CS680: Monte Carlo Ray Tracing

Sung-Eui Yoon (윤성의)

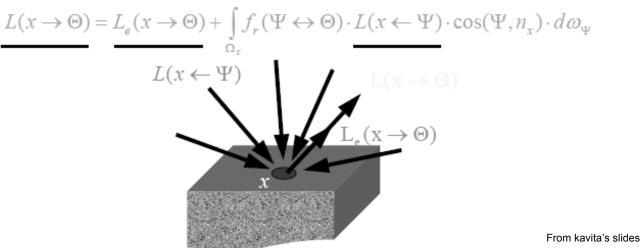
Course URL: http://jupiter.kaist.ac.kr/~sungeui/SGA/

Previous Time

Monte Carlo integration

Why Monte Carlo?

Radiace is hard to evaluate



Sample many paths

- Integrate over all incoming directions
- Analytical integration is difficult
 - Need numerical techniques

Rendering Equation

$L(x \to \Theta) = L_e(x \to \Theta) + \int_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos(\Psi, n_x) \cdot d\omega_{\Psi}$ function to integrate over all incoming directions over the hemisphere around x

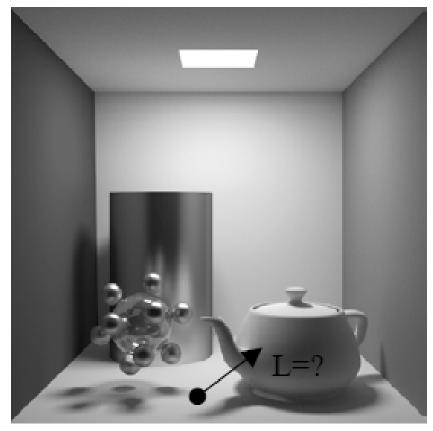
Value we want $= L_e + \int_{\Omega_x} \Omega_x$

 $\cdot f_r \cdot \cos$

$$L(x \rightarrow \Theta) = ?$$

Check for $L_e(x \rightarrow \Theta)$

Now add $L_r(x \rightarrow \Theta) =$



 $\int_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos(\Psi, n_x) \cdot d\omega_{\Psi}$

• Use Monte Carlo

• Generate random directions on hemisphere Ω_{χ} using pdf p(Ψ)

$$L(x \to \Theta) = \int_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos(\Psi, n_x) \cdot d\omega_{\Psi}$$

$$\left\langle L(x \to \Theta) \right\rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_r(\Psi_i \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi_i) \cdot \cos(\Psi_i, n_x)}{p(\Psi_i)}$$

Generate random directions Ψ_i

$$\langle L \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_r(\ldots) \cdot L(x \leftarrow \Psi_i) \cdot \cos(\ldots)}{p(\Psi_i)}$$

- evaluate brdf
- evaluate cosine term
- evaluate L(x←Ψ_i)

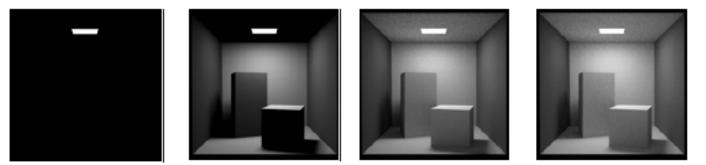
- evaluate L(x←Ψ_i)?
- Radiance is invariant along straight paths
- vp(x, Ψ_i) = first visible point

• $L(x \leftarrow \Psi_i) = L(vp(x, \Psi_i) \rightarrow \Psi_i)$

How to compute? Recursion ...

- Recursion
- Each additional bounce adds one more level of indirect light
- Handles ALL light transport
- "Stochastic Ray Tracing"

When to end recursion?



From kavita's slides

- Contributions of further light bounces become less significant
 - Max recursion
 - Some threshold for radiance value

If we just ignore them, estimators will be biased

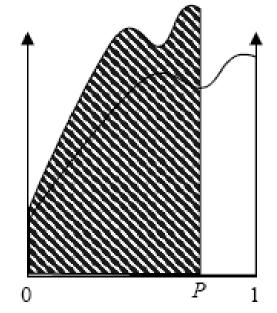
Russian Roulette

Integral

$$I = \int_{0}^{1} f(x) dx = \int_{0}^{1} \frac{f(x)}{P} P dx = \int_{0}^{P} \frac{f(y/P)}{P} dy$$

Estimator

$$\left\langle I_{roulette} \right\rangle = \begin{cases} \frac{f(x_i)}{P} & \text{if } x_i \leq P, \\ 0 & \text{if } x_i > P. \end{cases}$$



Variance $\sigma_{roulette} > \sigma$

Russian Roulette

• Pick absorption probability, α = 1-P

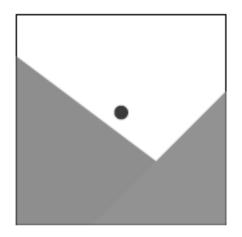
- Recursion is terminated
- 1- a is commonly to be equal to the reflectance of the material of the surface
 - Darker surface absorbs more paths

Algorithm so far

- Shoot primary rays through each pixel
- Shoot indirect rays, sampled over hemisphere
- Terminate recursion using Russian Roulette

Pixel Anti-Aliasing

- Compute radiance only at the center of pixel
 - Produce jaggies
- Simple box filter
 - The averaging method



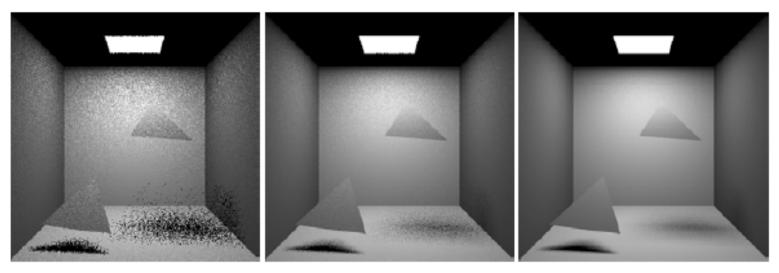
We want to evaluate using MC

Stochastic Ray Tracing

Parameters

- Num. of starting ray per pixel
- Num. of random rays for each surface point (branching factor)
- Path tracing
 - Branching factor = 1

Path Tracing



1 ray / pixel

10 rays / pixel

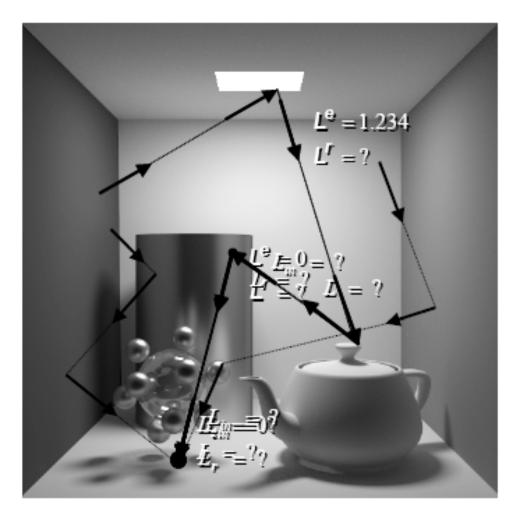
100 rays / pixel From kavita's slides

 Pixel sampling + light source sampling folded into one method

Algorithm so far

- Shoot primary rays through each pixel
- Shoot indirect rays, sampled over hemisphere
 - Path tracing shoots only 1 indirect ray
- Terminate recursion using Russian Roulette

Algorithm



Performance

- Want better quality with smaller # of samples
 - Fewer samples/better performance
 - Stratified sampling
 - Quasi Monte Carlo: well-distributed samples
- Faster convergence
 - Importance sampling

Stratified Sampling

Samples could be arbitrarily close

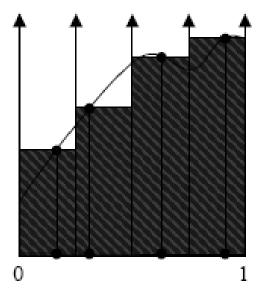
Split integral in subparts

$$I = \int_{X_1} f(x)dx + \ldots + \int_{X_N} f(x)dx$$

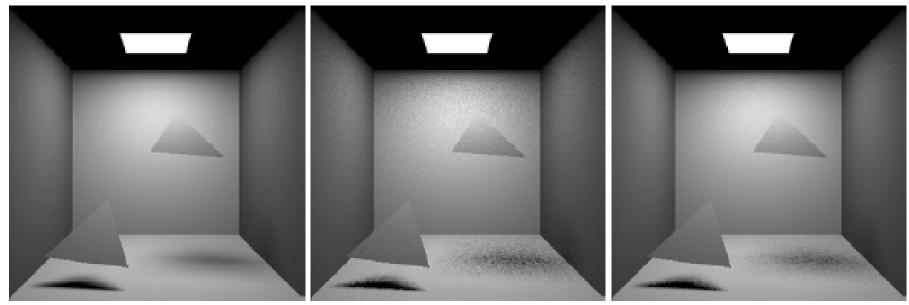
Estimator

$$\bar{I}_{strat} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(\bar{x}_i)}{p(\bar{x}_i)}$$

• Variance: $\sigma_{strat} \leq \sigma_{sec}$

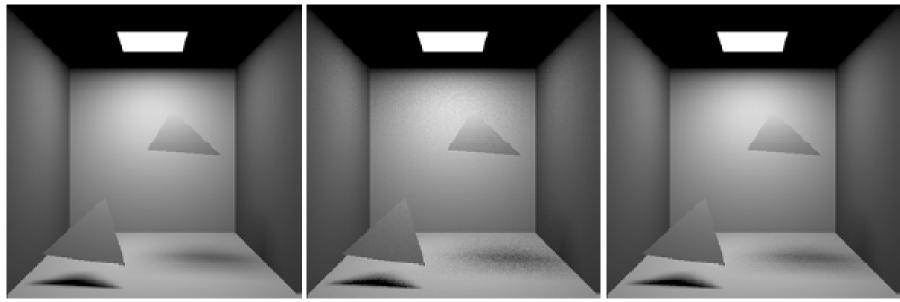


Stratified Sampling



9 shadow rays not stratified 9 shadow rays stratified

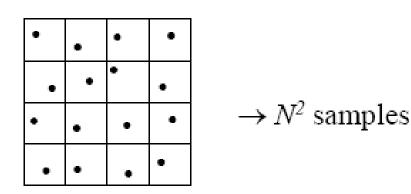
Stratified Sampling



36 shadow rays not stratified

36 shadow rays stratified

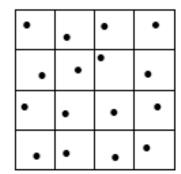
High Dimensions

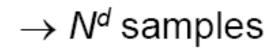


- Problem for higher dimensions
- Sample points can still be arbitrarily close to each other

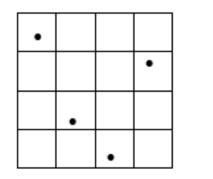
Higher Dimensions

Stratified grid sampling



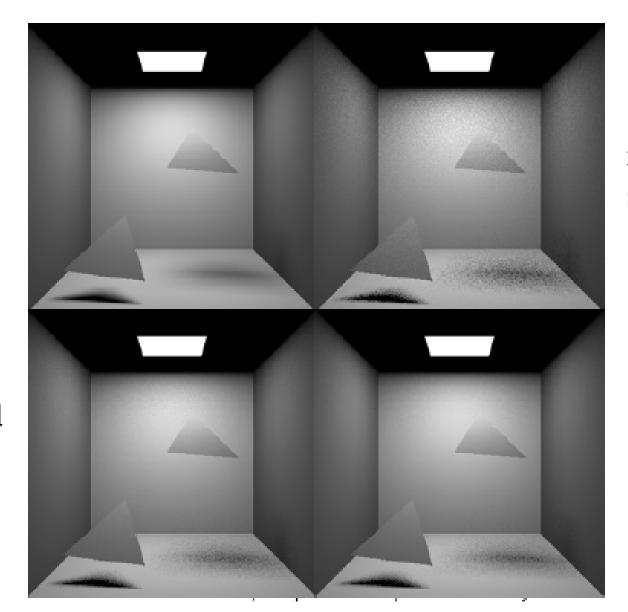


N-rooks sampling



$\rightarrow N$ samples

N-Rooks Sampling - 9 rays

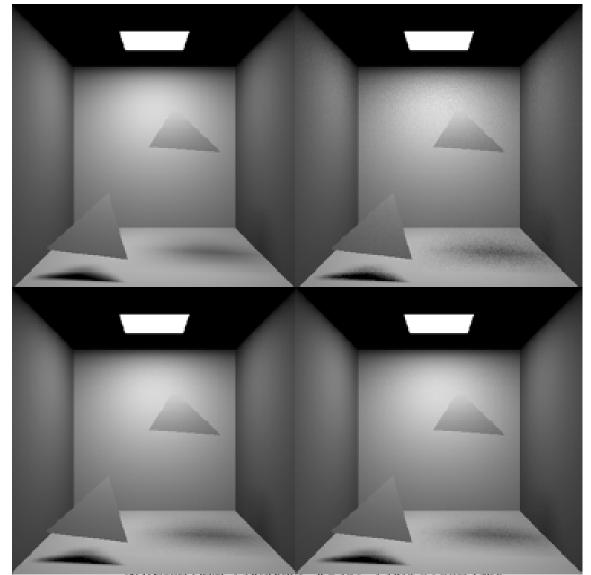


not stratified

N-Rooks

stratified

N-Rooks Sampling - 36 rays



not stratified

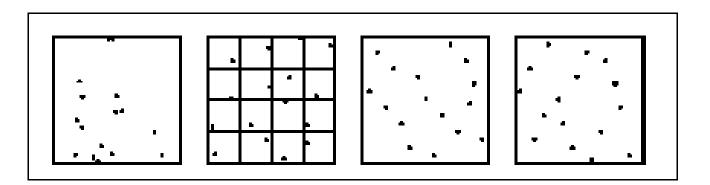
N-Rooks

stratified

e revite bala, computér ocience, comer enverany

Quasi Monte Carlo

- Eliminates randomness to find welldistributed samples
- Samples are determinisitic but "appear" random



Quasi-Monte Carlo (QMC)

- Notions of variance, expected value don't apply
- Introduce the notion of discrepancy
 - Discrepancy mimics variance
 - E.g., subset of unit interval [0,x]
 - Of N samples, n are in subset
 - Discrepancy: |x-n/N|
 - Mainly: "it looks random"

Example: van der Corput Sequence

One of simplest low-discrepancy sequences

- Radical inverse function, $\Phi_b(n)$ • Given $n = \sum_{i=1}^{\infty} d_i b^{i-1}$,
 - $\Phi_{b}(n) = 0.d_{1}d_{2}d_{3} \dots d_{n}$
 - E.g., $\Phi_2(i)$: 111010₂ \rightarrow 0.010111
- van der Corput sequence, x_i=Φ₂(i)

Example: van der Corput Sequence

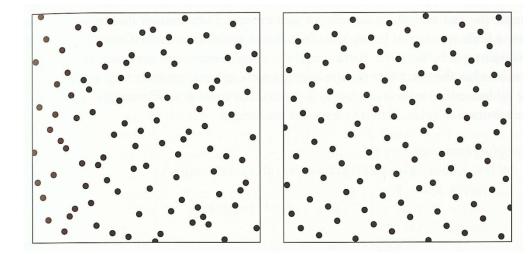
One of simplest low-discrepancy sequences x_i=Φ₂(i)

i	Base 2	Φ ₂ (i)
1	1	.1 = 1/2
2	10	.01 = 1/4
3	11	.11 = 3/4
4	100	.001 = 1/8
5	101	.101 = 5/8
•	•	
•	•	•

Halton and Hammersley

Halton

- x_i=(Φ₂(i), Φ₃(i), Φ₅(i), ..., Φ_{prime}(i))
- Hammersley
 - $x_i = (1/N, \Phi_2(i), \Phi_3(i), \Phi_5(i), ..., \Phi_{prime}(i))$
 - Assume we know the number of samples, N
 - Has slightly lower discrepancy



Hammersley

Halton

Why Use Quasi Monte Carlo?

- No randomness
- Much better than pure Monte Carlo method
- Converge as fast as stratified sampling

Performance and Error

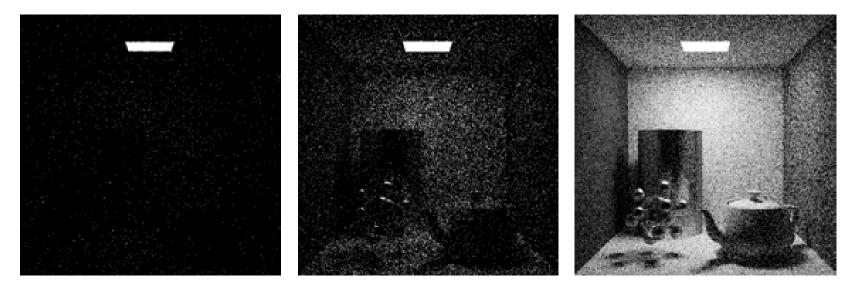
- Want better quality with smaller number of samples
 - Fewer samples \rightarrow better performance
 - Stratified sampling
 - Quasi Monte Carlo: well-distributed samples

Faster convergence

Importance sampling: next-event estimation

Path Tracing

Sample hemisphere

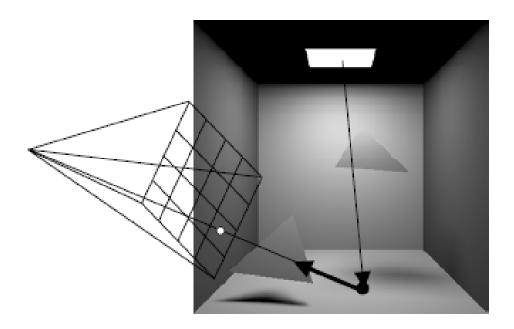


1 sample/pixel 16 samples/pixel 256 samples/pixel

 Importance Sampling: compute direct illumination separately!

Direct Illumination

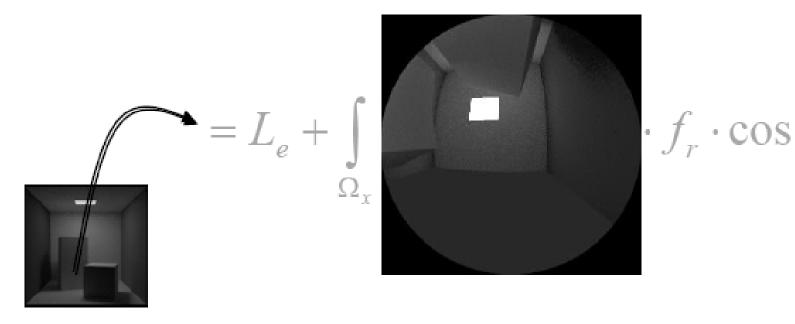
 Paths of length 1 only, between receiver and light source



Importance Sampling

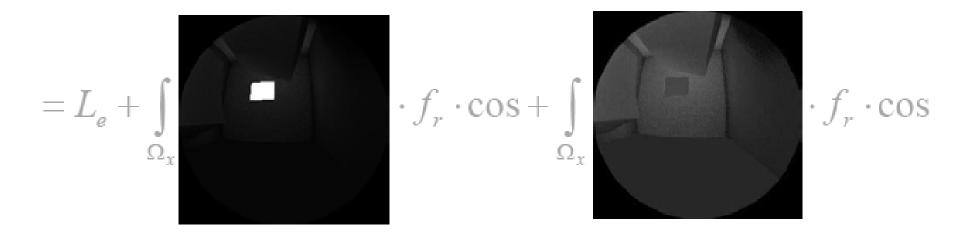
$$L(x \to \Theta) = L_e(x \to \Theta) + \int_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos(\Psi, n_x) \cdot d\omega_{\Psi}$$

Radiance from light sources + radiance from other surfaces



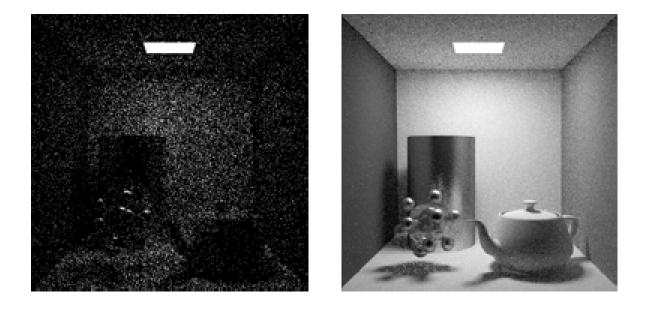
Importance Sampling

 $L(x \rightarrow \Theta) = L_o + L_{direct} + L_{indirect}$



 So ... sample direct and indirect with separate MC integration

Comparison



From kavita's slides

• With and without considering direct illumination

• 16 samples / pixel

Rays per pixel

1 sample/ pixel

4 samples/ pixel

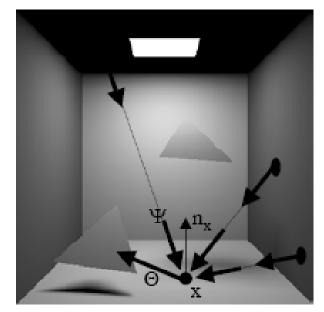
256 samples/ pixel

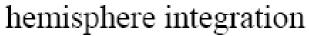
16 samples/ pixel

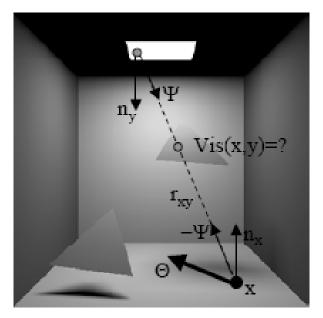
Direct Illumination

$$L(x \to \Theta) = \int_{A_{\text{source}}} f_r(x, -\Psi \leftrightarrow \Theta) \cdot L(y \to \Psi) \cdot G(x, y) \cdot dA_y$$

$$G(x, y) = \frac{\cos(n_x, \Theta)\cos(n_y, \Psi)Vis(x, y)}{r_{xy}^2}$$



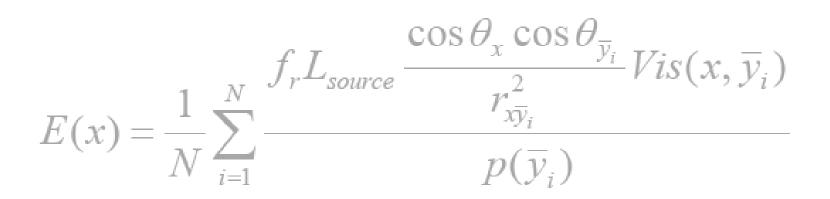




area integration

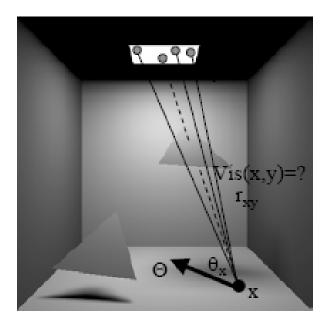
Estimator for direct lighting

- Pick a point on the light's surface with pdf
 p(y)
- For N samples, direct light at point x is:



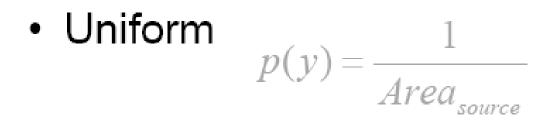
Generating direct paths

- Pick surface points y_i on light source
- Evaluate direct illumination integral



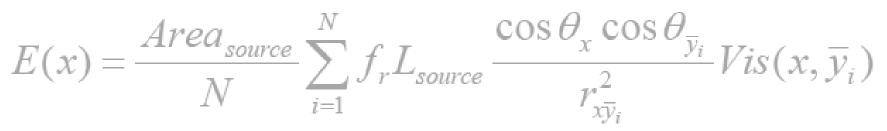
$$\left\langle L(x \to \Theta) \right\rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_r(\dots)L(\dots)G(x, y_i)}{p(y_i)}$$

PDF for sampling light

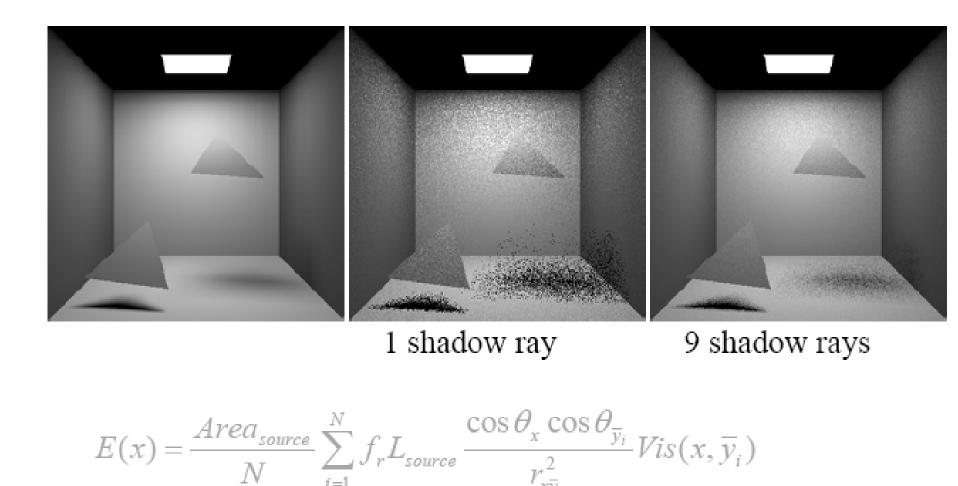


Pick a point uniformly over light's area
 – Can stratify samples

Estimator:

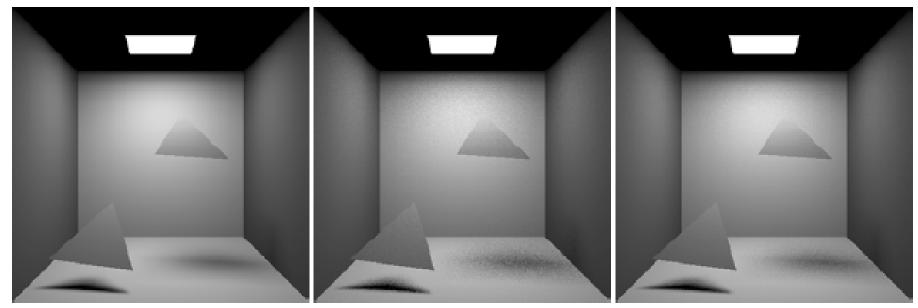


More points ...



© Kavita Bala, Computer Science, Cornell University

Even more points ...



36 shadow rays

100 shadow rays

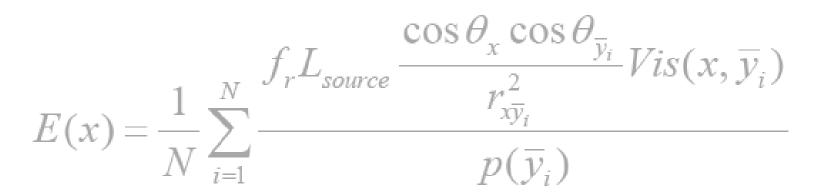
$$E(x) = \frac{Area_{source}}{N} \sum_{i=1}^{N} f_r L_{source} \frac{\cos \theta_x \cos \theta_{\overline{y}_i}}{r_{x\overline{y}_i}^2} Vis(x, \overline{y}_i)$$

Different pdfs

Uniform

 $p(y) = \frac{1}{Area}$

- Solid angle sampling
 - Removes cosine and distance from integrand
 - Better when significant foreshortening



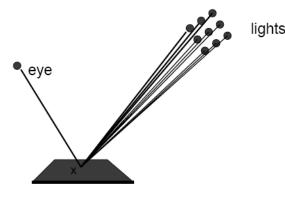
Parameters

- How to distribute paths within light source?
 - Uniform
 - Solid angle
 - What about light distribution?
- How many paths ("shadow-rays")?
 Total?
 - Per light source? (~intensity, importance, ...)

Scenes with many lights

• Many lights in scenes: M lights

How to handle many lights?



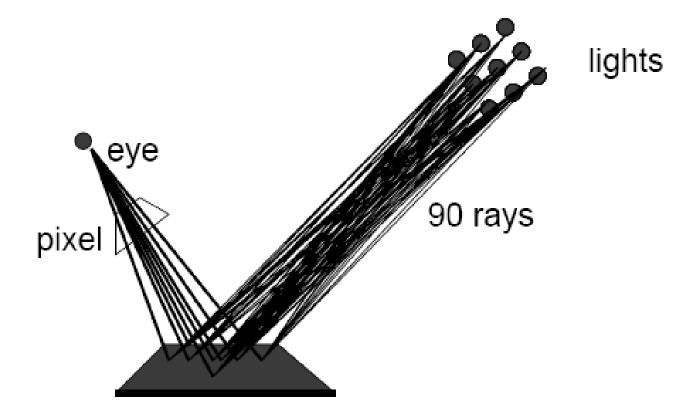
 Formulation 1: M integrals, one per light

 Same solution technique as earlier for each light

$$L(x \to \Theta) = \sum_{i=1}^{M} \int_{A_{source}} f_r(x, -\Psi \leftrightarrow \Theta) \cdot L_{source}(y \to -\Psi) \cdot G(x, y) \cdot dA_y$$

Antialiasing: pixel

Anti-aliasing: k M N



Formulation over all lights

- When M is large, each direct lighting sample is very expensive
- We would like to importance sample the lights
- Instead of M integrals $L(x \to \Theta) = \sum_{i=1}^{M} \int_{A_{source}} f_r(x, -\Psi \leftrightarrow \Theta) \cdot L_{source}(y \to -\Psi) \cdot G(x, y) \cdot dA_y$
- Formulation over 1 integration domain $L(x \to \Theta) = \int f_r(x, -\Psi \leftrightarrow \Theta) \cdot L_{source}(y \to -\Psi) \cdot G(x, y) \cdot dA_y$

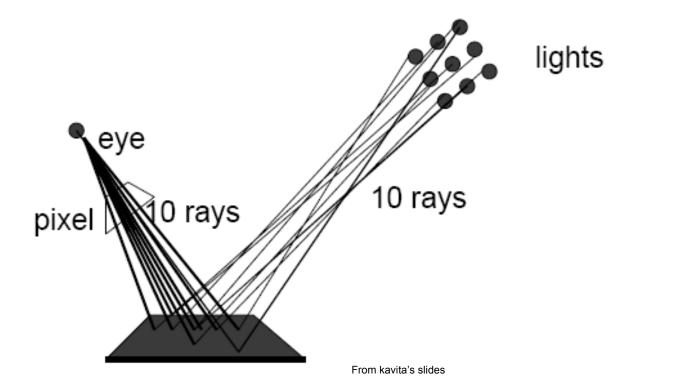
Aall lights

Why?

- Do not need a minimum of M rays/sample
- Can use only one ray/sample

- Still need N samples, but 1 ray/sample
- Ray is distributed over the whole integration domain
 - Can importance sample the lights

Anti-aliasing



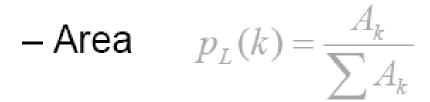
How to sample the lights?

- A discrete pdf p_L(k_i) picks the light k_i
- A surface point is then picked with pdf p(y_i|k_i)

• Estimator with N samples: $E(x) = \frac{1}{N} \sum_{i=1}^{N} \frac{f_r L_{source} G(x, \overline{y}_i)}{p_L(k_i) p(y_i | k_i)}$

Strategies for picking light

– Uniform $p_L(k) = \frac{1}{M}$



- Power $p_L(k) = \frac{P_k}{\sum P_k}$

Do not take visibility into account!

Research on Many Lights

• Ward 91

- Sort lights based on their maximum contribution
- Pick bright lights based on a threshold
- Do not consider visibility
- Many other papers
- Look at our reading list

Direct paths

- Different path generators produce different estimators and different error characteristics
- Direct illumination general algorithm:

```
compute_radiance (point, direction)
    est_rad = 0;
    for (i=0; i<n; i++)
        p = generate_path;
        est_rad += energy_transfer(p) / probability(p);
    est_rad = est_rad / n;
    return(est_rad);</pre>
```

Stochastic Ray Tracing

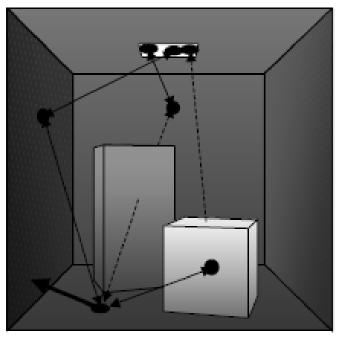
- Sample area of light source for direct term
- Sample hemisphere with random rays for indirect term
- Optimizations:
 - Stratified sampling
 - Importance sampling
 - Combine multiple probability density functions into a single PDF

Indirect Illumination

- Paths of length > 1
- Many different path generators possible
- Efficiency depends on:
 - BRDFs along the path
 - Visibility function

Indirect paths - surface sampling

- Simple generator (path length = 2):
 - select point on light source
 - select random point on surfaces



– per path:

2 visibility checks

Indirect paths - surface sampling

Indirect illumination (path length 2):

$$y \rightarrow z \rightarrow x$$

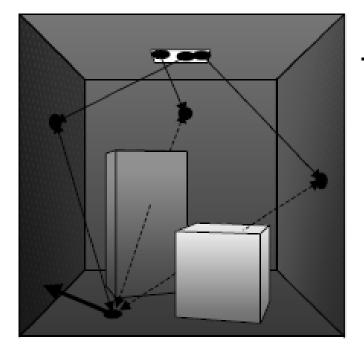
 $L(x \to \Theta) = \int_{A_{rowrev}} \int_{A} L(y \to \Psi_1) f_r(z, -\Psi_1 \leftrightarrow \Psi_2) G(z, y) f_r(x, -\Psi_2 \leftrightarrow \Theta) G(z, x) dA_z dA_y$

 $\left\langle L(x \to \Theta) \right\rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{L(y_i \to \Psi_{1i}) f_r(z_i, -\Psi_{1i} \leftrightarrow \Psi_{2i}) G(z_i, y_i) f_r(x, -\Psi_{2i} \leftrightarrow \Theta) G(z_i, x)}{p_y(y_i) p_z(z_i)}$

2 visibility values cause noise
 – which might be 0

Indirect paths - source shooting

- Shoot ray from light source, find hit location
- Connect hit point to receiver

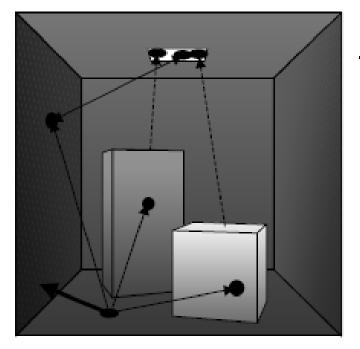


per path:

- 1 ray intersection
- 1 visibility check

Indirect paths - receiver gathering

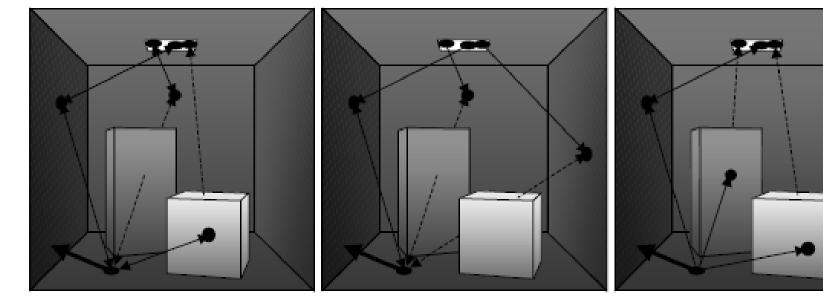
- Shoot ray from receiver point, find hit location
- Connect hit point to random point on light source



- per path:

- 1 ray intersection
- 1 visibility check

Indirect paths



Surface sampling

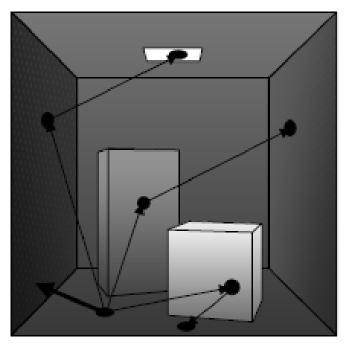
- 2 visibility terms; can be 0

- Source shooting
- 1 visibility term
- 1 ray intersection

- Receiver gathering
- 1 visibility term
- 1 ray intersection

More variants ...

- Shoot ray from receiver point, find hit location
- Shoot ray from hit point, check if on light source



- per path:

- 2 ray intersections
- L_e might be zero

Indirect paths

- Same principles apply to paths of length > 2
 - generate multiple surface points
 - generate multiple bounces from light sources and connect to receiver
 - generate multiple bounces from receiver and connect to light sources

 Estimator and noise characteristics change with path generator

Stochastic Ray Tracing

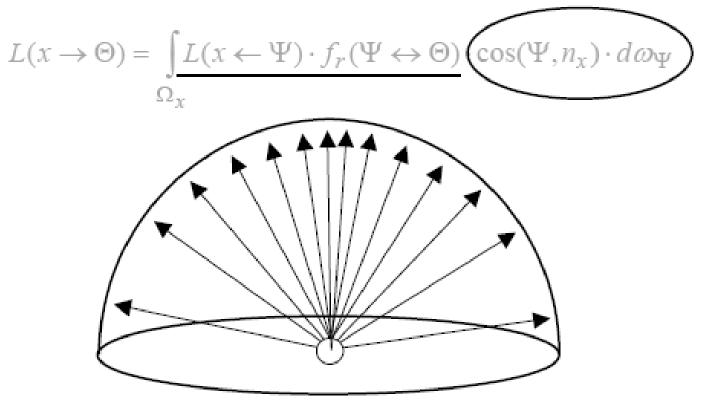
- Sample area of light source for direct term
- Sample hemisphere with random rays for indirect term
- Optimizations:
 - Stratified sampling
 - Importance sampling
 - Combine multiple probability density functions into a single PDF

Uniform sampling over the hemisphere



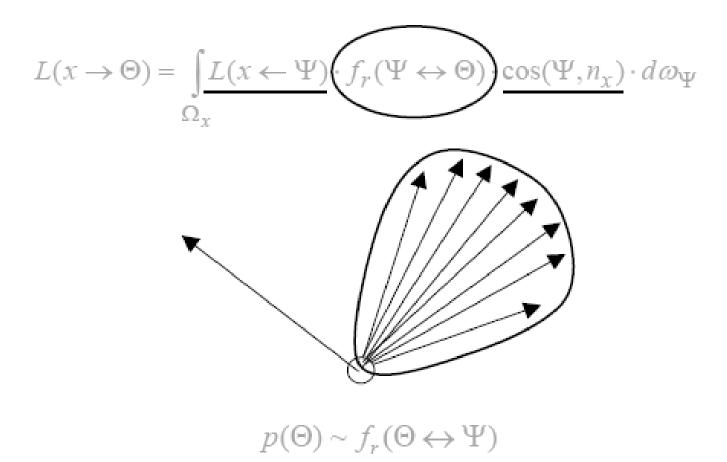
 $p(\Theta) = 1/(2\pi)$

Sampling according to the cosine factor

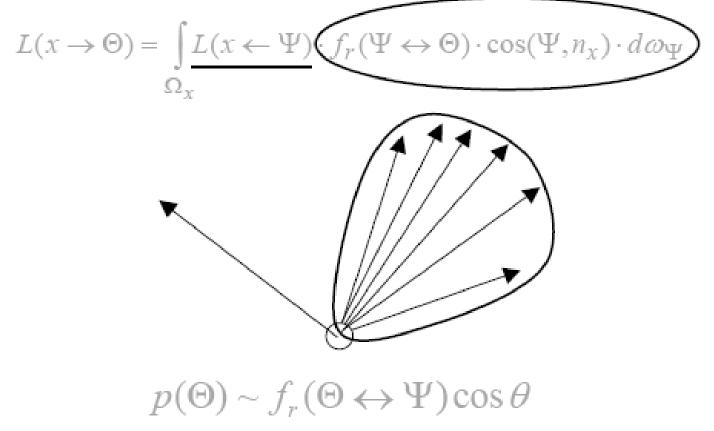


 $p(\Theta) = \cos \theta / \pi$

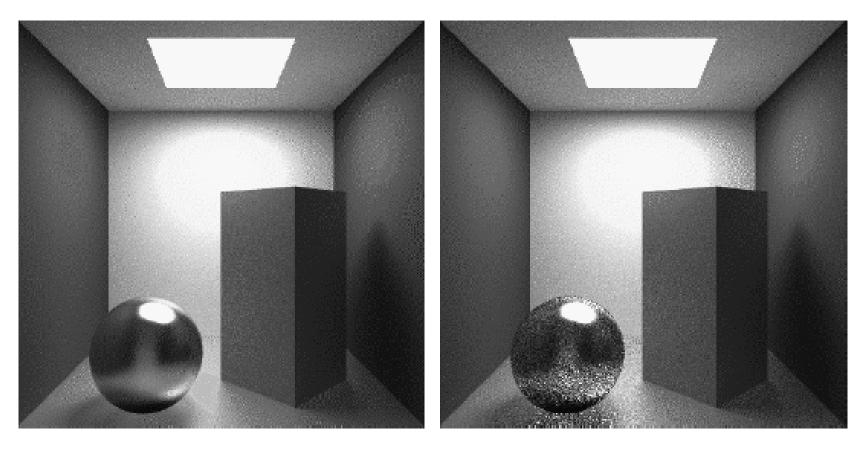
Sampling according to the BRDF



 Sampling according to the BRDF times the cosine



Comparison



With importance sampling Without importance sampling (brdf on sphere)

General GI Algorithm

- Design path generators
- Path generators determine efficiency of GI algorithm
- Black boxes
 - Evaluate BRDF, ray intersection, visibility evaluations, etc

Other Rendering Techniques

Bidirectional path tracing

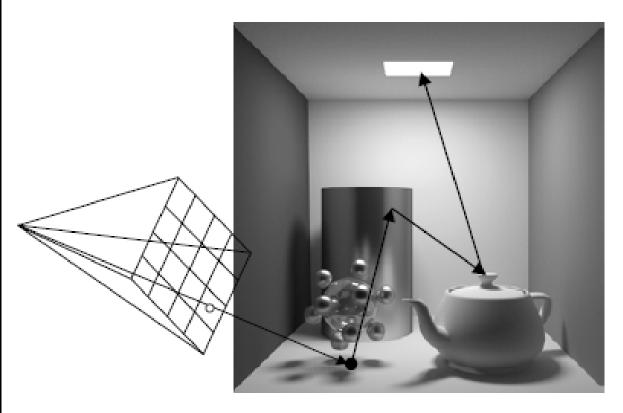
Metropolis

Biased techniques

- Irradiance caching
- Photon mapping

Stochastic ray tracing: limitations

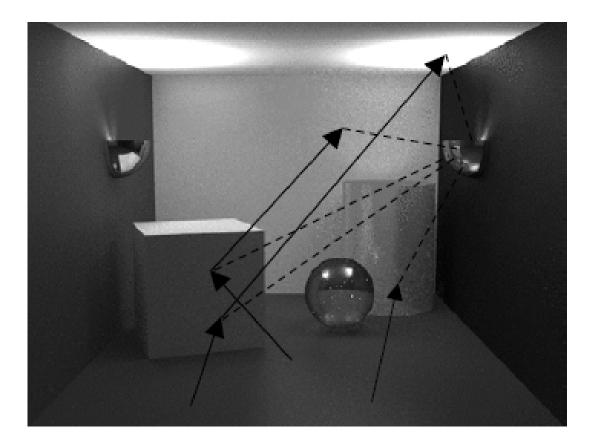
 Generate a path from the eye to the light source



© Kavita Bala, Computer Science, Cornell University

When does it not work?

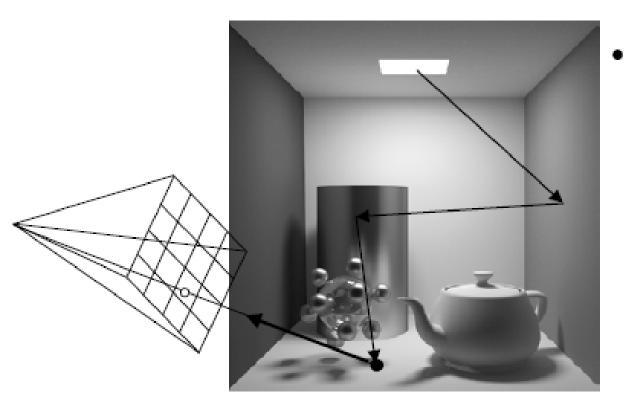
Scenes in which indirect lighting dominates



© Kavita Bala, Computer Science, Cornell University

Bidirectional Path Tracing

 So ... we can generate paths starting from the light sources!

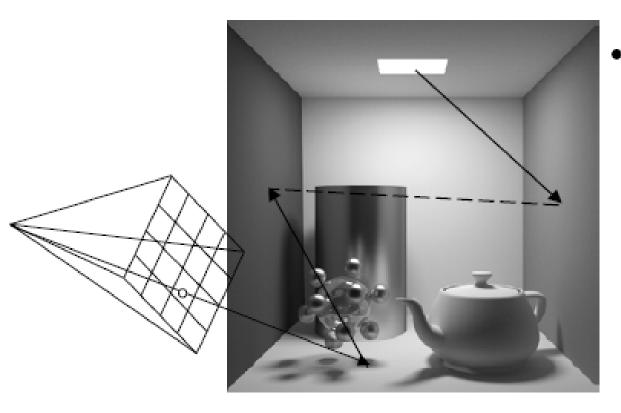


 Shoot ray to camera to see what pixels get contributions

Savita Bala, Computer Science, Cornell University

Bidirectional Path Tracing

 Or paths generated from both camera and source at the same time ...!

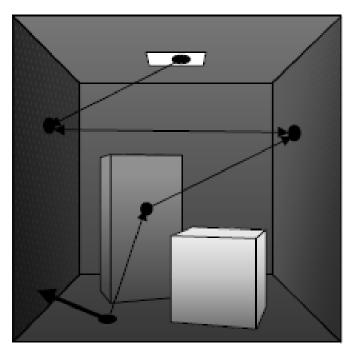


 Connect endpoints to compute final contribution

© Kavita Bala, Computer Science, Cornell University

Complex path generators

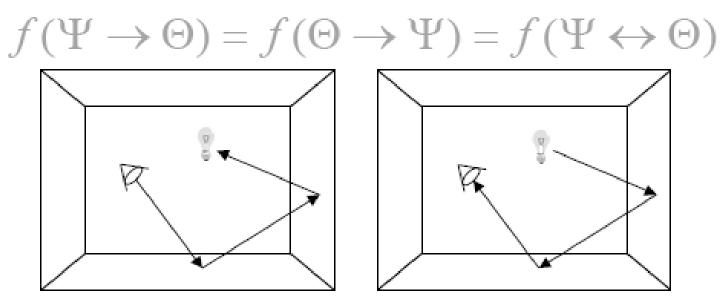
- Bidirectional ray tracing
 - shoot a path from light source
 - shoot a path from receiver
 - connect end points



© Kavita Bala, Computer Science, Cornell University

Why? BRDF - Reciprocity

 Direction in which path is generated, is not important: Reciprocity



- Algorithms:
 - trace rays from the eye to the light source
 - trace rays from light source to eye
 - any combination of the above

© Kavita Bala, Computer Science, Cornell University

Bidirectional ray tracing

- Parameters
 - eye path length = 0: shooting from source

- light path length = 0: gathering at receiver

- When useful?
 - Light sources difficult to reach
 - Specific brdf evaluations (e.g., caustics)

Other Rendering Techniques

Metropolis

Biased techniques

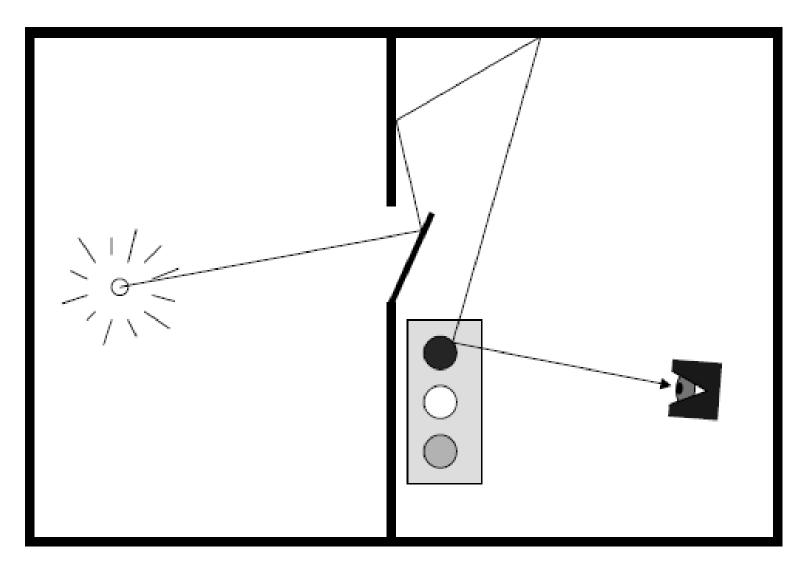
- Irradiance caching
- Photon mapping

- Based on Metropolis sampling (1950's)
 - Introduced by Veach and Guibas to CG
- Deals with hard to find light paths
 - Robust
- Hairy math, but it works
 - Not that easy to implement

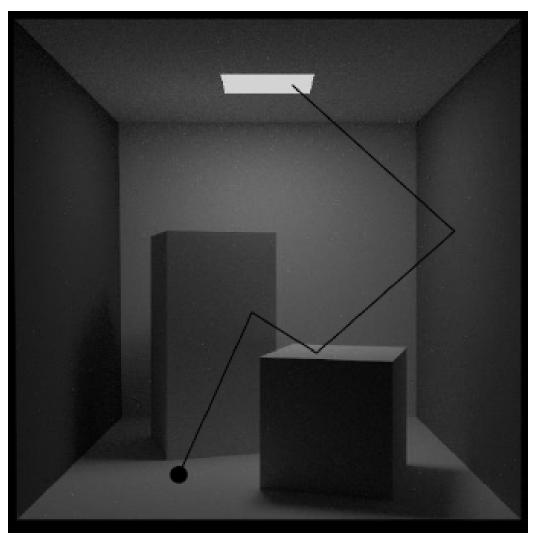
- Generate paths
- Once a valid path is found, mutate it to generate new valid paths

• Advantages:

- Path re-use
- Local exploration: found hard-to-find light distribution, mutate to find other such paths

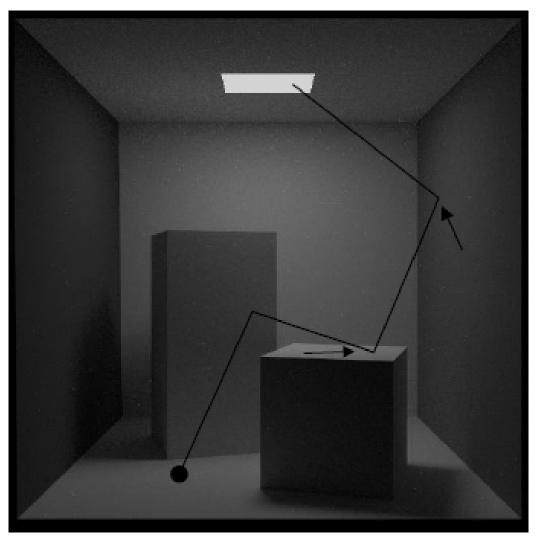


© Kavita Bala, Computer Science, Cornell University



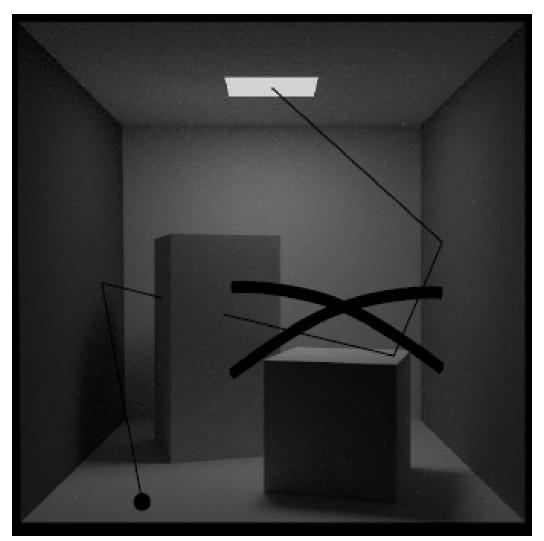
valid path

© Kavita Bala, Computer Science, Cornell University



small perturbations

© Kavita Bala, Computer Science, Cornell University



Accept mutations based on energy transport

© Kavita Bala, Computer Science, Cornell University

Advantages

- Robust
- Good for hard to find light paths

Disadvantage

- Slow convergence for many important paths
- Tricky to implement and get right

Unbiased vs. Consistent

Unbiased

- No systematic error
- E[I_{estimator}] = I
- Better results with larger N

Consistent

- Converges to correct results with more samples
- $E[I_{estimator}] = I + \varepsilon$, where $\lim_{n \to \infty} \varepsilon = 0$

Biased Methods

MC methods

- Too noisy and slow
- Nose is objectionable

Biased methods: store information (caching)

- Irradiance caching
- Photon mapping

Irradiance Caching

- Introduced by Greg Ward 1988
- Implemented in RADIANCE
 - Public-domain software
- Exploits smoothness of irradiance
 - Cache and interpolate irradiance estimates

Irradiance Caching Approach

- Irradiance E(x) estimated using MC
- Cache irradiance when possible
 - Store in octree for fast access
- When do we use this cache of irradiance values?

Smoothness Measure

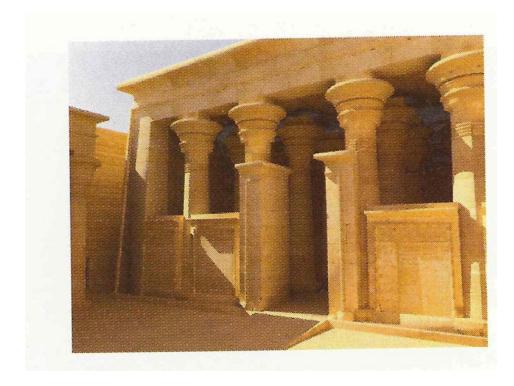
- When new sample requested
 - Query octree for samples near location
 - Check ε at x, x_i is a nearby sample

$$E(x, \vec{n}) = \frac{\sum_{i, w_i > 1/a} w_i(x, \vec{n}) E_i(x_i)}{\sum_{i, w_i > 1/a} w_i(x, \vec{n})}$$

- Otherwise, compute new sample

© Kavita Bala, Computer Science, Cornell University

Irradiance Caching: Result



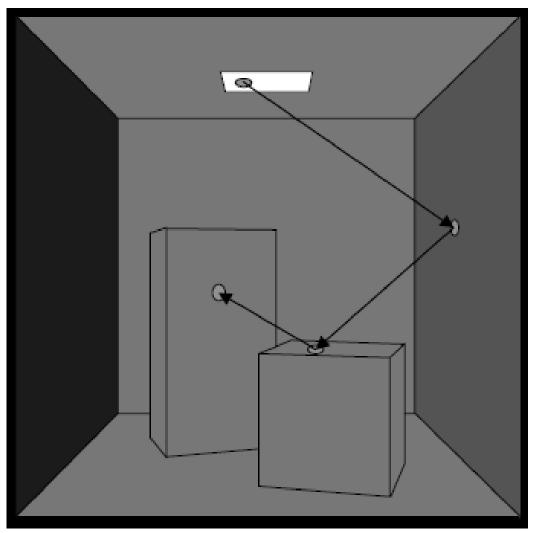
From Dutre et al.

Photon Mapping

• 2 passes:

- Shoot "photons" (light-rays) and record any hit-points
- Shoot viewing rays and collect information from stored photons

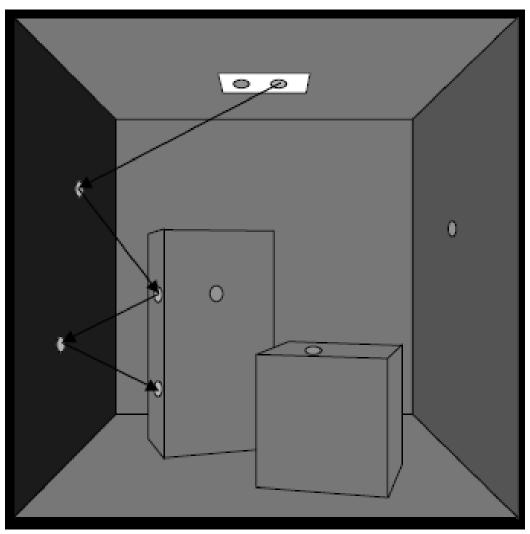
Pass 1: shoot photons



- Light path generated using MC techniques and Russian Roulette
- Store:
 - position
 - incoming direction
 - color

© Kavita Bala, Computer Science, Cornell University

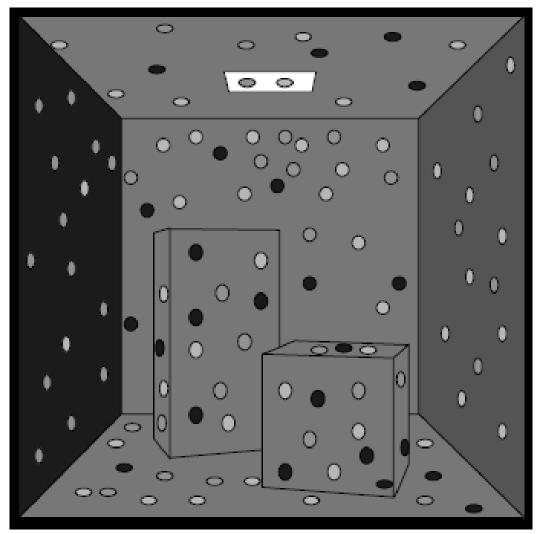
Pass 1: shoot photons



- Light path generated using MC techniques and Russian Roulette
- Store: Flux for each photon
 - position
 - incoming direction
 - color

Savita Bala, Computer Science, Cornell University

Pass 1: shoot photons



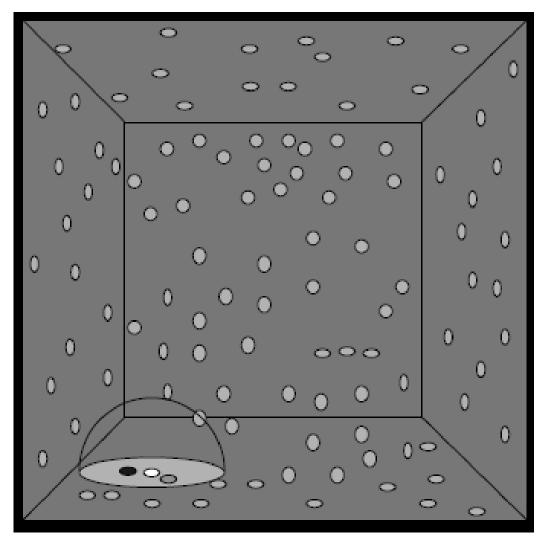
- Light path generated using MC techniques and Russian Roulette
- Store: for diffuse materials
 - position
 - incoming direction
 - color

© Kavita Bala, Computer Science, Cornell University

Stored Photons



Pass 2: viewing ray



- Search for N
 closest photons
 (+check normal)
- Assume these photons hit the point we're interested in

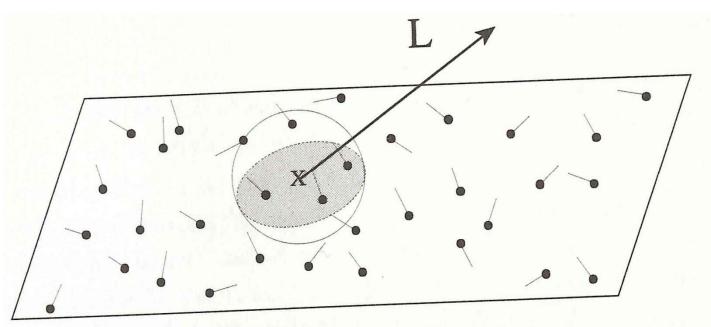
Compute average radiance

© Kavita Bala, Computer Science, Cornell University

Radiance Estimation

Compute N nearest photons

- Compute the radiance for each photon to outgoing direction
- Consider BRDF
- Divided by area

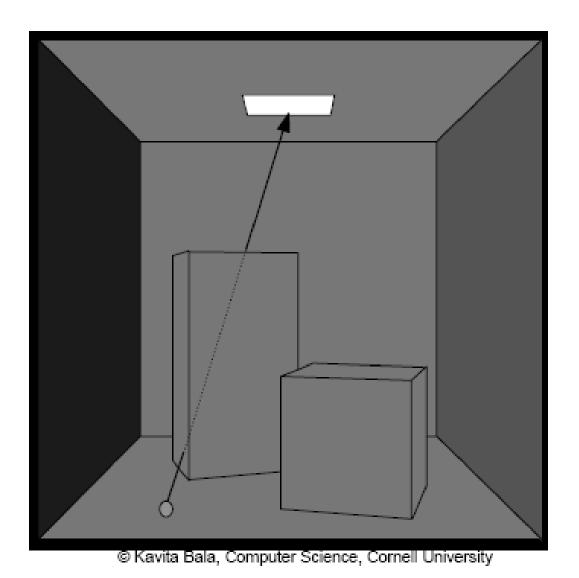


Efficiency

Want k nearest photons

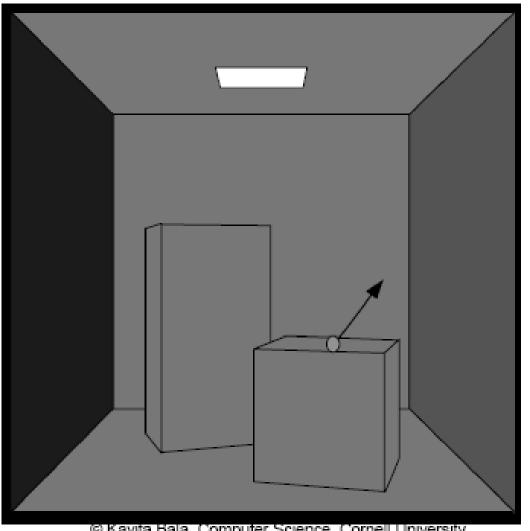
- Use kd-tree
- Using photon maps as it create noisy images
 - Need extremely large amount of photons

Pass 2: Direct Illumination



Perform direct illumination for visible surface using regular MC sampling

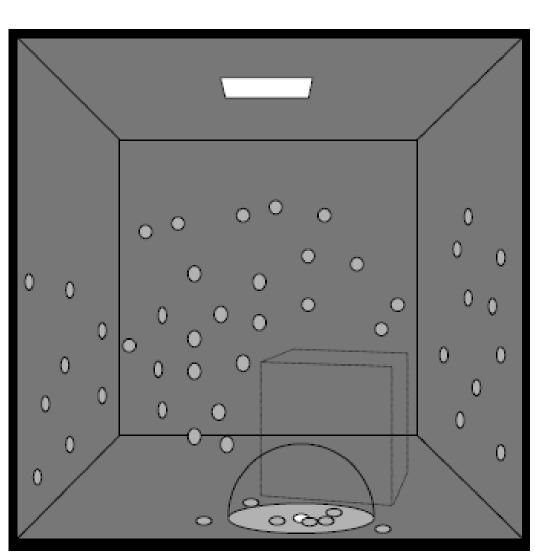
Pass 2: Specular reflections



Specular reflection and transmission are ray traced

© Kavita Bala, Computer Science, Cornell University

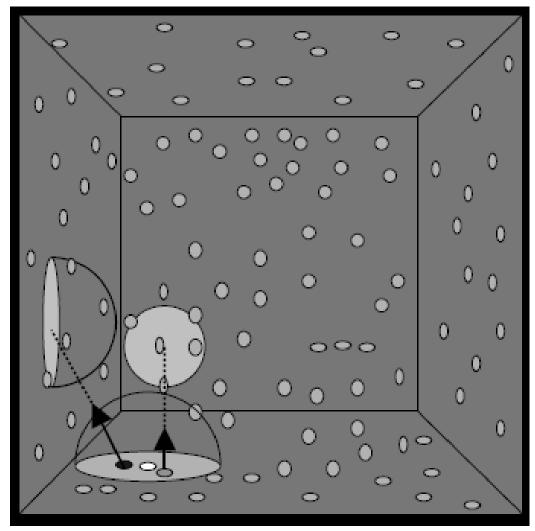
Pass 2: Caustics



- Direct use of "caustic" maps
- The "caustic" map is similar to a photon map but treats LS*D path
- Density of photons in caustic map usually high enough to use as is

© Kavita Bala, Computer Science, Cornell University

Pass 2:Indirect Diffuse



- Search for N closest photons
- Assume these photons hit the point
- Compute average radiance by importance sampling of hemisphere

© Kavita Bala, Computer Science, Cornell University

Result

Summary

- Two basic building blocks
- Radiometry
- Rendering equation
- MC integration
- MC ray tracing
 - Unbiased methods
 - Biased methods

