CS686: Configuration Space II

Sung-Eui Yoon (윤성의)

Course URL: http://sglab.kaist.ac.kr/~sungeui/MPA

Coming Schedule and Homework

- Browse recent papers (2014 ~ 2017)
 - You need to present two papers at the class
- Declare your chosen 2 papers at the KLMS by Apr-10 (Mon.)
 - First come, first served
 - Paper title, conf. name, publication year
- Decide our talk schedule on Apr.-11 (Tue.)
- Student presentations will start right after the mid-term exam
 - 3 talks per each class; 15 min for each talk

Class Objectives

- Configuration space
 - Definitions and examples
 - Obstacles
 - Paths
 - Metrics

Obstacles in the Configuration Space

- A configuration q is collision-free, or free, if a moving object placed at q does not intersect any obstacles in the workspace
- The free space F is the set of free configurations
- A configuration space obstacle (C-obstacle) is the set of configurations where the moving object collides with workspace obstacles

Disc in 2-D Workspace

workspace

Polygonal Robot Translating in 2-D Workspace

Polygonal Robot Translating & Rotating in 2-D Workspace

Polygonal Robot Translating & Rotating in 2-D Workspace

C-Obstacle Construction

• Input:

- Polygonal moving object translating in 2-D workspace
- Polygonal obstacles

Output:

Configuration space obstacles represented as polygons

Minkowski Sum

• The Minkowski sum of two sets P and Q, denoted by $P \oplus Q$, is defined as

 $P \ni Q = \{p+q \mid p \in P, q \in Q\}$

 Similarly, the Minkowski difference is defined as

$$P\ominus Q = \{ p-q \mid p\in P, q\in Q \}$$

= $P\oplus -Q$

Minkowski Sum of Convex Polygons

- The Minkowski sum of two convex polygons P and Q of m and n vertices respectively is a convex polygon $P \oplus Q$ of m + n vertices.
 - The vertices of $P \oplus Q$ are the "sums" of vertices of P and Q.

Observation

• If P is an obstacle in the workspace and M is a moving object. Then the C-space obstacle corresponding to P is $P \ominus M$.

Computing C-obstacles

Computational efficiency

- Running time O(n+m)
- Space O(n+m)
- Non-convex obstacles
 - Decompose into convex polygons (e.g., triangles or trapezoids), compute the Minkowski sums, and take the union
 - Complexity of Minkowksi sum $O(n^2m^2)$
- 3-D workspace
 - Convex case: O(nm)
 - Non-convex case: $O(n^3m^3)$

Worst case example

• $O(n^2m^2)$ complexity

2D example Agarwal et al. 02

444 tris 1,134 tris

Main Message

- Computing the free or obstacle space in an accurate way is an expensive and nontrivial problem
- Lead to many sampling based methods
 - Locally utilize many geometric concepts developed for designing complete planners

Sensors!

Robots' link to the external world...

Sensors, sensors, sensors! and tracking what is sensed: world models

CMU cam with on-board processing

odometry...

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

Laser Ranging

LIDAR

Sick Laser

LIDAR map

16-735, Howie Charle With slides from G.D. Hager and Z. Dodds

Velodyne

Kinect and Xtion

- Kinect resolution
 - 640×480 pixels @ 30 Hz (RGB camera)
 - 640×480 pixels @ 30 Hz (IR depth-finding camera)

Whole Picture

- Sensor
 - Point clouds as obstacle map
- Control
 - Compute force controls given a computed path
- SLAM (Simultaneous Localization and Mapping)
- Path/motion planner

Configuration space

- Definitions and examples
- Obstacles
- Paths
- Metrics

Paths in the configuration space

 A path in C is a continuous curve connecting two configurations q and q':

$$\tau: s \in [0,1] \to \tau(s) \in C$$

such that $\tau(0) = q$ and $\tau(1) = q'$.

Constraints on paths

A trajectory is a path parameterized by time:

$$\tau: t \in [0,T] \to \tau(t) \in C$$

- Constraints
 - Finite length
 - Bounded curvature
 - Smoothness
 - Minimum length
 - Minimum time
 - Minimum energy
 - ...

Free Space Topology

- A free path lies entirely in the free space F
 - The moving object and the obstacles are modeled as closed subsets, meaning that they contain their boundaries.
 - One can show that the C-obstacles are closed subsets of the configuration space C as well
 - Consequently, the free space F is an open subset of C

Semi-Free Space

- A configuration q is semi-free if the moving object placed q touches the boundary, but not the interior of obstacles.
 - Free, or
 - In contact
- The semi-free space is a closed subset of C

Example

Example

Homotopic Paths

• Two paths τ and τ ' (that map from U to V) with the same endpoints are homotopic if one can be continuously deformed into the other:

$$h: U \times [0,1] \rightarrow V$$

with $h(s,0) = \tau(s)$ and $h(s,1) = \tau'(s)$.

 A homotopic class of paths contains all paths that are homotopic to one another

Connectedness of C-Space

- C is connected if every two configurations can be connected by a path.
- C is simply-connected if any two paths connecting the same endpoints are homotopic.

Examples: R² or R³

Otherwise C is multiply-connected.

Configuration space

- Definitions and examples
- Obstacles
- Paths
- Metrics

Metric in Configuration Space

 A metric or distance function d in a configuration space C is a function

such that
$$d:(q,q')\in C^2\to d(q,q')\geq 0$$

- d(q, q') = 0 if and only if q = q',
- d(q, q') = d(q', q),
- $d(q,q') \le d(q,q'') + d(q'',q')$.

Example

- Robot A and a point x on A
- x(q): position of x in the workspace when A is at configuration q
- A distance d in C is defined by $d(q, q') = \max_{x \in A} ||x(q) x(q')||,$

where ||x - y|| denotes the Euclidean distance between points x and y in the workspace.

L_p Metrics

$$d(x, x') = \left(\sum_{i=1}^{n} |x_i - x_i'|^p\right)^{\frac{1}{p}}$$

- L₂: Euclidean metric
- L₁: Manhattan metric
- L_∞: Max (| x_i x_i |)

Examples in R² x S¹

- Consider R² x S¹
 - $q = (x, y, \theta), q' = (x', y', \theta')$ with $\theta, \theta' \in [0, 2\pi)$
 - $\alpha = \min \{ |\theta \theta'|, 2\pi |\theta \theta'| \}$

• $d(q, q') = \operatorname{sqrt}((x-x')^2 + (y-y')^2 + \alpha^2)$

Class Objectives were:

- Configuration space
 - Definitions and examples
 - Obstacles
 - Paths
 - Metrics

Summary

Next Time....

 Collision detection and distance computation

Homework

- Submit summaries of 2 ICRA/IROS/RSS/WAFR/TRO/IJRR papers
- Go over the next lecture slides
- Come up with one question on what we have discussed today and submit at the end of the class

