
Ray Distribution to Parallel Batching-based Updates

Youngsun Kwon1 and Sung-eui Yoon2

Abstract— We propose a novel approach to distribute rays
associated with point clouds for efficiently updating tree-
based occupancy maps in parallel. In this paper, we utilize
threads to batch a set of cells independently, although some
of those cells are overlapped among threads, for exploiting the
high computational power of multi-threading. To compensate
redundant updates caused by having the overlapped cells,
we propose a k-d tree based method to distribute rays for
minimizing the redundant updates. In addition, we define a
workload that each thread processes as the number of cells
to be batched. Based on the definition, our method distributes
the workload to threads uniformly for efficiently performing the
batching process in parallel. We test our method into a corridor
benchmark, and achieve 5.2 times performance improvement
on batching process using 8-threads, resulting in up to 2.0 times
performance improvement on overall updates, over the state-
of-the-art update method for octree-based occupancy maps.

I. INTRODUCTION
Many robotic systems use point clouds data for sensing

and understanding their environments. The point clouds con-
sists of a large amount of points providing useful geometric
information of environments, which also comes with various
levels of sensor noise. However, it is difficult to use the data
directly in applications such as motion planning or collision
detection, because of the large amount of generated data as
well as the noise.

To address these issues, various occupancy maps such as
grids [1] and octrees [2] have been proposed as representing
the geometric information and uncertainty of point clouds.
Among those occupancy maps, tree-based maps such as
quadtrees and octrees are used for reducing the memory
requirement and accelerating the performance of applications
such as collision detection. Unfortunately, constructing those
maps out of point clouds can take a long time for maintaining
the tree-based structures.

To improve the performance of building such occupancy
maps, Hornung et al. [2] proposed a method to batch a
set of cells to be updated before updating the map. In the
batching-based updates, a set of cells that rays traverse can
be found in parallel, but at least one of those cells found
in threads overlaps, i.e. a cell containing the sensor origin.
Thus batching the traversed cells need to be processed in
serial, to merge the set of cells found in threads. While
the batching process improves the overall performance of
updates, the batching process can be still slow (e.g., 75%
of overall update time as shown in Fig. 3-b)) for large-
scale point clouds and be the computational bottleneck of
the batching-based updates for tree-based occupancy maps.

1Youngsun Kwon and 2Sung-eui Yoon are at School of Comput-
ing, KAIST, Daejeon, Korea; youngsun.kwon@kaist.ac.kr,
sungeui@kaist.edu

Main contributions In this paper, we propose a novel
method to parallelize the batching process for fast updating
a tree-based occupancy map. For exploiting a high compu-
tational power of multi-threading on the batching process,
we assign each thread to batch the traversed cells, while
allowing some of those cells to be overlapped instead of
imposing the locking mechanism. Furthermore, we define a
workload for batching as the number of traversed cells, and
then balance the workload to be assigned to each thread.
We aim to efficiently consider those issues of minimizing
the number of overlapped cells and balancing the workload
for each thread together, and thus we propose an efficient
k-d tree based method to distribute rays of point clouds to
threads.

To demonstrate benefits of our methods, we test it with a
public dataset for an octree-based occupancy map according
to various resolutions as well as the various number of
threads. We found that our method is practical enough to
exploit the high computational power of multi-threading.
Our method shows 5.2 times performance improvement on
batching process when we use 8-threads, which results in the
1.8 times performance improvement of overall updates.

II. RELATED WORK AND BACKGROUND

When we have a point from a sensor, the point implies
that the space between the sensor origin and the point is
collision-free. To reflect the information on occupancy maps,
we associate a ray traversing cells of the map from the sensor
origin toward the point. The cell containing the end point of
the ray is updated to have an occupied state, and the other
traversed cells are updated to have a free state. This process
of traversing cells from a ray is similar to ray tracing that
has been studied in the graphics literature [3], [4].

In the robotics, a recent occupancy map, OctoMap [2],
uses the 3DDDA based algorithm [3] for updating the map
with point clouds. The data captured by a sensor has uncer-
tainty from sensor noise, unlike data representations (e.g.,
triangles) in the graphics field. A cell of maps, therefore, has
an occupancy probability representing an occupancy state of
the cell such as occupied or free states, where the probability
is modeled by the Bayes rule given sensor measurements
from the initial time step 1 to the current time t.

Some works proposed a simple update expression using
the log-odds notation for fast updates; the detailed informa-
tion for the occupancy probability is available in the prior
works [2], [5], [6]. Based on the model, recent work [2], [7]
proposed methods to improve update performance of grid or
tree-based occupancy maps.

X

Y a)

b)

c) θ

0 π/2

b)c) a)

Polar Coordinate
with Unit Radius

Sensor Coordinate in 2D

O

Fig. 1. This figure shows an observation that rays, associated with adjacent
points in the polar coordinates, traverse a similar set of cells. The three rays
– a), b), and c) – staring from the sensor origin O are mapped onto an unit
circle represented by red dotted circle. In the polar coordinate, the mapped
points associated with the three rays are shown as the blue lines.

III. REAL-TIME UPDATES USING PARALLELIZATION

A. Motivations

Unlike grid-based occupancy maps, tree-based maps such
as quadtree and octree should update the occupancy probabil-
ities of cells from a leaf to the root for maintaining the tree-
based structure. When multiple rays try to update the same
leaf cell, it results in repeated accesses from the leaf to all
the parent cells and can be even an computational bottleneck
of updating those maps. To avoid the duplicated accesses,
prior work [2] proposed a method to batch a set of leaf cells
that rays traverse before updating the occupancy maps. The
batching-based method updates tree-based maps in a single
time using the batched cells, improving the performance of
updating tree-based occupancy maps.

Unfortunately, an overhead of batching cells can take
a large portion of the total time of updating maps. The
batching-based method can find cells that rays traverse in
parallel. However, the same cell found in different threads,
e.g., the cell containing the sensor origin, requires a lock on
the cell for merging the information, i.e., counting the num-
ber of access to the cell, from those different threads. It has
been well known that locking deteriorates the performance
of parallel computing [8]. Ideally, we would like to design
a lock-free technique for batching a set of cells in a parallel
manner, to achieve high parallel performance.

B. Overview of Our Approach

For achieving high performance of updating tree-based
occupancy maps, we propose an efficient, lock-free method
to process the batching process in parallel. Specifically, we
let each thread to have its own set of traversed cells for
batching, and run different threads in a parallel manner. This
approach may result in having an extra memory space on
maintaining duplicate cells across different threads, but we
can avoid any locks. In terms of the update process, those
duplicate cells batched in multiple threads can make repeated
access to parents of those cells, then giving rise to inefficient
updates. Therefore, we propose a method to distribute rays
of point clouds to threads using a k-d tree for minimizing the
number of duplicate, overlapped cells (Sec. III-C). In addi-
tion, we define a workload as the number of traversed cells
to be batched in a thread, and then balance the workloads

θ

φ

thread1

thread2 thread3

thread4

φ

θ

a) b)

c) d)

θ

φ

θ

φ

Fig. 2. These figures show an example process to cluster given points in
the spherical coordinate using our criterion on workload. b) represents the
first step of clustering given points shown in a). We create a bounding box
of the points, and then partition the box into two boxes using our criterion.
c) recursively repeats the process using the points clustered in the first step.
The final output is shown in d) represented by four green boxes, where rays
associated with the points within each box are assigned to each thread.

of threads during distribution for efficient parallel batching
process (Sec. III-D). As a result, our method reduces the
batching time and improves the overall performance thanks
to lock-free and thus efficient multi-threading.

C. Ray Distribution using K-D Tree

In general, rays associated with point clouds are defined in
the sensor coordinate. To minimize the number of overlapped
cells to be batched in threads, we should cluster the rays that
traverse a similar set of cells. As shown in Fig. 1, we observe
that rays traversing similar cells are mapped onto adjacent
points on the surface of unit circle for 2D case (or sphere
for 3D), where the surface can be represented as the polar
or spherical coordinate system with unit radius.

In the example of Fig. 1, the end point of ray b) is closer
to the end point of ray c) than that of ray a). However, ray
b) traverses more similar cells to ray a) than ray c). This
pattern is more easily identified in the polar coordinate than
the original, sensor coordinate. Note that ray b) is closer to
ray a) than ray c) in the polar coordinate.

Based on our observation, we associate rays with points
in the polar or spherical coordinate with unit radius. In this
space, we cluster the adjacent points and assign them to
a thread. In this way, we can have similar access pattern
for each thread and thus have dissimilar patterns between
different threads, reducing the number of overlapped cells
among threads.

To cluster the points efficiently, we use a space-
partitioning algorithm based on the k-d tree. As an example
shown in Fig. 2, we make a bounding box from given points
in the spherical coordinate, and can then partition the box
along the orthogonal direction to its longest edge; the detail
partitioning method is discussed in the next section. Our
method recursively performs partitioning until we get the
same number of boxes to the number of threads. Finally, each
thread batches cells in parallel using the rays associated with
the distributed points within a bounding box, as minimizing
the number of overlapped cells.

0

15

30

45

60

75

90

0.2 0.4 0.6 0.8 1

A
v

g
.

u
p

d
a
te

 s
p

e
e
d

 [
F

P
S

]

Resolution [m]

Ours w/ WB

Ours w/o WB

Batching [2]

(a) Update Speed

0

5

10

15

20

25

30

35

Batching Ours w/o
WB

Ours w/
WB

T
im

e
[m

s]

Updating
Clustering
Ray-Tracing
Batching

(b) Time Breakdown

Fig. 3. These figures show performance of updating an octree-based
occupancy maps in the dataset using 8-threads. We measure the average
performance according to various resolutions for different methods in figure
a). Also, we report the average breakdown of the total time taken for
updating the map with 0.6m resolution in figure b). WB indicates our
workload balancing method.

D. Partitioning for Workload Balancing

In the prior method, we discussed how to distribute rays
based on the k-d tree. Nonetheless, we did not detail our
chosen partitioning method for a box containing ray points.
In a simple way, we can partition a bounding box using
a criterion such as the middle point of the longest edge.
However, that approach is not the best choice for our
parallelization, especially in a case that one of threads has
an excessive amount of heavy workload compared to others.
We therefore propose a new criterion used in partitioning
step for exploiting the high parallelization power.

We observe that the time to batch a set of cells that a ray
traverses depends on the number of traversed cells. Using the
observation, we define a workload of thread as the number of
cells to be batched in the thread. By adopting the definition of
workload as a criterion of partitioning, our method partitions
a given box into two boxes with the same workload.

Finally, our method clusters sets of rays having the equal
workloads, and then assigns threads to batch those sets,
resulting in high parallelization performance.

IV. RESULTS AND DISCUSSIONS

We use a machine that has 3.4GHz Intel i7-4770 CPU
(maximum 32-threads) for our experiments. To compare the
performance of proposed methods, we use a public dataset
used in the prior work [2]. The dataset consists of 66 scans
captured in a corridor and the point clouds has 89,445 points
on average. We compare our workload balancing (WB)
against a simple partitioning method breaking the longest
edge of each bounding box through its middle point.

We compare the performance of our methods and the
batching-based update method proposed in OctoMap [2]. In
the tests for performance, we use octree-based occupancy
maps with default parameters such as inverse sensor model
provided in the OctoMap library. We report the overall
performance of methods as the average Frame Per Second
(FPS) on the 66 scans (frames) in Fig. 3-a). We also report
the time distribution to perform each component of ours and
the batching method in Fig. 3-b).

Fig. 3-a) shows the update speed of the methods using
8-threads. In the settings, our methods show the higher per-

TABLE I
THIS TABLE SHOWS THE PERFORMANCE[FPS] OF UPDATING

ACCORDING TO VARIOUS NUMBERS OF THREADS.

OctoMap with 0.6m resolution

Overall performance [FPS]

of threads 2 4 8 16 32

Batching [2] 48.3 42.7 39.1 38.5 39.3

Ours w/o WB 52.8 52.5 50.1 52.6 56.7

Ours w/ WB 54.3 67.8 72.1 74.6 78.2

formance than the state-of-the-art method. Compared to the
prior work, our method without workload balancing shows
up to 1.4 times performance improvement on the overall
updates. As shown in Fig. 3-b), we improve performance
2.8 times on batching process (from 22.3ms to 7.3ms), with
a few overhead, 2.7ms, to distribute the rays.

Furthermore, our method with workload balancing (the
red line in the Fig. 3-a)) shows the best performance in
all the tests. Using our workload balancing criterion, we
achieve 5.2 times performance improvement on the batching
process compared to the prior work, reporting the time
decrease from 22.3ms to 4.3ms. As a result, our method
with workload balancing provides up to 2.0 times overall
performance improvement over the state-of-the-art method.

Table I shows overall performance of updates according
to the various number of threads. In the all tests, we achieve
the 1.3 and 1.7 times performance improvement on average,
without and with our workload balancing, respectively. In
this result, our method shows the high performance as the
number of threads increases. In particular, our method with
workload balancing outperforms other methods thanks to
better exploiting the high-computational power of multi-
threading.

ACKNOWLEDGMENT

This work was supported in part by MI/KEIT 10070171
and MSIP/IITP [R0126-17-1108].

REFERENCES

[1] H Moravec, “Robot spatial perceptionby stereoscopic vision and 3d
evidence grids”, Perception,(September), 1996.

[2] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and
Wolfram Burgard, “OctoMap: An efficient probabilistic 3D mapping
framework based on octrees”, Autonomous Robots, 2013.

[3] John Amanatides, Andrew Woo, et al., “A fast voxel traversal algorithm
for ray tracing”, in Eurographics, 1987, vol. 87, p. 10.

[4] Steven Parker, Michael Parker, Yarden Livnat, Peter-Pike Sloan, Charles
Hansen, and Peter Shirley, “Interactive ray tracing for volume visual-
ization”, Visualization and Computer Graphics, IEEE Transactions on,
vol. 5, no. 3, pp. 238–250, 1999.

[5] Alberto Elfes, “Using occupancy grids for mobile robot perception and
navigation”, Computer, vol. 22, no. 6, pp. 46–57, 1989.

[6] Hans P Moravec and Alberto Elfes, “High resolution maps from wide
angle sonar”, in Robotics and Automation. Proceedings. 1985 IEEE
International Conference on. IEEE, 1985, vol. 2, pp. 116–121.

[7] Youngsun Kwon, Donghyuk Kim, and Sung-eui Yoon, “Super ray based
updates for occupancy maps”, in Robotics and Automation (ICRA),
2016 IEEE International Conference on. IEEE, 2016, pp. 4267–4274.

[8] Duksu Kim, Jae-Pil Heo, Jaehyuk Huh, John Kim, and Sung-Eui Yoon,
“HPCCD: Hybrid parallel continuous collision detection”, Comput.
Graph. Forum (Pacific Graphics), vol. 28, no. 7, 2009.

