Collision Detection

Sung-Eui Yoon
(윤성의)

Course URL:
http://jupiter.kaist.ac.kr/~sungeui/SGA/
Course Administration

- Make progresses on your chosen topic
 - Write down toward the mid-term report, whose deadline is Nov-6

- Presentation schedule
Proximity Queries

● **Collision detection**
 - Checks whether there is collision between objects
 - Reports colliding primitives if any

● **Minimum separation distance**
 - Compute a minimum distance between two objects and report primitives realizing the distance
Collision Detection

- **Main component of:**
 - Dynamic simulation for game & movies
 - Navigation and path planning
 - Virtual prototyping
Time Complexity

- Naïve method between two objects
 - $O(n \times m)$, where n and m are # of triangles of two objects
 - Can be very slow even for small models

- Can we do better?
 - Employ culling techniques
Hierarchical Representations

- **Bounding volumes**
 - A proxy containing primitives
 - Should be tight and easy to check for collision
 - Provide culling

- **Recursively represent models**
 - Provide hierarchical culling
 - Object partitioning hierarchies or space partitioning hierarchies
Object vs. Space Partitioning Hierarchies

OPH:
- Object centric
- Spatial redundancy
- e.g., BVHs

SPH:
- Space centric
- Object redundancy
- e.g., kd-trees

Modified from Prof. M. C. Lin’s slides
Object vs. Space Partitioning Hierarchies

OPH:
- Object centric
- Spatial redundancy
- e.g., BVHs

SPH:
- Space centric
- Object redundancy
- e.g., kd-trees

Modified from Prof. M. C. Lin’s slides
Object vs. Space Partitioning Hierarchies

OPH:
- Object centric
- Spatial redundancy
- e.g., BVHs

SPH:
- Space centric
- Object redundancy
- e.g., kd-trees

Modified from Prof. M. C. Lin’s slides
Object vs. Space Partitioning Hierarchies

OPH:
- Object centric
- Spatial redundancy
- e.g., BVHs

SPH:
- Space centric
- Object redundancy
- e.g., kd-trees

Modified from Prof. M. C. Lin’s slides
Bounding Volume Hierarchies

- Each node has bounding volumes
 - Leaf node has k primitives; typically, k is 1

BVH
Trade-off in Choosing BV’s

- Sphere
- AABB
- OBB
- 6-dop
- Convex Hull

Increasing complexity & tightness of fit:

Decreasing cost of overlap tests + BV update

Excerpted from Prof. M. C. Lin’s slides
BVH-Based Collision Detection

Bounding volume test tree (BVTT)

Refine one node
Hierarchy Construction

- Top-down vs. bottom-up approach

 - Top-down methods
 - Recursively partition primitives into two subsets

 - Bottom-up methods
 - Merges nearby primitives into BV nodes
Continuous Collision Detection

- Discrete checking
 - Can miss collision if time step is large

- Continuous checking
 - Always identify collisions
 - Expensive