A SXGA 3D Display Processor with Reduced Rendering Data and Enhanced Precision

Seok-Hoon Kim MVLSI Lab., KAIST

Contents

Background

Motivation

- 3D Graphics + 3D Display
- Previous Works
 - Conventional 3D Image Synthesis Process
 - Real-time 3D Display Processor
- Conclusion

Background : Principle of 3D Display

Background : Target 3D Display

Lenticular display

- Convey different image to each eye
- Feel depth-perception
- Widely used

Multiview lenticular display

- Wide view range
- Multiplexing

Slanted lenticular display

• Improve resolution characteristic

9-view Slanted Lenticular Display KAIS

Motivation : 3D Graphics

Mapping

Motivation : 3D Graphics

2D display

- 3D graphics hardware
 - Photorealistic rendering effects
- 2D display
 - Lack of depth-perception
 - Not provide 3D effects

No True Realism

Motivation : 3D Display

■ Depth-perception of 3D display → True Realism

3D image processing is too complicate.

- Display static or pre-processed data
- Difficult for supporting interactive applications

Motivation : 3D Graphics + 3D Display

3D graphics + 3D display supports interactive applications & true realism

Previous Works : Conventional Method

View interpolation

• Interpolate 7 view images between left and right view image

Multiplexing

- Allocate sub-pixels of 9 view images to lenticular LCD
- View image (427x342), 3D image (1280x1024)

Previous Works

: Conventional Method – View Interpolation

Previous Works : Conventional Method – View Interpolation

interpolation

left image

intermediate view image

• Hole

- Not filled pixels in intermediate view images
- Visible from only one view
- Remove holes bringing pixels from right image

Previous Works

: Conventional Method – View Interpolation

Previous Works

- : Conventional Method Multiplexing
- Allocate sub-pixels to appropriate positions in LCD
- View numbers are calculated at sub-pixel level

Previous Works : Conventional Method – Problems

- Frequent external memory accesses
 - Difficult to support interactive applications
- Large memory for storing intermediate images

Previous Works : ISSCC2007 – Merged Architecture(1)

Previous Works : ISSCC 2007 – Merged Architecture(2)

Disparity is calculated using a linear equation

Previous Works : ISSCC 2007 – Real-time Synthesis(1)

Simultaneous view interpolation and multiplexing

- No intermediate memory
- Reduced memory size & external memory accesses

Previous Works : ISSCC 2007 – Real-time Synthesis(2)

Synthesized image

R: view_{LCD} =
$$(\alpha^*(x_{LCD}^*3+0)+\beta^*y_{LCD}+r)\%9$$

G: view_{LCD} = $(\alpha^*(x_{LCD}^*3+1)+\beta^*y_{LCD}+r)\%9$
B: view_{LCD} = $(\alpha^*(x_{LCD}^*3+2)+\beta^*y_{LCD}+r)\%9$

Previous Works : ISSCC 2007 – Architecture

• Real-time frame rate : more than 30fps

- Generate one pixel per cycle @ 50MHz
- 5x10⁷ /1280/1024 ≈38fps
- SE consists of three sub-pixel units.
 - A sub-pixel unit generates a sub-pixel per cycle

Previous Works :ISSCC2007 – performance

Previous Works :ISSCC2007 – Chip Micrograph

KAIS

Problem of RE in Previous Work

Previous work renders the same scene twice for two different view-positions

- Waste rendering time to generate duplicate data
- Require additional memory to store & to load duplicate data
 - Large memory size & increasing external memory accesses

left view-image

Proposed Idea of RE(1)

- Renders the same scene only once not twice
- Completely removes duplicate data
- Modified clipping
 - Including both left view volume & right view volume
 - Check the pixels in the expanded view volume

Proposed Idea of RE(2)

Modified back-face culling

- Back-face culling operations are executed both left view-position and right view-position
- Check the pixels culled from left view-position but not culled from right view-position
 - •Use them for filling holes

Problem of SE in Previous Work

• View-number error

- View-number evaluation equation
 - view_{LCD} = $(A^*(x_{LCD}^*3+0,1,2)+B^*y_{LCD}+C)\%9$
 - A, B, C are floating number constants
- For blending, reverse multiplexing has been used
- Previous work rounds off the view-number to the nearest integer
- Allocates sub-pixels without blending operations

Proposed Idea of SE(1)

Precision-enhanced multiplexing

- Based on the previous work [ISSCC2007]
- Conserve the interactive synthesis rate
- Rounds off the view-number to 2nd decimal place to reduce viewnumber error to less than 1%

 \rightarrow improve synthesis image quality

Proposed Idea of SE(2)

- Evaluated view-number = integer part + fragment part
- Integer part is used for finding matching positions
- Fragment part is used for blending
- Additional H/W
 - 5bits more for the view-number evaluator
 - 2 flag bits per a sub-pixel for avoiding overlapping cases \rightarrow only 5 bytes memory

Conclusion

Combine 3D graphics and 3D display

• Support both true-realism & interactive applications

Expanded clipping & back-face culling

- Completely remove duplicate data
- Reduce required memory size & memory accesses
 - \rightarrow lower H/W cost & improved performance

• Precision-enhanced Multiplexing

- Based on the previous work, conserve interactive synthesis rate
- Reduce view-number error to less than 1%
- Require a few of additional H/W

