Real-time Continuous Collision Detection and Penetration Depth Computation

Young J. Kim

http://graphics.ewha.ac.kr Ewha Womans University

Crucial for mimicking the physical presence

Earlier Research

- Focused on checking for whether there is any overlap between A and B, *fixed in space*
 - Tons of papers published in the area of collision detection
 - Well-studied and matured technology
- Not clear how to resolve such overlap

Recent Research Trends

- Avoid inter-penetration
 - Continuous collision detection (CCD)
- Allow inter-penetration but backtrack
 Penetration depth (PD)

Autonomous Ice Serving Robot (with Zhixing Xue at FZI)

Outline

- Recent research results
 - CCD (rigid, polygon-soups, articulated)
 - PD (translational)
- Applications
 - Real-time rigid body dynamics
 - Robotic grasping
 - CAD disassembly

CONTINUOUS COLLISION DETECTION (CCD)

Collision Missing

Continuous Collision Detection

Motion trajectory f(t) is known in advance

Applications of Continuous CD

- Rigid body dynamics
 - Find the time of contact (ToC) to apply forces

Applications of Continuous CD

- Motion planning
 - Check whether a path is collision-free

Previous Work on CCD

- Algebraic solution -[Canny86], [Redon00], [Kim03], [Choi06]
- Swept volume -[Abdel-Malek02],[Hubbard93], [Redon04a,b]
- **Bisection** -[Redon02], [Schwarzer02]
- Kinetic data structures -[Kim98], [Kirkpatrick00], [Agarwal01]
- Minkowski sum -[Bergen04]
- Conservative advancement
 - [Mirtich96], [Mirtich00], [Coumans 2006], [Zhang06], [Tang09]

Conservative Advancement (CA)

- Assume objects are *convex*
- Find the 1st time of contact (ToC) of a moving object

Conservative Advancement (CA)

- 1. Find a step size Δt_i to conservatively advance the object before collision occurs
- 2. Repeat until inter-distance $< \epsilon$

 $TOC = \Delta t_1 + \Delta t_2 + \Delta t_3 + \Delta t_4$

Calculating <u>⊿t</u> in CA

P

Extension to Non-convex [Zhang et. al PG 06]

- Use of convex decomposition
- Build a hierarchy of decomposed convex pieces and perform CA *hierarchically*

Bunny vs. Bunny

Torusknot vs. Torusknot

of iterations 4.49

11K 400 FPS

of iterations 4.49

34K 186 FPS

of iterations 4.46

Extension to Polygon-Soups [Tang et. al IEEE ICRA 09]

- Construct the bounding volume hierarchy of polygons
- Motion bound calculation $\Delta t \leq \frac{d}{\mu}$
 - Bounding volume
 - Triangles

Extension to Polygon-Soups [Tang et. al IEEE ICRA 09]

• We use swept sphere volumes

[Larsen et. al IEEE ICRA 1999]

Motion Bound Calculation

Motion bound of SSV (e.g. PSS)

$$\boldsymbol{\mu} \leq \|\boldsymbol{\omega} \times \mathbf{n}\| \left(\| \mathbf{c}_1^{\perp} \| + \mathbf{r} \right)$$

ω: rotational velocity
n: closest direction
r: radius of PSS

Compute approximate distance in the beginning
 Compute exact distance toward the end

Results - Timings

Comparisons against [Zhang 06]

• [Zhang 06] can handle only manifold surfaces

http://graphics.ewha.ac.kr

Extension to Articulated Models [Zhang et. al SIGGRAPH 07]

- Treat each link as a rigid body
- Apply CA to each link independently

 Taking the minimum of CA results

⁰v_i: velocity of link i

 $^{i-1}\omega_i$: rotational velocity of link i w.r.t. link i-1

ⁱ⁻¹L_i: difference vector btwn the links

Problems in Straightforward CA

- Problems
 - O(n²) checking
 between individual
 links

Spatial Culling

- Cull the link pairs that are far apart
- Use bounding volume-based collision-culling

Spatial Culling using Dynamic AABB

Goal

 Compute an axis-aligned bounding box (AABB) that bounds the motion of a moving link

Interval Arithmetic

Bounding Volume Culling

Taylor Models

SIGGRAPH 2010

http://graphics.ewha.ac.kr

Locomotion Benchmark

- CCD performance
 – 1.22 msec
- Mannequin
 - 15 links, 20K tri
- Obstacles
 101K tri
- Locomotion SW
 Footstep[™]

Exercise Benchmark

- Mannequin

 15 links, 20K
 triangles
- Self-CCD performance

 0.38 msec

Motion Planning Benchmark 1

- Excavator
 - 52 links, 19K tri
- Obstacles
 0.4M tri
- CCD performance
 – 100~700 msec

Motion Planning Benchmark 2

- Tower crane
 14 links, 1288 tri
- CCD performance
 – 5.66~15.1 msec

Articulated Body Dynamics Benchmark

- Four trains
 - 10 links, 23K tri (each)
- CCD
 performance
 535 msec

Software Implementations

- Source codes are available
 - <u>http://graphics.ewha.ac.kr/FAST</u> (2-manifold)
 - <u>http://graphics.ewha.ac.kr/C2A</u> (polygon-soups)
 - <u>http://graphics.ewha.ac.kr/CATCH</u> (articulated)

PENETRATION DEPTH (PD) COMPUTATION

Pointwise Penetration Depth [Tang et. al SIGGRAPH 09]

Defined as deepest interpenetrating points

Pointwise Penetration Depth

- **1.** Find intersection surfaces ∂A and ∂B
- **2.** Penetration depth = $H(\partial \mathcal{A}, \partial \mathcal{B})$

Pointwise Penetration Depth

Demo (40K Bunny vs 40K Bunny)

Benchmark: Pointwise PD

Model complexity - 50K tri Avg. Performance - 3.88ms/pair

Benchmark: Pointwise PD

Model complexity - 3.5K tri Avg. performance - 0.95ms/pair

Penetration Depth [Dobkin 93]

 Minimum translational distance to separate overlapping objects

Applications of Penetration Depth Dynamics simulation - Penalty-based - Impulse-based Point of Impact B Impulse Penetration Depth

Previous Work on PD

- Convex polytopes -[Cameron and Culley86], [Dobkin93], [Agarwal00], [Bergen01], [Kim04]
- Non-convex polyhedra -[Kim02],[Redon and Lin06], [Lien08a,b], [Hachenberger09]
- Distance fields [Fisher and Lin01], [Hoff02], [Sud06]
- Pointwise PD -[Tang09]
- Generalized PD [Ong and Gilbert96], [Ong96], [Zhang07]
- Volumetric PD [Wellner and Zachmann09]

Minkowski Sum

$P \oplus Q = \{\mathbf{p} + \mathbf{q} \mid \mathbf{p} \in P, \mathbf{q} \in Q\}$ $P \oplus -Q = \{\mathbf{p} - \mathbf{q} \mid \mathbf{p} \in P, \mathbf{q} \in Q\}$

Combinatorial Explosion

- Complexity of Minkowski Sum
 - $O(m^3n^3)$ with m and n triangles

PolyDepth Performance

- Spoon: 1.3K triangles
- Cup: 8.4K triangles
- Time: 1~7 msec

PolyDepth Performance

- Bunny: 40K triangles
- Dragon: 174K triangles
- Time: 2~15 msec

Comparison against Exact Solution

APPLICATIONS

214K triangles in total

802K triangles in total

With Zhixing Xue @ FZI

With Liangjun Zhang @ Stanford/UNC

http://graphics.ewha.ac.kr

	CCD	PD
Concept	Collision avoidance	Collision correction
Usages	 Constraint-based dynamics Exact motion planning Grasping 	 Penalty-, impulse- based dynamics Retraction-based motion planning
Complexities	O(mn)	O(m ³ n ³)

Summary

Future Work

- Continuous collision detection
 - N-body
 - Non-linear motion

• PD

- Articulated body
- Deformable
- N-body

Collision Culling of a Millon Bodies on GPUs [Liu et al. SIGGRAPH ASIA 2010]

Real-time Dynamics Simulation of 16,000 Rigid Bodies

Acknowledgements

- Min Tang, Xinyu Zhang, Minkyoung Lee, Youngeun Lee (Ewha)
- Stephane Redon (INRIA)
- Dinesh Manocha (UNC)
- Liangjun Zhang (Stanford)
- Zhixing Xue (FZI)
- KEIT/MKE (IT core research)
- KRF (Young investigator award)

Main References

- X. Zhang, M. Lee, Y. Kim, Interactive Continuous Collision Detection for Non-convex Polyhedra, Pacific Graphics 2006 <u>http://graphics.ewha.ac.kr/FAST</u>
- X. Zhang, S. Redon, M. Lee, Y. Kim, Continuous Collision Detection for Articulated Models using Taylor Models and Temporal Culling, SIGGRAPH 2007 <u>http://graphics.ewha.ac.kr/CATCH</u>
- M. Tang, Y. Kim, D. Manocha, C²A: Controlled Conservative Advancement for Interactive Continuous Collision Detection, IEEE ICRA 2009 <u>http://graphics.ewha.ac.kr/C2A</u>

Main References

- M. Tang, M. Lee, Y. Kim, Interactive Hausdorff Distance Computation for General Polygonal Models, SIGGRAPH 2009 <u>http://graphics.ewha.ac.kr/HDIST</u>
- C. Je, M. Tang, Y. Lee, M. Lee, Y. Kim, PolyDepth: Real-time Penetration Depth Computation using Iterative Contact-space Projection, Ewha Technical Report 2010 <u>http://graphics.ewha.ac.kr/PolyDepth</u>
- M. Tang, Y. Kim, D. Manocha, Efficient Local Planning using Connection Collision Query, Ewha Technical Report 2010 <u>http://graphics.ewha.ac.kr/CCQ</u>

Thank you for listening!

http://graphics.ewha.ac.kr