Hardware-driven Visibility Culling

Jeong Hyun Kim
KAIST (Korea Advanced Institute of Science and Technology)
Contents

- Introduction
- Background
 - Clipping
 - Culling
 - Z-max
 - (Z-min)
 - Filter
 - Programmable culling unit
- Proposed Idea
- Conclusion
Introduction

- The goal of 3D accelerator hardware is Real Time Rendering of Photorealistic Scene.
 - It needs more processing time, more memory bandwidth.
 - To reduce processing time
 - GPU
 - To reduce memory BW
 - R&D of faster memory → expand possible BW
 - Culling Schemes → reduced asked BW
Introduction

- **Software-driven**
 - Use CPU
 - Cons -- CPU is slow!
 - Pros -- Reduce data before GPU processing

- **Hardware-driven**
 - Means GPU culling.
 - Cannot reduce burden of Geometry processing
 - Only reduce burden of Fragment processing
 - But, Fragment processing is Bottleneck~!
 - Memory Access
 - Ex) R580 (ATI, X1900) has 8 VS and 48 PS.
Background_clipping

- Clipping
- What does clipping mean? (literally)

- In fact, clipping is not culling.
- In Hardware Implementation, clipping unit does view-frustum culling.
Background_clipping

- Clipping

- Reject or Pass or Clip&pass
 - Many triangles are rejected
 - A very simple primitive culling method.
Background_fragment culling

- Fragment culling
- If a pixel is occluded something, we don’t have to process that pixel.
 - Use depth info. in Frame Buffer?
 - Consistency problem.
 - Write FB is end of processing.
 - There is many pixels in processing.

Diagram:
- Rasterizer
- Early depth test
- Real depth test & write to FB
- Frame Buffer
- Read Z
- Write Z
Background fragment culling

- We have to use another information
- Hierarchical Z-buffer
 - Z-max algorithm
 - Have another z-cache, HZ-cache.
 - It needs much memory size.
 - Increase another memory BW.
 - High rejection ratio.

- Depth Filter
 - Z-max algorithm
 - Rough Culling
 - Need much smaller cache than HZ-buffer
Background_{HZ-buffer}

- Hierarchical Z-buffer
- A value of level N takes the max value of four pixels of N-1 level.

- There is cache structure issue.
Background (depth filter)

- Depth Filter
- HZB needs another big size cache.
 - Depth is 24bit for each pixel.
 - Hierarchical map needs several maps for each level

- Instead of that, all that depth filter needs are only 1 or 2 bits per pixel.
 - Filter mask.

- Rough culling.
Background_depth filter

- Depth filter separates view volume.
- Pixels front of DF(Blue area) are passed to next and make high the filter mask.
- Pixels back of DF(Red area) are checked by filter mask.
 - If mask is high, the pixel is rejected.
 - If mask is low, the pixel is accepted.
 - No change in filter mask. Still low.

1 bit per pixel
Background_depth filter

- 2 bits per pixel
 - We can separate view volume into 4 spaces.
 - \(\rightarrow\) higher rejection ratio.
Background _depth filter

- Adaptive modification of location of DF is possible.
 - Maximize rejection ratio.
 - When the # of pixels in front of DF and the # of survived pixels (back of DF and passed) are same.
 - Decrease memory BW proportionally to depth complexity.

- DF method can be applied to primitive culling.
Background _PCU_

- Programmable culling unit
- The PCU does tile based culling.
- The fundamental difference compared to Hierarchical Depth Culling is..
 - HDC does fixed function computations.
 - PCU bases its decision on the output from a shader program execution.
Background_{PCU}

- Cull program executes KIL instruction fast.
- PCU executes per-tile computation.
 - A tile can be killed only if all of fragments in the tile can be killed.
 - Use ‘interval computation’.
Background

- **Program Compilation and Separation**
 - **This PCU must be ease to use.**
 - The programmer writes a combined program.
 - It is up to the driver or compiler to separate the cull and fragment program.
 - **Use ‘Dead Code Elimination’ [Cytron 1991]**
 - **For fragment program**
 - Mark color outputs, depth outputs, all KIL statements
 - **For cull program**
 - All CUL and KIL statements
 - **Remove all code not contributing to the result**
Background_PCU

● Higher Level Culling
 ● PCU does culling in per-tile, per-triangle basis.
 ● If triangles are very small. (even smaller than a pixel)
 ● Than, per-tile check may be meaningless overhead.
 ● Delay stream like unit [Aila 2003]
 ● This unit receives triangles in the same order.
 ● This unit groups triangles until the group will be larger than a tile.
 ● If a group grows enough, execute cull program.
Background\textsubscript{PCU}

- Implementation of PCU

- PCU is combined with shader unit.
 - Reuse existing hardware.

- PCU Mainly consists of extra control logic before and after the ALU.
 - Role: value rerouting, detecting and handling special cases.

- Additional texture unit.

- Min & Max units to assemble the result.
Background_{PCU}
Proposed Idea

- Clipping unit is fixed functional culling unit.
- Every Graphics hardware implements Clipping unit.

- Apply exist Clipping unit to more culling.
 - If we use Clipping unit, it can be the simplest culling scheme.
Proposed Idea

- Closer to Clipping unit.
 - If we use normalization system, VS outputs normalized vertices to view volume.

- If the depth of input vertex is over 1, that means out of Far Plane.
 - We are using homogeneous coordinate system.
 - \((w, y, z, w)\)
Proposed Idea

- When checking
 - ‘Z == w’ means the vertex is on the Far Plane.
 - We can simply modify the Far Plane by multiplying a value to W.
 - Lower W \rightarrow closer Far Plane.
 - How about make closer the far plane at the value of Z-min of last frame?
 - We can obtain additional culling effect.
Proposed Idea
Proposed Idea

• At Clipping Unit.

Far plane

Z-min point of last frame

Near plane

New Far plane

Near plane
Proposed Idea

- There are many issues to solve.

- It will show improvement of performance only specified situations.
 - It’s enough.
Conclusion

● Because Clipping Unit is implemented in graphics hardware and it handles all triangles, I tried to use this hardware more.
 ● It can get additional primitive culling effect.

● It is need to try to cull more primitives or fragments.
 ● Programmable or fixed functional or mixed?

● Programmable is always good?
 ● PCU has not been implemented.