Recent Advances in Person Re-identification for Real-world Scenarios

조윤기 (yoonki@kaist.ac.kr) SGVR Lab, KAIST

Contents

- Introduction to person re-identification.
- Supervised approaches.
- Unsupervised approaches .
- Domain generalizable approaches.

Introduction

Person re-identification and its challenges

Person Re-identification (Person Re-ID)

- Person re-ID aims to *retrieve a person corresponding to a given query* across disjoint camera views or different time stamps.
- Applications: Surveillance system, Finding a missing person, etc.

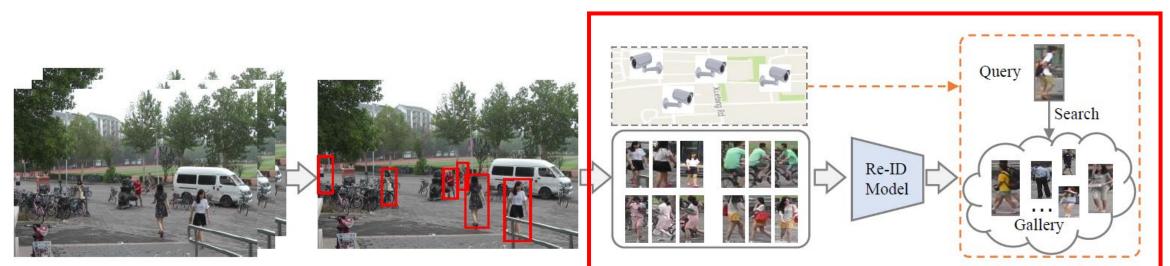


Fig. 1: The flow of designing a practical person Re-ID system, including five main steps: 1) *Raw Data Collection*, (2) *Bounding Box Generation*, 3) *Training Data Annotation*, 4) *Model Training* and 5) *Pedestrian Retrieval*.

Person Re-identification (Person Re-ID)

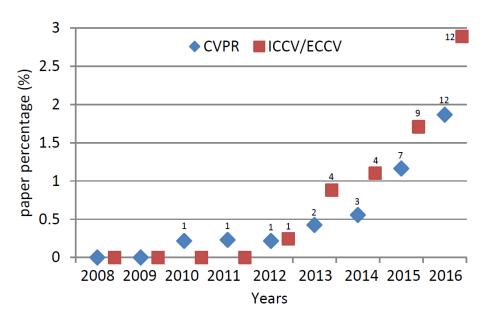


Fig. Percentage of person re-ID papers on top conferences ove r the years. Numbers above the markers indicate the number of re-ID papers.

Conference	Link	#Total	Person Re-ID
ICCV2021	click	34	24
CVPR2021	click	32	25
ECCV2020	Click	30	23
CVPR2020	Click	34	24
ICCV2019	Click	39	33
CVPR2019	Click	29	21
ECCV2018	Click	19	15
CVPR2018	Click	31	30
ICCV2017	Click	16	14
CVPR2017	Click	16	14

Zheng et al. Person Re-identification: Past, Present and Future. In arXiv 2016. https://github.com/bismex/Awesome-person-re-identification.

Datasets for Person Re-ID

• Evaluation metric

mean Average Precision (mAP)

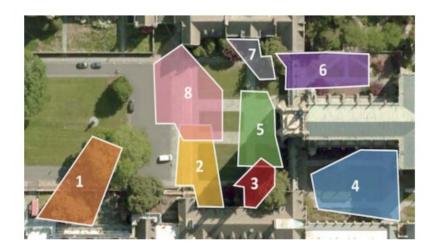
Cumulative Matching Characteristics (CMC)

	Image datasets							
Dataset	Time	#ID	#image	#cam.	Label	Res.	Eval.	
VIPeR	2007	632	1,264	2	hand	fixed	CMC	
iLIDS	2009	119	476	2	hand	vary	CMC	
GRID	2009	250	1,275	8	hand	vary	CMC	
PRID2011	2011	200	1,134	2	hand	fixed	CMC	
CUHK01	2012	971	3,884	2	hand	fixed	CMC	
CUHK02	2013	1,816	7,264	10	hand	fixed	CMC	
CUHK03	2014	1,467	13,164	2	both	vary	CMC	
Market-1501	2015	1,501	32,668	6	both	fixed	C&M	
DukeMTMC	2017	1,404	36,411	8	both	fixed	C&M	
Airport	2017	9,651	39,902	6	auto	fixed	C&M	
MSMT17	2018	4,101	126,441	15	auto	vary	C&M	
	Video datasets							
Dataset	time	#ID	#track(#bbox)	#cam.	label	Res.	Eval	
PRID-2011	2011	200	400 (40k)	2	hand	fixed	CMC	
iLIDS-VID	2014	300	600 (44k)	2	hand	vary	CMC	
MARS	2016	1261	20,715 (1M)	6	auto	fixed	C&M	
Duke-Video	2018	1,812	4,832 (-)	8	auto	fixed	C&M	
Duke-Tracklet	2018	1,788	12,647 (-)	8	auto	C&M		
LPW	2018	2,731	7,694(590K)	4	auto	fixed	C&M	
LS-VID	2019	3,772	14,943 (3M)	15	auto	fixed	C&M	

Ye et al. Deep Learning for Person Re-identification: A Survey and Outlook. In TPAMI 2021.

Challenges in Person Re-ID

- Challenges by different camera views and time stamps.
 - Variance of viewpoints, illumination, pose, etc.
 - Occlusions.
 - \circ Low resolutions.
- Large intra-variation & Small inter-variation

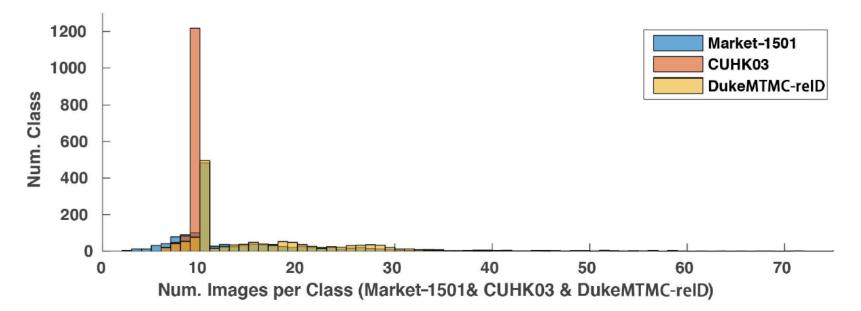


query

Challenges in Person Re-ID

• Long-tail problem.

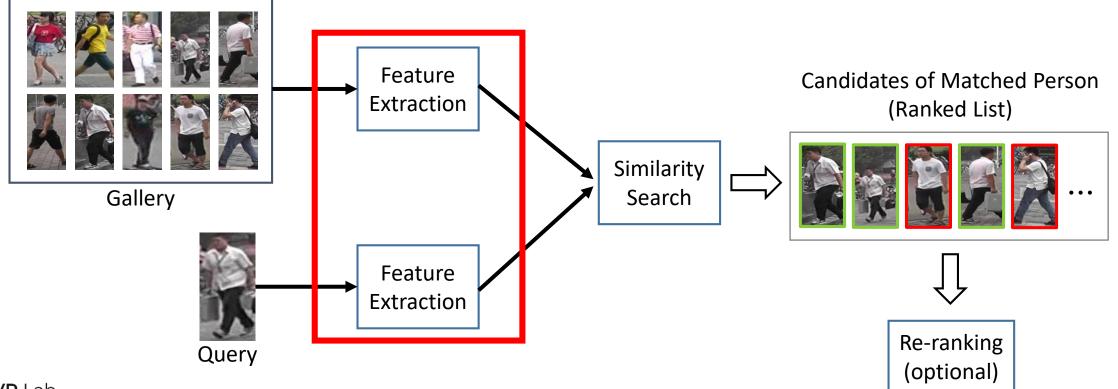
- In person re-ID, all datasets suffer from the insufficient training set.
- Insufficient training sets can yield overfitting and unstable convergences.
- $\,\circ\,$ MNIST 10 class/ 5000 per class, CIFAR 100 class/500 per class.



Ro et al. Backbone Can Not be Trained at Once: Rolling Back to Pre-trained Network for Person Re-Identification. In AAAI 2019. Zheng et al. Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in vitro. In ICCV 2017.

General Protocol of Person Re-ID

• Person re-identification pipeline.



Feature Representation Learning for Person Re-ID

- Most studies focus on *learning discriminative representation for person retrieval.*
- Recently, deep neural networks (DNN) have provided powerful descriptors.

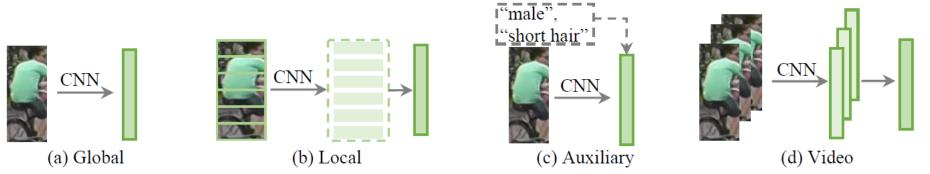


Fig. 2: Four different feature learning strategies. a) Global Feature, learning a global representation for each person image in § 2.1.1; b) Local Feature, learning part-aggregated local features in § 2.1.2; c) Auxiliary Feature, learning the feature representation using auxiliary information, *e.g.*, attributes [62], [63] in § 2.1.3 and d) Video Feature , learning the video representation using multiple image frames and temporal information [64], [65] in § 2.1.4.

Supervised Person Re-identification

Recent techniques for supervised approaches

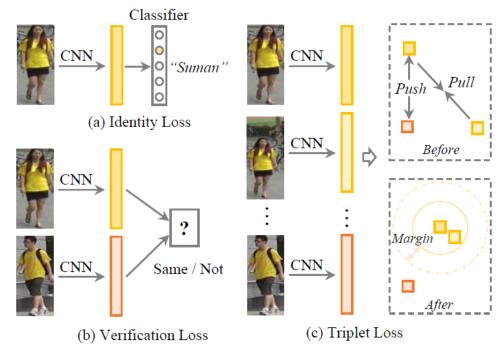
Problem Setting

- Goal: Learn discriminative features for person retrieval with given labels.
- Protocol: Training on target domain w/ labels → Testing on target domain.
- Challenges: Large intra-variation & Small inter-variation.

Occlusions and misalignments.

Widely-used Loss Functions

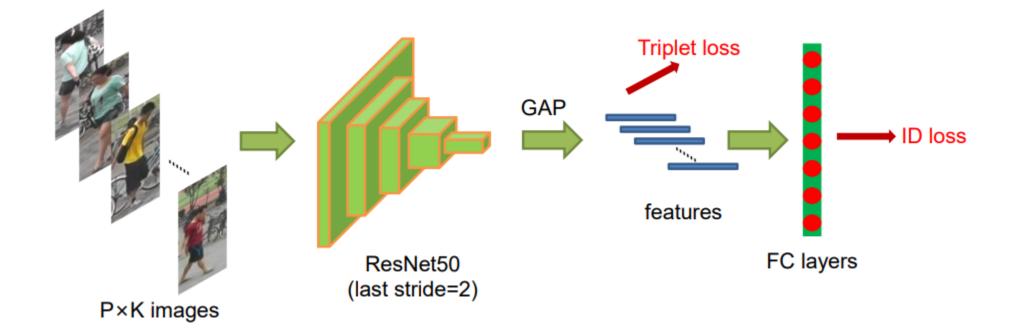
- Identification loss ← classification problem.
- Verification loss ← binary classification problem.
- Triplet loss ← metric learning problem.



Ye et al. Deep Learning for Person Re-identification: A Survey and Outlook. In TPAMI 2021.

Standard Approaches

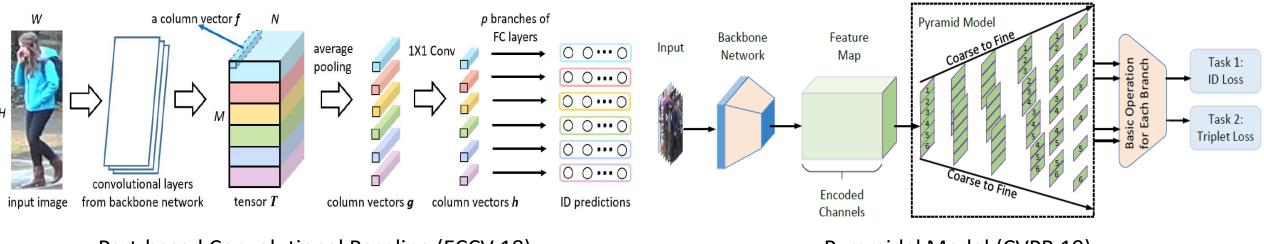
- Recent approaches *utilize both identification and triplet loss*.
- *ResNet-50* is the standard architecture in recent studies.



Luo et al. A Strong Baseline and Batch Normalization Neck for Deep Person Re-identification. In Transactions on Multimedia 2020.

Part-based Approaches

- Key idea: Learn part(local) features to search a person via part-wise matchings.
- Divide a feature map uniformly and extract part features for training.



Part-based Convolutional Baseline (ECCV 18)

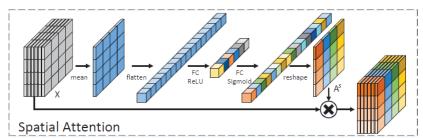
Pyramidal Model (CVPR 19)

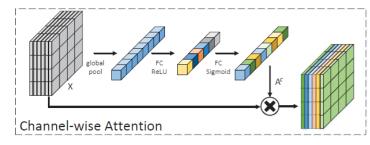
Sun et al. Beyond Part Models: Person Retrieval with Refined Part Pooling (and a strong convolutional baseline). In ECCV 2018. Zheng et al. Pyramidal Person Re-IDentification via Multi-Loss Dynamic Training. In CVPR 2019.

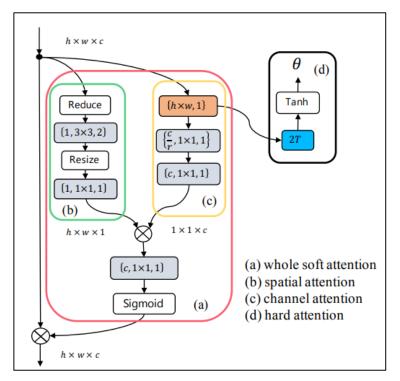
Attention-based Approaches

- Key idea: Learn features *robust to occlusions and misalignments via an attention*.
- Focus discriminative parts using a attention mechanism.

Examples of ID 166 in Market-1501







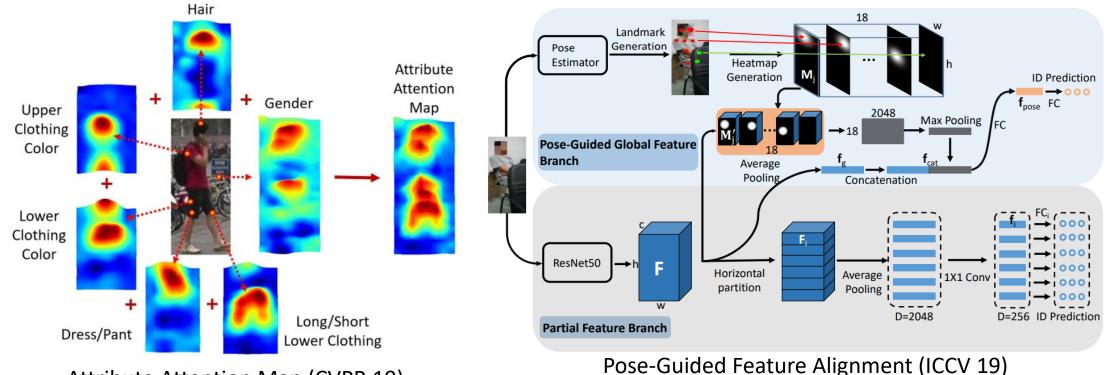
Harmonious Attention (CVPR 18)

Chen et al. Self-Critical Attention Learning for Person Re-Identification. In ICCV 2019. Li et al. Harmonious Attention Network for Person Re-Identification. In CVPR 2018.

Self-Critical Attention Learning (ICCV 19)

Approaches using Auxiliary Information

- Key idea: Learn discriminative features with additional clues.
- Attribute labels, camera labels, pose estimator, human parsing, ...

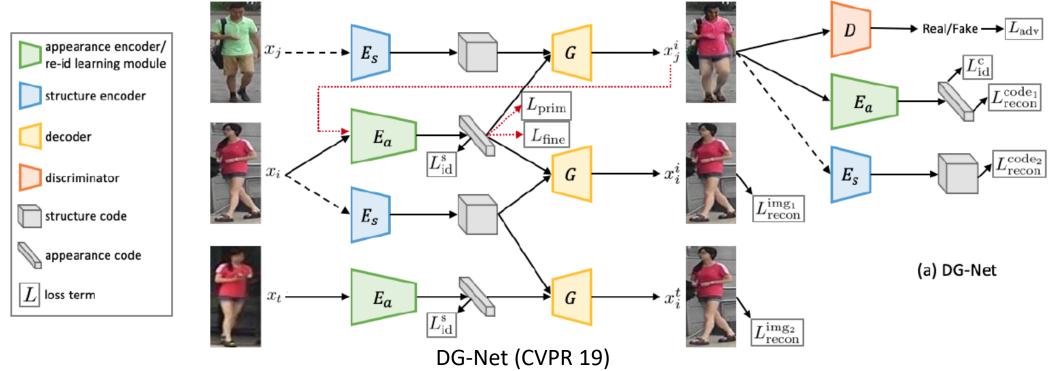


Attribute Attention Map (CVPR 19)

Tay et al. AANet: Attribute Attention Network for Person Re-Identification. In CVPR 2019. Miao et al. Pose-Guided Feature Alignment for Occluded Person Re-Identification. In ICCV 2019.

Feature Disentanglement-based Approaches

- Key idea: Disentangle features into ID-relevant and ID-irrelevant features.
- Gave an additional supervision for feature disentanglements.



Zheng et al. Joint Discriminative and Generative Learning for Person Re-identification. In CVPR 2019.

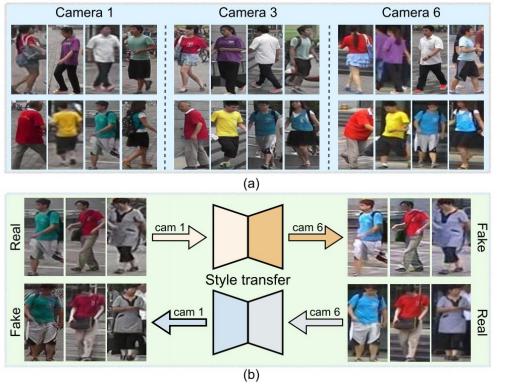
Data Augmentation for Person Re-ID

• Key idea: Augment input images for being robust to occlusions, camera bias, ...

(1)

persol

• Use input image distortion, style transfer, GAN, ...



Random Erasing

Random Erasing (AAAI 20)

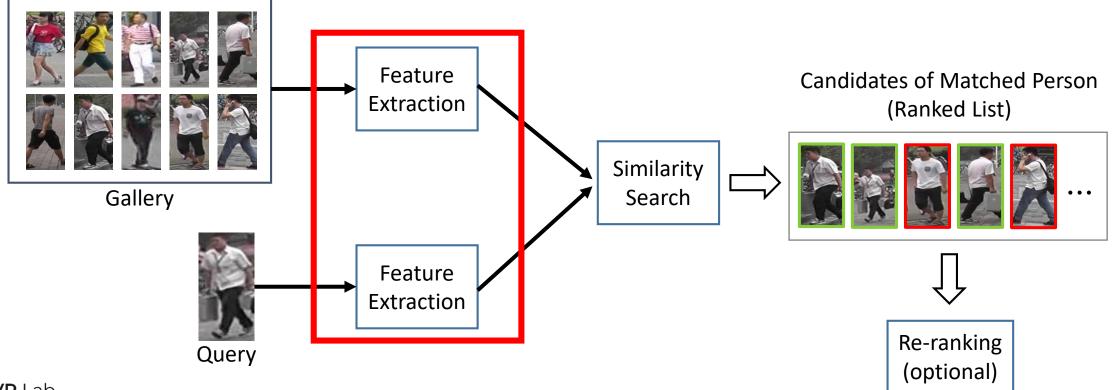
Zhong et al. Camera Style Adaptation for Person Re-identification. In CVPR 2018. Zhong et al. Random Erasing Data Augmentation. In AAAI 2020.

Unsupervised Person Re-identification

Recent techniques for unsupervised approaches

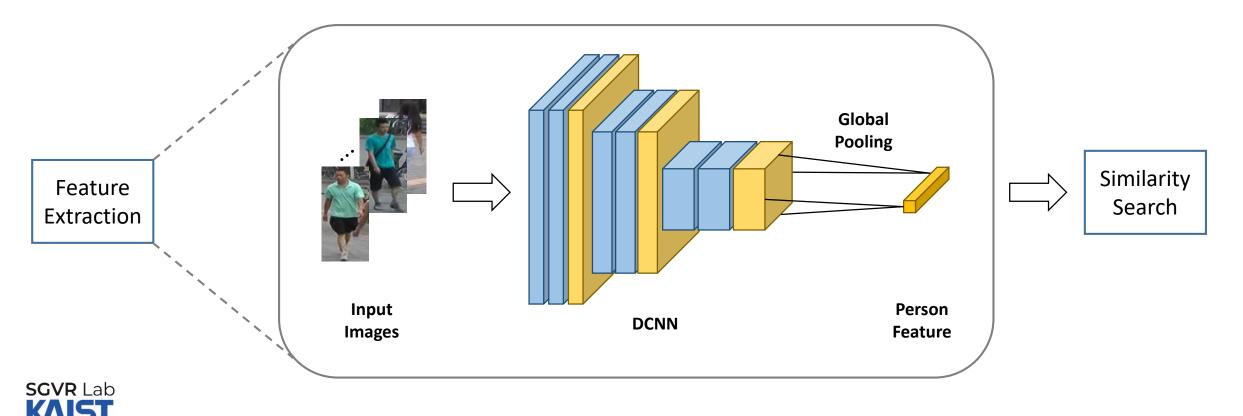
General Protocol of Person Re-ID

• Person re-identification pipeline.



General Protocol of Person Re-ID

• Deep convolutional neural network (DCNN) brings impressive improvements in p erson re-ID fields.



Problems in DCNN

- Require many training data with labels.
- Challenges in identity annotation.
 - $\ensuremath{\circ}$ illumination changes.
 - $\,\circ\,$ Low resolution.
 - \circ Occlusions.

Person Detection

Identity Annotation

Problems in DCNN

- The real-world scenario of person re-ID is an open set problem.
- New people (= new class) will appear from the camera views.

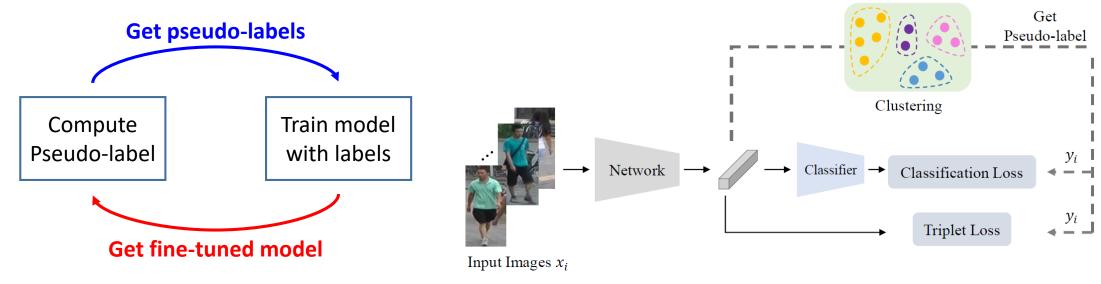
Person re-ID system

Problem Setting

- Goal: Learn discriminative features for person retrieval without ID labels.
- *Protocol:* Training on target domain w/o labels → Testing on target domain.
- *Challenges:* Poor pseudo-supervision from unlabeled data.

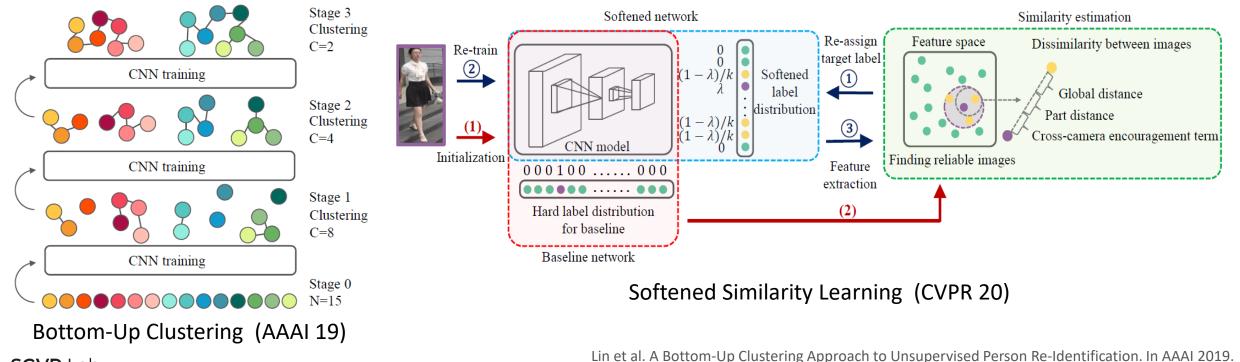
Pseudo Label-based Approaches

- Most recent studies *utilize pseudo-labels to train a re-ID model.*
 - $\,\circ\,$ K-nearest neighbor search.
 - \circ Clustering.
- Clustering-based approaches dominate unsupervised task.



Pseudo Label-based Approaches

- In early studies of this field focus on *how to obtain pseudo-labels.*
- Nowadays, most methods utilize **DBSCAN** clustering with *re-ranked distances*.

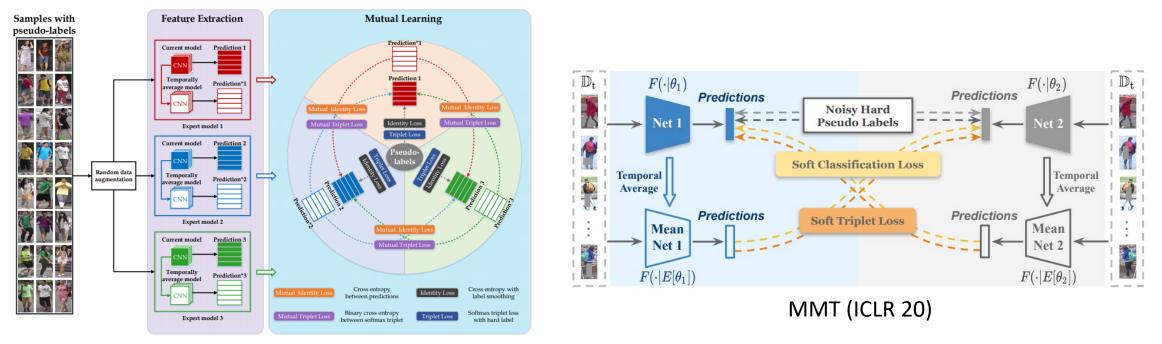


SGVR Lab

Lin et al. Unsupervised Person Re-identification via Softened Similarity Learning. In CVPR 2020.

Pseudo Label Refinement

- Key idea: Re-ID performance \propto Quality of pseudo-labels.
- There are inevitable noised in pseudo-labels (noisy label problem), and some studies utilize predictions of an auxiliary network to refine labels.

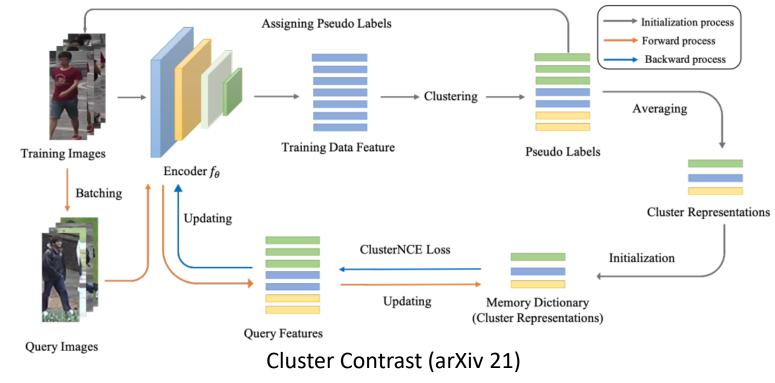


MEB-Net (ECCV 20)

Zhai et al. Multiple Expert Brainstorming for Domain Adaptive Person Re-identification. In ECCV 2020. Ge et al. Mutual Mean-Teaching: Pseudo Label Refinery for Unsupervised Domain Adaptation on Person Re-identification. In ICLR 2020.

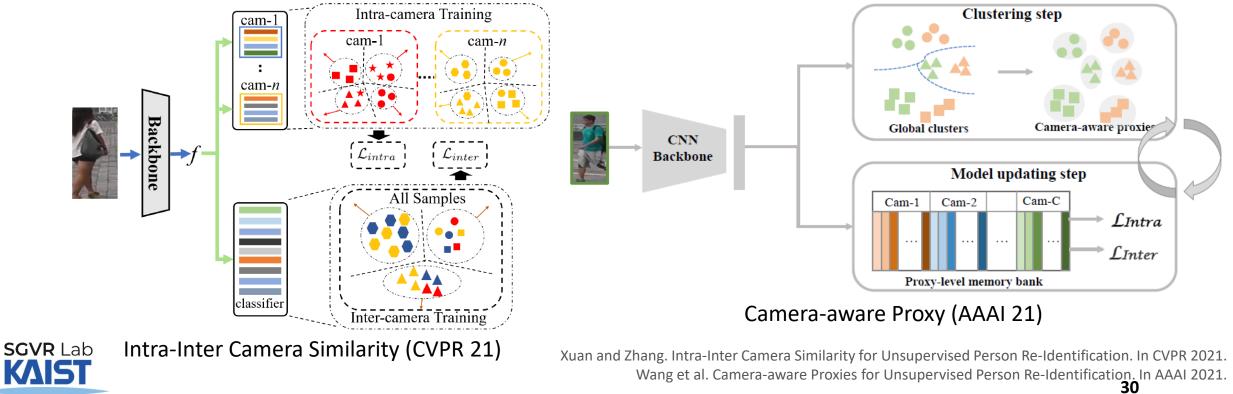
Cluster-based Contrastive Learning

- Key idea: Utilize clustering results for contrastive learning which is demonstrated its effectiveness in various unsupervised (self-supervised) tasks.
- Apply a contrastive learning in cluster-level.



Camera-based Approaches

- Key idea: Camera labels are easy to obtain and can be used for re-ID training.
- Apply intra-camera level training and inter-camera level training.
- Directly reduce the intra-class variance by different camera views.



Generalizable Person Re-identification

Recent techniques for domain generalizable approaches

Domain Generalization (DG) Problem

- Trained re-ID models show degraded performance in unseen domains.
- Practically, it is not easy to train a re-ID model according to each environment (domain).
 - High cost (e.g., GPU, engineering, ...) is required.
 - \circ Data collection problem w/ privacy issues.

Figure 1. Performance of two representative models. M: Train and test on Market1501. $M \rightarrow G$: Trained on Market1501 and tested on GRID . MS $\rightarrow G$: Trained on multi-source datasets and tested on GRID.

32 Zhang et al. Learning Domain Invariant Representations for Generalizable Person Re-Identification. arXiv preprint arXiv:2103.15890.

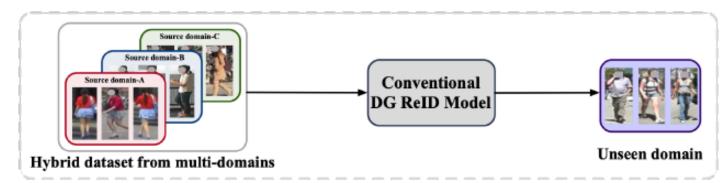
Generalizable Person Re-identification

• In contrast to most DG studies focusing on close-set scenarios, *generalizable person re-ID focuses on the open-set problem*.

(a) Digits

(b) VLCS

(c) PACS



SGVR Lab

Zhou et al. Domain Generalization in Vision: A Survey. arXiv preprint arXiv:2103.02503. Wang et al. Camera-aware Proxies for Unsupervised Person Re-Identification. In AAAI 2021. 33

Generalizable Person Re-identification

- Generalizable person re-ID aims to solve "Domain Generalization (DG)" for person retrieval.
- What makes it challenging?
 - Each dataset (domain) has different characteristics.
 - Season(Weather), Viewpoint, etc.

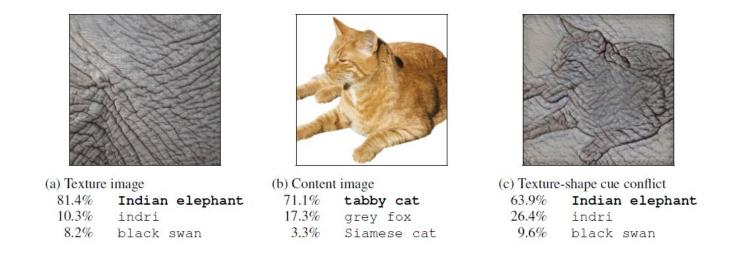
Market-1501

Problem Setting

- Goal: Learn representations with good generalization capability on unseen target domains.
- Protocol: Training on source domain with labels → Testing on unseen target domains.
- Challenges: Domain gap between source and target domains.

Style Normalization-based Approaches

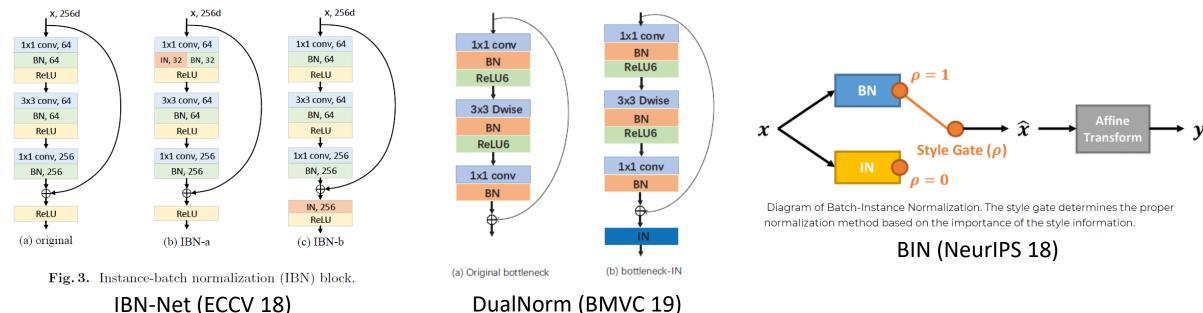
• CNNs are strongly biased to style (texture) of images.



• Style normalization-based approaches claim that "Style differences between the domains make a domain gap".

Style Normalization-based Approaches

- Key idea: Reduce style variations via a feature normalization.
- Style Normalization can be achieved by Instance Normalization (IN).
- Some works train a style-invariant network by using both BN and IN.

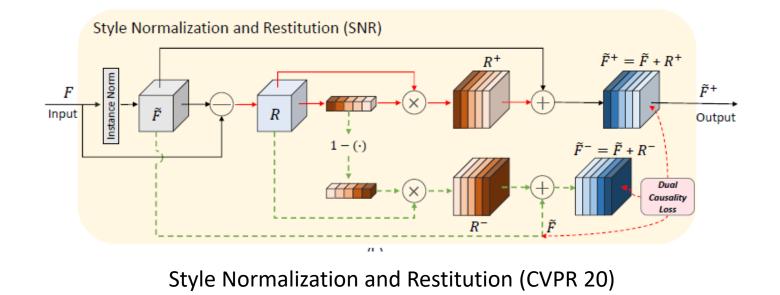


DualNorm (BMVC 19)

Pan et al. Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net. In ECCV 2018. Jia et al. Frustratingly Easy Person Re-Identification: Generalizing Person Re-ID in Practice. In BMVC 2019. Nam et al. Batch-Instance Normalization for Adaptively Style-Invariant Neural Networks. In NeurIPS 2018. 37

Style Normalization-based Approaches

- Style normalization also can remove the discriminative information.
- SNR (CVPR 21) disentangles identity-relevant and –irrelevant features.



SGVR Lab

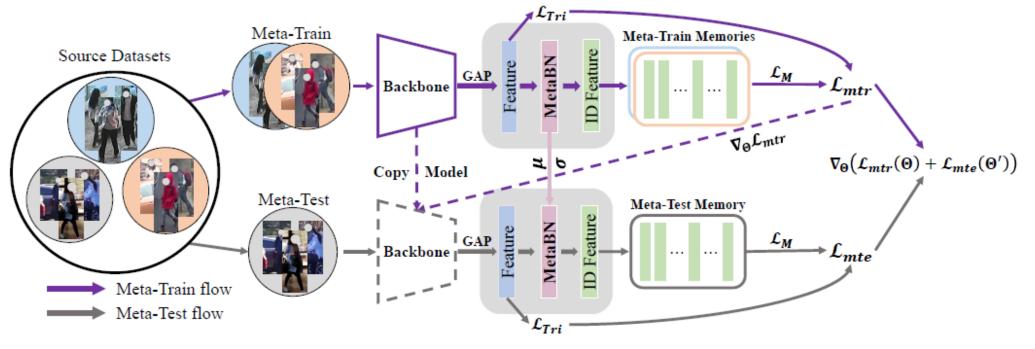
Jin et al. Style Normalization and Restitution for Generalizable Person Re-identification. In CVPR 2020. Choi et al. Meta Batch-Instance Normalization for Generalizable Person Re-Identification. In CVPR 2021.

Meta Learning-based Approaches

- Meta learning approaches adapt the concept of "learning to learn" to simulate the train-test process of domain generalization scenarios.
 - $\,\circ\,$ Make the training process like a domain generalization task.
- It divides given datasets into a meta-train domain and a meta-test domain.
- Meta learning process can be divided into "meta-train" and "meta-test".
 Meta-train = conventional re-ID training.
 - \circ Meta-test = domain generalization training.

Meta Learning-based Approaches

 Compute the loss on a meta-test domain with the trained model in a meta-train domain.

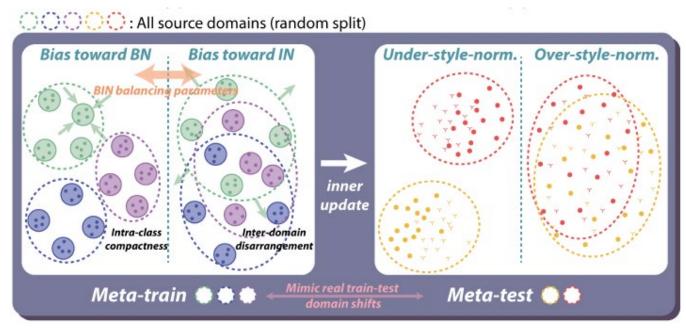


Memory-based Multi-Source Meta-Learning (CVPR 21)

Zhao et al. Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification. In CVPR 2021.

Hybrid Approaches

MetaBIN (CVPR 21) trains a style normalization module by meta learning pipeline.
 Train BIN (Batch-instance normalization) parameters in a meta learning manner.



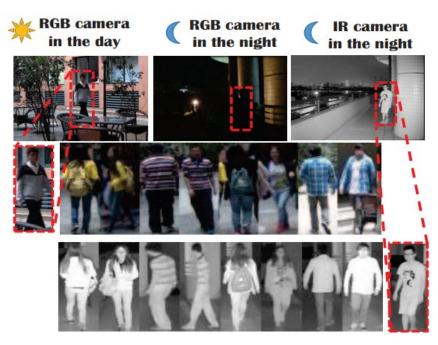
MetaBIN (CVPR 21)

Conclusion

- Person re-ID aims to retrieve a person corresponding to a given query across disjoint camera views or different time stamps.
 - Large intra-variation & Small inter-variation, Open-set, Data collection, ...
- Supervised approaches.
 - Part feature learning, Attention mechanism, Feature disentanglement, ...
- Unsupervised approaches.
 - Pseudo-label refinement, Cluster-level contrastive learning, ...
- Domain generalizable approaches.
 - $\,\circ\,$ Style normalization, Meta learning, ...

Conclusion

- Other research topics for practical usage of person re-ID techniques.
 - Continual (incremental) learning.
 - \odot Occluded person re-ID.
 - $\,\circ\,$ Cross-modality person re-ID.



Cross-modality person re-ID

Zhuo et al. Occluded Person Re-identification. In ICME 2018. Wu et al. RGB-Infrared Cross-Modality Person Re-Identification. In ICCV 2017.

Q&A

Thank You!

