Heterogeneous Parallel Computing for Rendering Large-Scale Data

Sung-eui Yoon

Associate Professor KAIST

http://sglab.kaist.ac.kr

Acknowledgements

Collaborators

- My students, M. Gopi, Miguel Otaduy, George Drettakis, SeungYoung Lee, YuWing Tai, John Kim, Dinesh Manocha, Peter Lindstrom, Yong Joon Lee, Pierre-Yves Laffont, Jeong Mo Hong, Sun Xin, Nathan Carr, Zhe Lin
- Funding sources
 - Boeing, Adobe, Samsung
 - AMD, Microsoft Research Asia
 - Korea Research Foundation
 - MSIP, IITP

Past: Rendering Massive Geometric Data

Boeing 777, 470 M tri.

Large-scale virtual world, 83 M tri.

Over 3 Terabytes of geometric data

Scanned model, 372 M tri. (10 GB)

Present: Scalable Ray Tracing, Image Search, Motion Planning

Designing scalable graphics and geometric algorithms to efficiently handle massive models on commodity hardware

Photo-realistic rendering

Image search

Motion planning

Recent Hardware Trends

Multi and many cores

- CPUs and GPUs are increasing the # of cores
- Heterogeneous architectures
 - Intel Sandy Bridge, AMD Fusion, and Nvidia Tegra embedded chips

Images from NVIDIA

- Previous approaches
 - Utilize either multi-core CPUs or GPUs

Hybrid Parallel Computation for Proximity Queries

- Our initial work: manually assign jobs of continuous collision detection to CPUs and GPUs
 - Received a best paper award at Pacific Graphics, 09
- A general, job distribution algorithm for CPUs and GPUs [Kim et al., TVCG 13, Spotlight paper]

Motion planning [Lee et al., ICRA 12] I Out-of-Core Proximity Computation for Particle-based Fluid Simulations [Kim et al., HPG 14]

Two hexa-core CPUs w/ 192 GB RAM GeForce GTX 780) with 3 GB video RAM

 Map CPU memory space into GPU memory address space

Up to 65.6 M Particles Maximum data size: 13 GB

Heterogeneous Parallel Computing for Rendering

- T-ReX: Interactive Global Illumination of Massive Models on Heterogeneous Computing Resources, IEEE TVCG 2014
 - Manually assign tasks to CPUs and GPUs
 - Source codes are available
- Timeline Scheduling for Out-of-Core Ray Batching, High Performance Graphics (HPG), 2017
 - Automatic task assignment for high performance

T-ReX: Interactive Global Illumination of Massive Models on Heterogeneous Computing Resources

Tae-Joon Kim*, Xin Sun§, and Sung-Eui Yoon* KAIST*, Microsoft Research Asia§

IEEE Transactions on Visualization and Computer Graphics (TVCG), 2014

Project Homepage with Codes: <u>http://sqlab.kaist.ac.kr/T-ReX</u>

Global Illumination

Enormous computation is necessary

Interactive Global Illumination

- Utilize GPU
- Use sparse voxel octrees
- Model complexity < 10 M tris.</p>

Interactive Indirect Illumination Using Voxel Cone Tracing [Crassin et al., PG11]

Massive Models

 Due to advances of modeling, simulation, and data capture techniques

CAD oil tanker, 82 M tri. (4 GB)

Scanned model, 372 M tri. (10 GB)

Boeing 777, 366 M tri. (20 GB)

Long data access time and low I/O performance

Motivation

- Global illumination of small models can be done interactively
 - Thanks to advance of GPU architecture
- Interactive global illumination with massive models is still challenging
 - Maximize computation throughput
 - Minimize I/O requirement

Heterogeneous Computing Resources

	С	P۱	U		
	Memor	y Cor	ntroller		5 6
M sc Core O	Core	Queu	Core	Core	
P 1 0	Shared	L3 C	ache		P I 1

4 ~ 200 GB memory

2 ~ 8 GB memory

Observation

 Global illumination effect is less sensitive to geometry details

Our Approach

Hybrid approach

Geometric representation (full detailed, large)

Compute direct illumination

No mesh data trans. Volumetric representation of sparse voxel octree (approximated, small)

GPU

Compute indirect illumination

Approximated Illumination

Raw Aftesh shadahigation

Approximated voxel representation

Results

Outline

 Use photon mapping for rich visual effects e.g., color bleeding

- Classify rays into fitting processors
 - Each class of ray uses representation

Ray Classification

C-rays

- More sensitive to geometry details
- Generates high-frequency visual effects
- The primary rays and their secondary rays reflected on perfect specular materials

Ray Classification

G-rays

- Less sensitive to geometry details
- Generates low-frequency visual effects
- Any rays other than C-rays (e.g., gathering rays, shadow rays)

Data Representations

Augmented Sparse Voxel Octree (ASVO)

- GPU side volumetric representation for G-ray
- Efficiently traversed in GPU
- Approximated geometry & photon map

HCCMeshes [Kim et al. Eurographics'10]

- High quality geometry for C-ray
- Random-accessible compression (7:1 ~ 20:1)
- Supports high performance decompression

Rendering Process

Results

- Interactive responsiveness
 - About 30 ms response time for dynamic changes on cameras, materials, and lights
- High performance
 - 3 M ~ 20 M rays/s
- High complexity
 - Up to 470 M triangles

Results

- Test environment (PC)
 - Intel Core i7 CPU (hexa-core) w/ 8 GB RAM
 - NVIDIA GTX 680 card with 2 GB DRAM 15% of GPU memory was allocated for upper ASVO
- Boeing 777 model benchmark
 - 366M Triangles
 - 15.6 GB mesh + 21.8 GB BVH for raw model
 - 6.55 GB for HCCMesh
 - 11 area lights (generated 5 M photons each)

Comparison

- 3.9 times improvement over CPU-only implementation
 - Same algorithm, but running on CPU only
 - Main memory holds both representations (HCCMeshes, ASVOs)
- 135 times improvement over simple photon mapping on CPU
 - Using HCCMeshes only

Demonstration

Progressive Rendering

Progressively refine the frame

Quick Benchr	nark Setting	Boeing 777				•
Visualize Emitters			Col	trol	Render	
Screen Shot	E:₩My Docu	ments₩My Pic	ture	Chang	e Folder	Screen Shot
Camera L	ight Materia	i				
Name	0_cockpit				0_cabin	Car
Eye	205.183884	243.416656	-9.24	2603	0_enginas	Car
Center	204.231430	243.203934	-9.02	4444	0_overvie	ew Car
Ue	0.00000	1 000000	0.000	000	Camera2	Car
Up	0.00000	1.000000	10.000	0000	Camera3	Car
Fovy	70.529312	Aspect ratio	1.000	0000	Camera4	Car
zNear	0.100000	zFar	3543	183.25	Camera6 Camera7	Car
Move	Save	Current View	1		< [11]	•
Control s	ensitivity	10-1			~	10.
Dolly	1.771		Rota	te 0.01		
Pan	354.3	<u> </u>				
Camera file	D:₩Scenes	s₩boeing777.	ply.oo	c,camera	a	.oad Camera
325	-7	Hit point				
Hit material		Hit normal				

Materials Changes

	Q
	Г
	S
And the second se	Ľ
	L
and the second s	
	L
A CARLES AND A C	L
	Ē
Avg. Resp. T: 27.2 ms	н

Quick Bench	mark Setting					
Visualize Emitters Screen Shot E:\My Documents\My Picture			Coltrol		Render	
			Picture	Change Folder		Screen Shot
Camera	Light Materia	4				
Name	0_cockpit				0_cabin	Car
Eye	205.183884	243.41665	6 -9.24	2603	0 engine	t Car E Car
	Land shares	1	-		0_overvi	ew Car
Center	204.602554	243.213/1	15 -8.45	4650	Camera 1	Car
Up	0.000000	1.000000	0.00	0000	Camera2	Car
-	70 500340	i	1		Camera4	Car
Fovy	/0.529312	Aspect rat	10 1.000	0000	Camera 5	Car
zNear	0.100000	zFar	3543	183.25	Camera6 Camera7	Car Def
Move	e Save	Current Viev	~		× III	•
Control	sensitivity	10	bx.		~	10x
Dolly	1.771 -		Rota	e 0.01	<u>o</u>	
Cony		_		- 10.01		
Pan	354.3	- 1	1			
Camera fi	D:₩Scene	s₩boeina77	77.plv.oo	.camer	a	Load Camera
-connerd fi	- 1					and a second
308	211	Hit point	171.040	924 23	9.523804	25.428127
lit material	4764	Hit normal	0.97248	0 0.0	014776	0.232519

Lights Changes

Quick Bench	mark Setting						
✓ Visualize Emitters Screen Shot E:₩My Documents₩My Pic				Coltrol Change Folder		Render Screen Shot	
			cture				
Camera	Light Materia	le					
Name	0_cabin				0_cabin	Car	
Eye	541.881165	229.790237	10.9	15815	0 engine	t Car Car	
			-		0_overvi	ew Car	
Center	542.877502	229.875565	10.908806		Camera 1	Ca	
Up	0.000000	1.000000	0.000000		Camera2	Ca	
op.					Camera3	Ca	
Fovy	70.529312	Aspect ratio	1.000000 3543183.25		Camera5	Ca	
zNear	0.100000	zFar			Camera6	Ca	
Move	save	Current View				+	
Control	sensitivity	10x				10x	
Dolly	1.771	— ÷	Rota	te 0.01	ōī —	—] 🗄	
Pan	354.3	<u> </u>					
Camera fi	e D:₩Scene:	s₩boeing777.	ply.oo	c.camera		Load <mark>Ca</mark> mera	
249	292	Hit point 70	6.118	530 22	7.520248	6.600344	
lit material	8659	Hit normal -0	.89089	8 0.4	154204	0.000134	

Conclusion

- Present an integrated progressive rendering framework for global illumination of massive models
 - Use a decoupled representation: HCCMeshes in CPU and ASVOs in GPU for handling large-scale models
- Reduce expensive transmission costs and achieve high utilizations for CPU and GPU

Limitations

- Volumetric representation
 - Biased and inconsistent
 - Spans more space than its geometric model

Point light sources

Highly glossy materials

High-Performance Graphics 2017

Los Angeles | July 28-30, 2017

TIMELINE SCHEDULING FOR OUT-OF-CORE **RAY BATCHING**

Myungbae Son

Sung-EuiYoon

SGVR Lab KAIST

Computing

Our Scenario

- Complex scenes
 - Out-of-core model: Too big data!
 - Cannot be stored in main / GPU memory
- Complex device configurations
 - Distributed memory cluster system
 - Client-assisted remote rendering
 - Renderfarm of heterogeneous devices

Boeing 777, 366 M tri. (20 GB)

School of **Computing**

> 3 8

Challenges

- Massively complex scene
 - Over **96%** of runtime is spent on I/O in naïve BDPT (Boeing777)

Challenges

Complex and heterogenenous device configurations...

Challenges

Further down to the processor and memory hierarchy level...

- Different processors
- Different memory channels
- Different nodes and network

School of Computing

Goal & Contributions

Design a scheduler for global illumination

- Processes massive models
- Supports variety of computing environments
 - Complex and heterogeneous device configurations

Our contributions

- A modeling technique: device configurations and jobs
- A scheduling algorithm: Greedy Makespan Balancing (GMB)
- An adaptation to path tracer

OURAPPROACH

Our Approach

- Formulation technique for MC ray tracing jobs Device Connectivity Graph (DCG) and Timing Model
- Timeline scheduling and Greedy Makespan Balancing algorithm Simple, iterative algorithm that considers utilization and latency hiding
- Adaptation to actual renderer framework Out-of-core path tracer

4

Formulation: Device Connectivity Graph

- Graph of memory devices
 - Memory Disk storage, RAM, GMEM
 - Connections (Channels) PCIe (RAM \leftrightarrow GMEM) SATA (Disk \leftrightarrow RAM) LAN (RAM \leftrightarrow RAM)

. . .

School of

Computing

KAIST

Stores bandwidth information

Node0 Node1 GPU0 GPU0 PUMem(GPUMem(PCIe PCIe GPUn GPUn GPUMemn GPUMem*n* Main Main LAN Memory Memory Disk Disk SATA SATA Ħ $\langle \rangle$ -----Compute-memory Memory-memory Memory device Compute device communication attachmen

Formulation: Timing Model

• Assume simple yet efficient linear model on time

• Job execution
$$T_{EXEC}(d, j, W) = \begin{cases} 0, & \text{if } W = \emptyset \\ T_{SETUP}(d, j) \\ + T_{RATE}(d, j) \cdot (|w_1|, |w_2|, ...), & \text{otherwise} \end{cases}$$

- Data transfer $T_{TRANS}(d_i \rightarrow d_j, w) = T_{LAT}(d_i \rightarrow d_j) + \frac{|w|}{T_{BW}(d_i \rightarrow d_j)}$
- Fitting each parameter ($T_{SETUP}, T_{RATE}, T_{LAT}, T_{BW}$)
 - Use least squares method on test run

School of

Computing

KAIS

Our Approach

- Formulation technique for MC ray tracing jobs Device Connectivity Graph (DCG) and Timing Model
- Timeline scheduling and Greedy Makespan Balancing algorithm Simple, iterative algorithm that considers utilization and latency hiding
- Adaptation to actual renderer framework Out-of-core path tracer

School of

Timeline Scheduling

School of

Computing

KAIS

• A representation of schedule with timing constraints

<u>*Def.*</u> schedule: a set of timelines that jobs and fetches are allocated

Greedy Makespan Balancing Algorithm

Greedy Makespan Balancing Algorithm

Greedy Makespan Balancing Algorithm

Our Approach

- Formulation technique for MC ray tracing jobs Device Connectivity Graph (DCG) and Timing Model
- Timeline scheduling and Greedy Makespan Balancing algorithm Simple, iterative algorithm that considers utilization and latency hiding
- Adaptation to actual renderer framework Out-of-core path tracer

20

Out-of-core Path Tracer Jobs

Benchmark scene

Boeing777 (26.5GB, 496M tri, 5.2sec/img)

SponzaMuseum (12.3GB, 245M tri, 34.8 sec/img) $(800 \times 800 \times 32spp \times 60 frames)$

- Model preparation
 - Even-sized median-split kdtree, 27 / 26 subdivision, respectively

KAIST Sc

School of Computing

55

Efficiency on Data Fetching

• Central scene DB scenario

- Initially no data at slave nodes at all
- The master node gives scene data blocks on-demand

School of Computing

58

Efficiency on Data Fetching

Conclusion

- Presented specification techniques for out-of-core MC ray tracing on arbitrary hardware setup
 - DCG and timing model
- Presented a timeline based scheduling algorithm
 - GMB algorithm
- Applied to the out-of-core path tracer
 - Prediction technique for future rays

School of Computing

- Two different techniques, manual assignment and automatic approaches, for large-scale rendering
- Released a free book on rendering
- Working on a journal version of our tutorial

