## CS686: Configuration Space II

## Sung-Eui Yoon (윤성의)

Course URL:
http://sglab.kaist.ac.kr/~sungeui/MPA

## KAIST

## Coming Schedule and Homework

- Browse recent papers (2014 ~ 2017)
- You need to present two papers at the class
- Declare your chosen 2 papers at the KLMS by Apr-10 (Mon.)
- First come, first served
- Paper title, conf. name, publication year
- Decide our talk schedule on Apr.-11 (Tue.)
- Student presentations will start right after the mid-term exam
- 3 talks per each class; 15 min for each talk


## Class Objectives

- Configuration space
- Definitions and examples
- Obstacles
- Paths
- Metrics

Obstacles in the Configuration Space

- A configuration $q$ is collision-free, or free, if a moving object placed at $q$ does not intersect any obstacles in the workspace
- The free space $F$ is the set of free configurations
- A configuration space obstacle (C-obstacle) is the set of configurations where the moving object collides with workspace obstacles


## Disc in 2-D Workspace

workspace

configuration
space

## Polygonal Robot Translating in 2-D Workspace



## Polygonal Robot Translating \& Rotating in 2-D Workspace



## Polygonal Robot Translating \& Rotating in 2-D Workspace



## C-Obstacle Construction

- Input:
- Polygonal moving object translating in 2-D workspace
- Polygonal obstacles
- Output:
- Configuration space obstacles represented as polygons


## Minkowski Sum

- The Minkowski sum of two sets $P$ and $Q$, denoted by $P \oplus Q$, is defined as

$$
P \oplus Q=\{p+q \mid p \in P, q \in Q\}
$$



- Similarly, the Minkowski difference is defined as

$$
\begin{aligned}
P \ominus Q & =\{p-q \mid p \in P, q \in Q\} \\
& =P \oplus-Q
\end{aligned}
$$

## Minkowski Sum of Convex Polygons

- The Minkowski sum of two convex polygons $P$ and $Q$ of $m$ and $n$ vertices respectively is a convex polygon $P \oplus Q$ of $m$ + n vertices.
- The vertices of $P \oplus Q$ are the "sums" of vertices of $P$ and $Q$.


## Observation

- If $P$ is an obstacle in the workspace and $M$ is a moving object. Then the C -space obstacle corresponding to P is $\boldsymbol{P} \ominus \boldsymbol{M}$.



## Computing C-obstacles



## Computational efficiency

- Running time $O(n+m)$
- Space O(n+m)
- Non-convex obstacles
- Decompose into convex polygons (e.g., triangles or trapezoids), compute the Minkowski sums, and take the union
- Complexity of Minkowksi sum $O\left(n^{2} m^{2}\right)$
- 3-D workspace
- Convex case: O(nm)
- Non-convex case: $O\left(n^{3} m^{3}\right)$


## Worst case example

## - $O\left(n^{2} m^{2}\right)$ complexity

2D example
Agarwal et al. 02



444 tris


1,134 tris


## Main Message

- Computing the free or obstacle space in an accurate way is an expensive and nontrivial problem
- Lead to many sampling based methods
- Locally utilize many geometric concepts developed for designing complete planners


Laser Ranging


LIDAR


LIDAR map

16-735. Howiecthbsgef.ith slides from G.D. Hager and $Z$. Dodds ronno findor

KAIST

## Velodyne



## Kinect and Xtion



- Kinect resolution
- $640 \times 480$ pixels @ 30 Hz (RGB camera)
- $640 \times 480$ pixels @ 30 Hz (I R depth-finding camera)


## Whole Picture

- Sensor
- Point clouds as obstacle map
- Control
- Compute force controls given a computed path
- SLAM (Simultaneous Localization and Mapping)
- Path/ motion planner



## Configuration space

- Definitions and examples
- Obstacles
- Paths
- Metrics


## Paths in the configuration space



- A path in $C$ is a continuous curve connecting two configurations $q$ and $q^{\prime}$ :

$$
\tau: s \in[0,1] \rightarrow \tau(s) \in C
$$

such that $\boldsymbol{\tau}(0)=\boldsymbol{q}$ and $\boldsymbol{\tau}(1)=\boldsymbol{q}$.

## Constraints on paths

- A trajectory is a path parameterized by time:

$$
\tau: t \in[0, T] \rightarrow \tau(t) \in C
$$

- Constraints
- Finite length
- Bounded curvature
- Smoothness
- Minimum length
- Minimum time
- Minimum energy
- ...


## Free Space Topology

- A free path lies entirely in the free space $F$
- The moving object and the obstacles are modeled as closed subsets, meaning that they contain their boundaries.
- One can show that the C-obstacles are closed subsets of the configuration space $C$ as well
- Consequently, the free space $F$ is an open subset of $C$


## Semi-Free Space

- A configuration $q$ is semi-free if the moving object placed $q$ touches the boundary, but not the interior of obstacles.
- Free, or
- In contact
- The semi-free space is a closed subset of $C$


## Example



## Example



## Homotopic Paths

- Two paths $\tau$ and $\tau^{\prime}$ (that map from U to V ) with the same endpoints are homotopic if one can be continuously deformed into the other:

$$
h: U \times[0,1] \rightarrow V
$$

with $h(s, 0)=\tau(s)$ and $h(s, 1)=\tau^{\prime}(s)$.

- A homotopic class of paths contains all paths that are homotopic to one another



## Connectedness of C-Space

- C is connected if every two configurations can be connected by a path.
- C is simply-connected if any two paths connecting the same endpoints are homotopic.
Examples: $\mathbf{R}^{\mathbf{2}}$ or $\mathrm{R}^{\mathbf{3}}$
- Otherwise $C$ is multiply-connected.


## Configuration space

- Definitions and examples
- Obstacles
- Paths
- Metrics


## Metric in Configuration Space

- A metric or distance function $d$ in a configuration space $C$ is a function such that $d:\left(q, q^{\prime}\right) \in C^{2} \rightarrow d\left(q, q^{\prime}\right) \geq 0$ such that
- $d\left(q, q^{\prime}\right)=0$ if and only if $q=q^{\prime}$,
- $d\left(q, q^{\prime}\right)=d\left(q^{\prime}, q\right)$,
- $d\left(q, q^{\prime}\right) \leq d\left(q, q^{\prime \prime}\right)+d\left(q^{\prime \prime}, q^{\prime}\right)$.


## Example

- Robot $A$ and a point $x$ on $A$
- $x(q)$ : position of $x$ in the workspace when $A$ is at configuration $q$
- A distance $d$ in $C$ is defined by

$$
d\left(q, q^{\prime}\right)=\max _{x \in A}\left\|x(q)-x\left(q^{\prime}\right)\right\|,
$$

where $||x-y||$ denotes the Euclidean distance between points $x$ and $y$ in the workspace.


## $\mathrm{L}_{\mathrm{p}}$ Metrics

$$
d\left(x, x^{\prime}\right)=\left(\sum_{i=1}^{n}\left|x_{i}-x_{i}^{\prime}\right|^{p}\right)^{1 / p}
$$

- $\mathbf{L}_{\mathbf{2}}$ : Euclidean metric
- $L_{1}$ : Manhattan metric
- $L_{\infty}: \operatorname{Max}\left(\left|x_{i}-x_{i}^{\prime}\right|\right)$


## Examples in $\mathbf{R}^{\mathbf{2}} \mathbf{x} \mathbf{S}^{\mathbf{1}}$

- Consider $\mathbf{R}^{2} \mathbf{x} \mathbf{S}^{1}$
- $q=(x, y, \theta), q^{\prime}=\left(x^{\prime}, y^{\prime}, \theta^{\prime}\right)$ with $\theta, \theta^{\prime} \in[0,2 \pi)$
- $\alpha=\min \left\{\left|\theta-\theta^{\prime}\right|, 2 \pi-\left|\theta-\theta^{\prime}\right|\right\}$
- $\left.d\left(q, q^{\prime}\right)=\operatorname{sqrt}\left(\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\alpha^{2}\right)\right)$



## Class Objectives were:

- Configuration space
- Definitions and examples
- Obstacles
- Paths
- Metrics


## Summary



## Next Time....

- Collision detection and distance computation


## Homework

- Submit summaries of 2 I CRA/ I ROS/ RSS/ WAFR/ TRO/ IJ RR papers
- Go over the next lecture slides
- Come up with one question on what we have discussed today and submit at the end of the class

