
Hardware design for ray tracing

 Jae-sung Yoon

Introduction

Realtime ray tracing performance has recently been achieved even on single CPU.

[Wald et al. 2001, 2002, 2004] However, higher resolutions, complex scenes, and

advanced rendering effects still require more performance.

Ray tracing is highly parallel algorithm because the contribution of each ray to the final

image can be computed independently from the other rays. To exploit this massive

parallelism, multi-core, multi-threaded hardware support is essential and efficient.

For increased performance, ray tracing require spatial index structures for quickly

finding the respective subset of rays. One drawback of spatial indices is that dynamic

changes in the scene require re-computation of the index. But, in recent hardware

architectures[Woop 2005],[Schmittler 2004],[Purcell 2002], only static scenes or

software-supported dynamic scenes are used.

Therefore, my goal is to propose an overall ray tracing hardware architecture including

update of acceleration structure.

Related Work

[Schmittler 2004], [Purcell 2002], [Woop 2005] architectures are basically based on

the property of ray-tracing’s parallelism. For high performance, they use multi-core

and multi-threading approaches.

SaarCOR[Schmittler 2004] used dedicated hardware for ray-tracing. And RPU[Woop

2005] upgrades this to have more programmable hardware. These two works used the

dynamic scene management scheme in [Wald 2003]. This scheme is based on the fact

that large parts of a scene often remain static over long periods of time. So, they

separate the scene into independent three classes of objects. One is the static objects.

Second is the object undergoing affine transformation. Third is the object with

unstructured motion. Static objects and affine transforming objects can totally removes

the reconstruction cost for hierarchically animated objects. So, this method can reduce

the cost of structure reconstruction. But, in the SaarCOR and RPU architecture provides

no special support for building spatial index structures. This task has to be performed

by the host CPU.

Figure 1 shows the SaarCOR hardware architecture. The core ray tracing algorithm is

contained in the dynamic ray tracing pipeline (DynRTP). RGS generates an initial ray R

and transformation T. T is applied to the R in the transformation unit, and transformed

ray is sent to the traversal unit. Then the traversal unit starts traversing the ray

through the KD-tree until a leaf node is found. The ray with the list of objects is then

forwarded to the mailbox unit. Mailbox unit can ommit objects that have already been

isited by the same ray. Then the ray is sent to the transformation unit which maps the

ray into object space. The ray is sent to the traversal unit to start the bottom-level

traversal. From this method, recursive traversal can be executed. Finally the results are

handed back to the RGS for shading.

he RPU is the next version of the SaarCOR. The major difference of this architecture

PU is

T

is that it used programmable units for some operations. For example, the intersection

test can be performed in shader as shown in figure 2. Ray transformation and

intersection tests in ray tracing can be performed nicely by shader instructions.

Figure 3 shows the RPU architecture. SPU is the Shader Processing Unit, the T

the Traversal Processing Units, and the MPU is Mailboxed List Processing Unit. SPU is

based on current GPUs, and used for above example, global lighting or vertex shading.

TPU is dedicated hardware because traversal of a ray through a K-D tree typically

requires 50 to 100 steps with scalar floating point operations. Using a fully

programmable vector unit for these operations wastes precious cycles. The TPU share

a dedicated MPU. After traversal the SPU can perform intersection test.

ring the transformation, 4-D vector operation is needed. So, Each SPU operates on

Du

4-component vectors as its basic data type. Also, to exploit the data parallelism, SPU

and TPU is designed to be multi-threaded. Multi-threading allows to increase hardware

utilization by filling instruction slots that would otherwise not be used due to instruction

dependencies or memory latency.

[Purcell 2002] is based on the GPU hardware, but it is not well known current GPU but

the ‘stream processor’. Stream Processor is more programmable and more general

purpose hardware than GPU. It is proposed in [Khailnay et al. 2000]. Stream processor

has two new concepts which are the kernel and stream. Basically, stream is the input or

output data of operation units, and kernel is program to process streams. Stream ray

tracer can be split into four kernels: eye ray generation, traversal, ray-triangle

intersection, and shading as shown in the figure 4.

The eye ray generator kernel produces a stream of viewing rays. he traversal kernel

ut, the [Purcell 2002] did not consider the cost of building data structure, so it is not

 T

reads the stream of rays produced by the eye ray generator. The traversal kernel steps

rays through the grid until the ray encounters a voxel containing triangles. The ray and

voxel address are output and passed to the intersection kernel. The intersection kernel

is responsible for testing ray intersections with all the triangles contained in the voxel.

The intersector has two types of output. If ray-triangle intersection (hit) occurs in that

voxel, the ray and the triangle that is hit is output for shading. If no hit occurs, the ray

is passed back to the traversal kernel and the search for voxels containing triangles

continues. The shading kernel computes a color. If a ray terminates at this hit, then the

color is written to the accumulated image. Additionally, the shading kernel may

generate shadow or secondary rays; in this case, these new rays are passed back to the

traversal stage.

B

be efficient for dynamic scenes.

Overview

two main issues in real-time ray tracing. One is the recursive traversal of There are

acceleration structures. And the other is re-computation of acceleration structures for

dynamic scene. The hardware-driven recursive traversal method is proposed in the

recent works[Woop 2005],[Schmittler 2004],[Purcell 2002]. But the hardware support

for building spatial index structures is not proposed yet. In the conventional graphics

pipeline, ray-tracing is located after vertex shading. Without hardware support for

structure reconstruction, CPU should receive the vertex data after vertex shading, and

make data structure, and then give this to ray-tracing hardware. It is very inefficient

herefore, my goal is to propose an overall ray tracing hardware architecture including T

update of acceleration structure.

