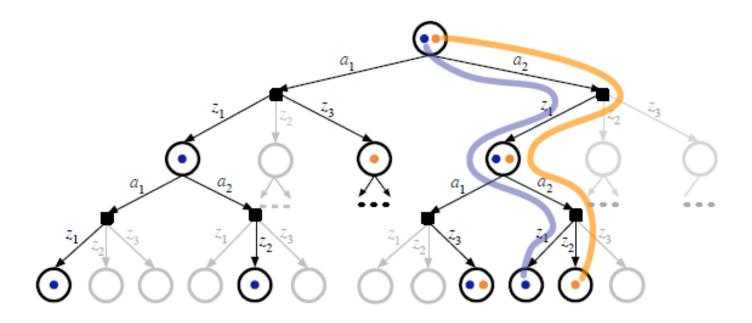


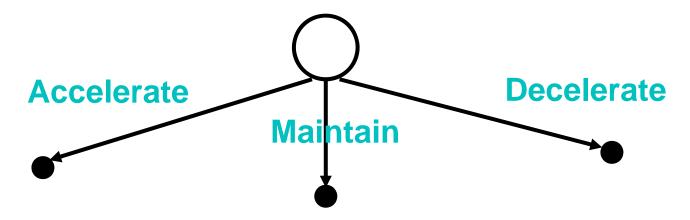
- POMDP model
 - Vehicle (x, y, θ, v)
 - Pedestrians (x_i, y_i, g_i, v_i) up to 7

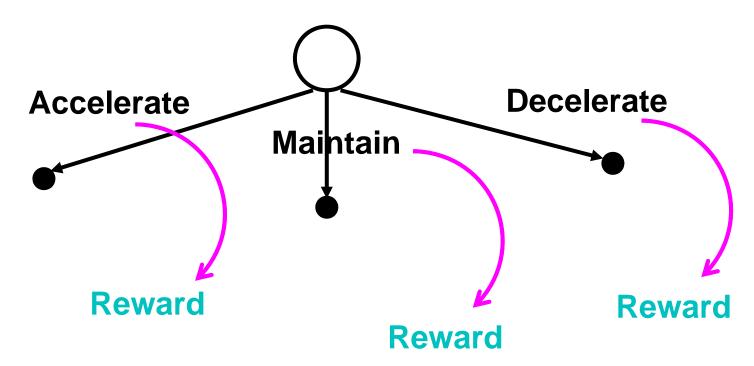
- Sensor model: discretized values
- Action: Acceleration
 - (ACCELERATE, MAINTAIN, DECELERATE)
- Rewards & Penalties: Next Page...

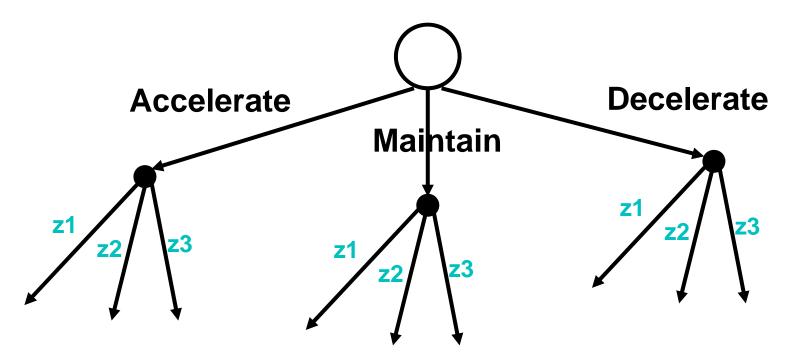
- Reward
 - Large reward around Goal
 - > to reach the destination
- Penalties
 - Large penalty for approaching the pedestrians
 - \rightarrow for safe
 - Slow speed
 - → For driving at a higher speed
 - Accelerate and Decelerate actions
 - → For smooth driving

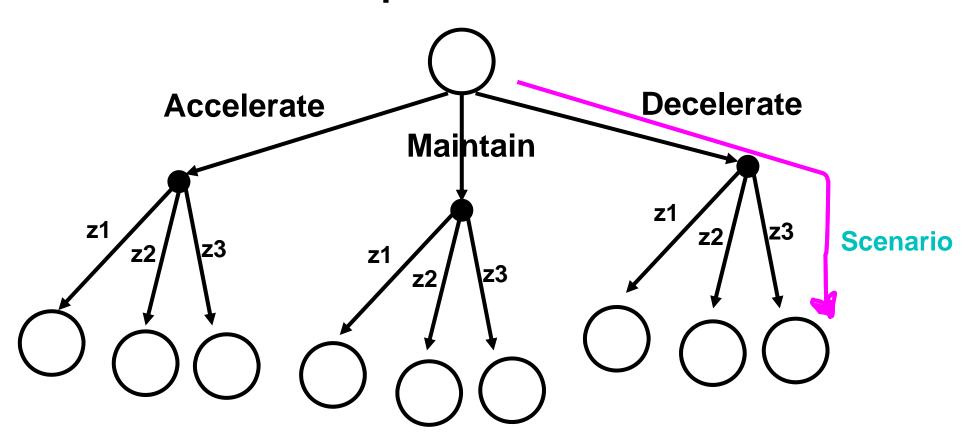
- Online POMDP
 - Only finite horizon
 - Scenario sampling



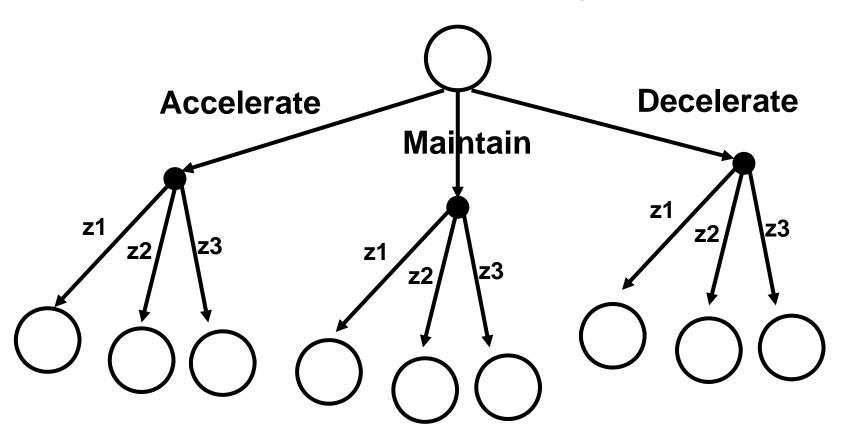




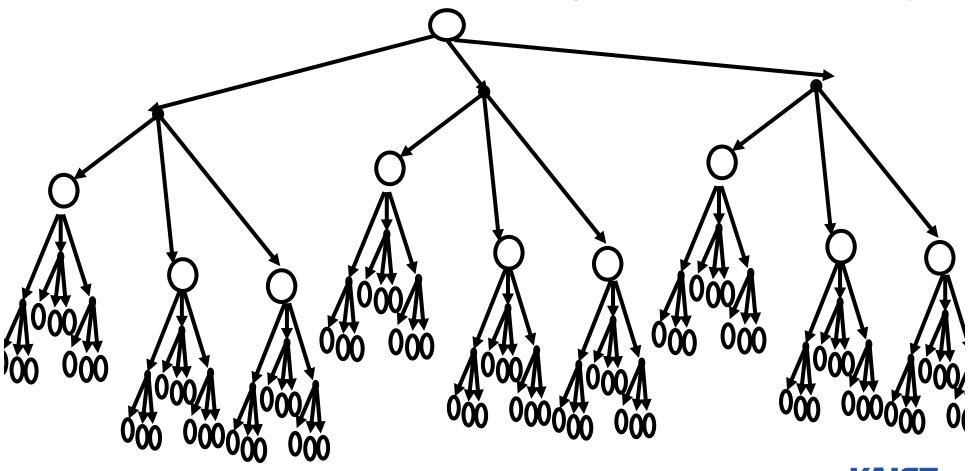




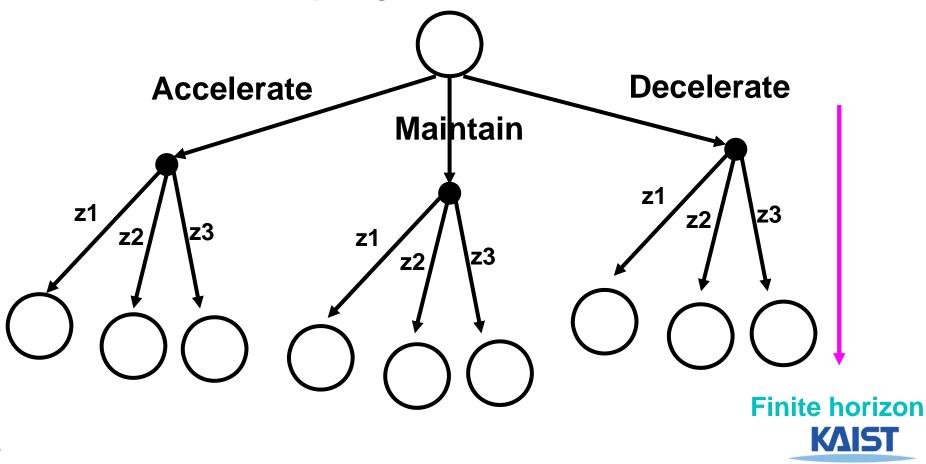
The problem is scenarios grow exponentially

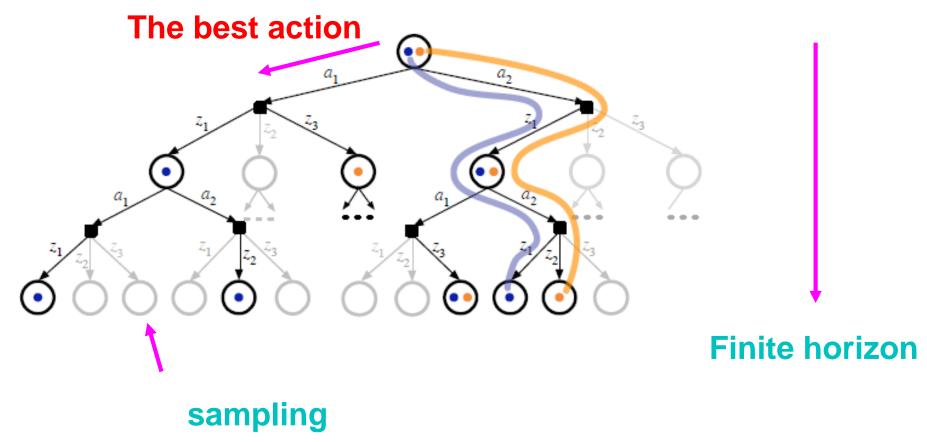


The problem is scenarios grow exponentially

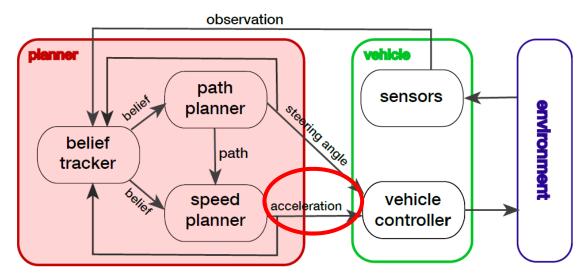


- Online POMDP procedure
 - Random sampling of observations





- Utilize finite horizon scenarios
 - Consider long-term effect of the current action
- Execute current action



Bai, Haoyu, et al. "Intention-aware online POMDP planning for autonomous driving in a crowd." Robotics and Automation (ICRA), 2015 IEEE International Conference on. IEEE, 2015.

Demo video

Result

Demo video

Pros and cons

Pros and cons

Pros

- Seems somewhat success.
- Tries to anticipate future.
- There is room for development. (Deep learning)

Cons

- Sub-goal concept is somewhat restricted.
- The pedestrians should behave normally.
- Decision quality trade off with computation time.

Q&A

