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Figure 1: The left and right images show the results of our method applied to path tracing and photon mapping respectively. The left image shows a St. Matthew model, two Lucy, and
two David models in a Sponza model. This scene consists of 104 million triangles, requiring 12.8 GB for the original meshes and their acceleration hierarchies. The right image shows
a transparent St. Matthew model in the Cornell box with two transparent dragon models. This scene has 128 M triangles and takes 15.7 GB. These two global illumination methods
generate many incoherent rays to render these images. By reordering such rays, we achieve more than one order of magnitude performance improvement in a machine with 4 GB main
memory, compared to without reordering rays. This performance improvement is caused by the improved ray coherence, which results in reducing cache misses for the L1/L2 caches,

main memory, and disk during the ray tracing.

Abstract

We present a novel, cache-oblivious ray reordering method for ray
tracing. Many global illumination methods such as path tracing and
photon mapping use ray tracing and generate lots of rays to simulate
various realistic visual effects. However, these rays tend to be very
incoherent and show lower cache utilizations during the ray tracing
of models. In order to address this problem and improve the ray
coherence, we propose a novel hit point heuristic (HPH) to com-
pute a coherent ordering of rays. The HPH uses the hit points be-
tween rays and the scene as a ray reordering measure. We reorder
rays by using a space filling curve based on their hit points. Since
a hit point of a ray is available only after performing the ray inter-
section test with the scene, we compute an approximate hit point
for the ray by performing an intersection test between the ray and
simplified representations of the original models. Our method is a
highly modular approach, since our reordering method is decoupled
from other components of common ray tracing systems. We apply
our method to photon mapping and path tracing and achieve more
than an order of magnitude performance improvement for massive
models that cannot fit into main memory. Also, our method shows
a performance improvement even for ray tracing small models that
can fit into main memory. This performance improvement for small
and massive models is caused by reducing cache misses occurring in
the L1/L2 caches, main memory and disk. This result demonstrates
the cache-oblivious nature of our method, which works for various
kinds of cache parameters. Because of the cache-obliviousness and
the high modularity, our method can be widely applied to many ex-
isting ray tracing systems and show performance improvements with
various models and machines that have different caches.

1 Introduction

Ray tracing has been widely used as the main rendering engine of
various global illumination methods (e.g., path tracing and photon
mapping). Typically, ray tracing generates lots of primary, sec-
ondary, and shadow rays, in order to simulate realistic rendering

effects (e.g., soft shadows, reflections, caustics, motion blur, etc.).
However, ray tracing has been still known to be slow to provide these
realistic visual effects.

In order to improve the performance of ray tracing, a lot of studies
have been done on designing efficient intersection tests, construct-
ing efficient acceleration hierarchies, and exploiting data-level paral-
lelism using the SIMD functionality and GPUs [Shirley and Morley
2003; Pharr and Humphreys 2004; Wald et al. 2007]. Most research
has focused on improving the performance of ray tracing with pri-
mary rays. However, the focus has been recently shifted towards
efficiently handling secondary rays that can provide realistic visual
effects.

It has been widely known that secondary rays generated for simu-
lating realistic visual effects show a low ray coherence and thus low
cache utilizations during the processing of these rays with meshes
and their acceleration hierarchies. One of the main challenges to ef-
ficiently handle secondary rays, therefore, is to achieve a high ray
coherence and cache utilizations during the processing of rays. This
problem of achieving high cache utilizations is becoming more im-
portant, since there is the widening gap between the data access
speed and the data processing speed [Hennessy et al. 2007].

In order to achieve a high cache coherence for ray tracing, two or-
thogonal and complementary approaches, layout reordering and ray
reordering, have been studied. Layout reordering methods [Sagan
1994; Yoon et al. 2008] aim to compute cache-coherent layouts of
meshes and hierarchies such that data elements (e.g., vertices, tri-
angles, and nodes) that are close in meshes and hierarchies are also
closely stored in their one dimensional data layouts in main memory
and external drive.

Although meshes and hierarchies are stored coherently in their lay-
outs, the data access pattern on these layouts should be coherent as
well, in order to design cache coherent ray tracing. A few ray re-
ordering techniques [Pharr et al. 1997; Navratil et al. 2007; Budge
et al. 2009] have been proposed. The seminal ray reordering method
proposed by Pharr et al. [1997] does not process each ray as it is gen-



erated. Instead, the method queues rays into ray buffers associated
with regions of the mesh and processes these regions in a coherent
manner to reduce the number of expensive disk I/O accesses. Most
other ray reordering methods are based on variations of this ray re-
ordering framework. The original method proposed by Pharr et al.
uses a scheduling grid and sorts rays into each grid cell during the
scene traversal. Other techniques have extended this method to use
an acceleration hierarchy and sort rays into nodes of the hierarchy
during the hierarchy traversal, while considering available cache in-
formation.

These methods essentially exploit the information about whether a
data is cached or not given a cache and sort rays depending on the
data access pattern during the scene or hierarchy traversal. Although
this kind of approaches can achieve high cache utilizations during
the ray tracing of models, it complicates the ray tracing system by
coupling the traversal and the ray reordering algorithm. Furthermore,
all of these prior methods focused only on either reducing L1/L2
caches for small models or reducing the disk I/O cache misses for
massive models that cannot fit into main memory, because of the
cache-aware nature of these methods.

Main contributions: In this paper, we present a novel, cache-
oblivious ray reordering method to achieve high cache utilizations
during the ray tracing of models for global illumination methods.
Our approach decouples the ray reordering method from the hierar-
chy traversal to achieve a high modularity. In order to reorder rays,
we propose a novel hit point heuristic, which uses hit points between
rays and the scene as a ray reordering measure (Sec. 4). Since the hit
point of a ray is only available once the ray is processed by travers-
ing the hierarchy, we approximate the hit point by using a simplified
model of the original model. We then use a space-filling curve to re-
order rays based on their hit points. This enables our method to work
with different cache parameters and to achieve high cache utilizations
for various memory levels. We apply our ray reordering method to
path tracing and photon mapping (Sec. 5). By reordering rays, we
achieve more than an order of magnitude performance improvement
compared to rendering without reordering rays for massive models
that cannot fit into main memory. Moreover, our method shows a
performance improvement for small models that fit into main mem-
ory, because of reduced L1/L2 cache misses. These results demon-
strate the benefits of the cache-oblivious nature of our ray reordering
method. Because of the high modularity and cache-obliviousness,
our method can be widely applied to many existing ray tracing sys-
tems and can improve the performance for various models on differ-
ent machines that have different caches. We conclude in Sec. 6 with
future work.

2 Related Work

Ray tracing and global illumination methods have been well stud-
ied. Also, good surveys and books are available [Shirley and Morley
2003; Pharr and Humphreys 2004; Wald et al. 2007]. In this section,
we review prior work related directly to our problem.

2.1 Computation Reordering

Computation reordering strives to achieve a cache-coherent order of
runtime operations in order to improve program locality and reduce
the number of cache misses. Computation reordering methods can be
classified into either cache-aware or cache-oblivious. Cache-aware
algorithms utilize the knowledge of cache parameters, such as cache
block size [Vitter 2001]. On the other hand, cache-oblivious algo-
rithms do not assume any knowledge of cache parameters [Frigo
et al. 1999]. There is a considerable amount of literature on devel-
oping cache-efficient computation reordering algorithms for specific
problems and applications [Arge et al. 2004; Vitter 2001]. In com-
puter graphics, out-of-core algorithms [Silva et al. 2002], which are
cache-aware methods, have been designed to handle massive models.

2.2 Cache-coherent Ray Tracing

There has been extensive research on exploiting the coherence in ray
tracing. These can be classified into packet methods, layout reorder-
ing, and ray reordering methods.

Packet ray tracing: Neighboring rays can exhibit spatial coherence
and utilizing this coherence can improve the performance of ray trac-
ing. Earlier attempts include beam tracing [Heckbert and Hanrahan
1984]. Wald et al. [2001] exploited the coherence of primary and
shadow rays by grouping rays into packets and utilizing the SIMD
functionality of modern processors. Reshetov et al. [2005] pro-
posed an algorithm to integrate beam tracing with the kd-tree spa-
tial structure and were able to further exploit coherence of primary
and shadow rays. There have been a few ray reordering methods
that can utilize the SIMD functionality for secondary rays [Boulos
et al. 2008; Gribble and Ramani 2008]. These ray reordering meth-
ods for the SIMD utilization can be performed on rays reordered by
our method.

Layout reordering: The order of data stored in memory or external
drives can affect the performance of ray tracing given the widely used
block-fetching caching scheme [Yoon et al. 2008]. In this caching
scheme, blocking related nodes in a cluster can reduce the number of
cache misses. The van Emde Boas layouts of trees [van Emde Boas
1977] are constructed by performing a recursive blocking to nodes.
Havran analyzes various layouts of hierarchies in the context of ray
tracing and improves the performance by using a compact layout rep-
resentation of hierarchies [Havran 1997]. Yoon and Manocha [2006]
developed cache-efficient layouts of hierarchies for ray tracing. Also,
there are a few cache-coherent mesh layouts [Yoon and Lindstrom
2006; Sagan 1994].

Ray reordering: To reorder primary rays, space-filling curves like
Z-curves [Sagan 1994] have been used. Mansson et al. [2007]
showed coherence among secondary rays based on their proposed ray
coherence measures. However, it was not demonstrated to achieve a
higher runtime performance based on their proposed ray reordering
heuristics. Pharr et al. [1997] proposed a ray reordering method for
ray tracing massive models that cannot fit into main memory. Their
method uses a scheduling grid for queueing rays and processes rays
in a coherent manner, while considering the available cache informa-
tion. Steinhurst et al. [2005] reorder kNN searches of photon map-
ping to reduce the memory bandwidth. Navratil et al. [2007] pre-
sented a ray scheduling approach that improves a cache utilization
and reduces DRAM-to-cache bandwidth usage. Budge et al. [2009]
employed a ray reordering method to utilize hybrid resources such
as multiple CPUs and GPUs. These techniques are based on Pharr et
al.’s ray reordering method, which couples the ray reordering and the
scene traversal. By doing so, these methods can easily know which
parts of meshes and hierarchies are accessed and cached during the
processing of rays. As a downside of coupling the ray reordering and
scene traversal, the modularity of these methods is lowered.

2.3 Ray Tracing Massive Models

Ray tracing massive models has been studied well. In-core tech-
niques exist to perform the ray tracing of massive datasets [DeMarle
et al. 2004; Stephens et al. 2006] by using large, shared memory
systems. There are also out-of-core techniques including latency
hiding [Wald et al. 2004]. There are different approaches aiming at
designing compact representations, by applying the quantization on
acceleration hierarchies [Cline et al. 2006], reducing costs of repre-
senting meshes and hierarchies [Lauterbach et al. 2008], or efficient
culling techniques [Reshetov 2007]. These methods can be com-
bined with our proposed method to further improve the performance
of ray tracing massive models.

3 Overview

In this section, we discuss the ray coherence of different rays and
briefly explain the overall approach of our method that increases the
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Figure 2: This figure shows different modules of our ray reordering framework. Our
main contribution is the hit point heuristic (HPH) based ray reordering method em-
ployed in the ray reordering module.

ray coherence and thus cache utilizations during the ray tracing.
3.1 Ray Coherence

Ray tracing generates a lot of rays to simulate various visual ef-
fects. These rays can be classified into primary, shadow, and sec-
ondary rays. Primary rays are known to show a high coherence dur-
ing the hierarchy traversal and mesh accesses. Space-filling curves
such as Z-curves have been used to reorder primary rays [Pharr et al.
1997], based on positions of primary rays in the image plane. Once
a primary ray has intersected with an object, shadow rays to lights
and secondary rays (e.g., reflection rays), depending on the material
property of the intersected object, are generated. Since light posi-
tions can be arbitrary and the intersected triangle can have an ar-
bitrary normal, shadow and secondary rays generally have a lower
coherence than primary rays. If rays are incoherent, then the data
access pattern on the acceleration hierarchies and meshes can be in-
coherent. This incoherence may result in a high number of cache
misses in various memory levels (e.g., L1/L2 caches, main memory,
disk) and lower the runtime performance. Therefore, processing rays
in a cache-coherent manner is critical to design cache-coherent ray
tracers.

3.2 Ray Reordering Framework

In order to reorder rays, we use a ray reordering framework (see
Fig. 2) extended from typical ray tracing systems. This framework
consists of ray generation, ray reordering, and ray processing mod-
ules. The ray generation module constructs rays including primary,
secondary, and shadow rays. The ray processing module takes each
ray and finds a hit point between the ray and the scene by accessing
acceleration hierarchies and the meshes of the scene. Also, the ray
processing module performs shading based on the hit point and its
corresponding material information. If we have to generate shadow
and secondary rays, the ray processing module sends the hit points
and material information to the ray generation module. Typical ray
tracing systems consist of only these two modules and process rays
as they are generated without reordering rays.

In addition to these modules, we also use the ray reordering mod-
ule. The ray reordering module maintains a ray buffer that can hold
a user defined number of rays. Once the ray generation module con-
structs rays, these rays are stored in the ray buffer and then reordered
in a way such that meshes and hierarchies are accessed in a cache-
coherent manner during the processing of reordered rays in the ray
processing module. Note that our ray reordering framework is sim-
ilar to previous ray reordering methods [Pharr et al. 1997; Navratil
et al. 2007; Budge et al. 2009]. A main difference of our frame-
work over these prior methods is that we decouple the ray reordering
module from other modules. Therefore, our method achieves a high
modularity and is easily applicable to existing ray tracing systems.

Given this ray reordering framework, the key component that gov-
erns the performance improvement is the ray reordering method. To
maximize the benefits of the reordering method, the overhead of re-
ordering should be kept small. We propose a simple cache-oblivious
reordering method that has a low reordering overhead, increases the
cache coherence, and improves the performance of ray tracing mod-
els that have different model complexities.

A A A A AR A

Figure 3: These two figures show data access patterns on the hierarchy during the
processing of two different rays, whose hit points are close to each other. The difference
between the left and right figures is that two rays’ directions are similar in the left, but
different in the right.

Cache-coherent layouts of meshes and hierarchies: Our ray re-
ordering method works on the assumption that geometrically close
mesh data (e.g., vertices or triangles) and topologically close hierar-
chy data (e.g., nodes) are also stored closely in their corresponding
mesh and hierarchy layouts respectively. There are many layouts
satisfying such a property for meshes [Sagan 1994; Diaz-Gutierrez
et al. 2005; Yoon and Lindstrom 2006] and for hierarchies [van
Emde Boas 1977; Havran 1997; Yoon and Manocha 2006]. In our
implementation, we use cache-oblivious layouts of meshes and hier-
archies [Yoon and Lindstrom 2006; Yoon and Manocha 2006]

4 Cache-Oblivious Ray Reordering

In this section, we introduce our cache-oblivious ray reordering
method.

4.1 Hit Point Heuristic

To reorder rays, we propose a novel hit point heuristic (HPH). A
hit point of a ray is defined as the first intersection point computed
between the ray and the scene, starting from the ray’s origin. The
main idea of the HPH method is to reorder rays based on their hit
points using a space-filling curve (e.g., Z-curve). The rationale why
we use the hit point of a ray as a reordering measure is twofold. First,
if the hit points of rays are geometrically close to each other, then the
mesh regions accessed during the processing of these rays are likely
to be close too. Second, suppose that a hierarchy is decomposed into
lower and upper regions. Lower regions of the hierarchy are closer
to leaf nodes and upper regions of the hierarchy are closer to the
root node of the hierarchy. Then, the lower regions of the hierarchy
accessed during the processing of rays whose hit points are close
are likely to be close too because of the same reason that were for
meshes (see Fig. 3). Although hit points of rays are close to each
other, these rays’ directions may be very different. In this case, their
access pattern on upper regions of the hierarchy may be very different
(see Fig. 3-(b)). However, the size of these upper regions of the
hierarchy is relatively small compared to those of lower regions of
the hierarchy. Also, the upper regions of the hierarchy are accessed
by almost all the rays and thus are unlikely to be unloaded from the
cache. Therefore, we may not get additional cache misses during
the processing of rays with the upper regions of the hierarchy. As
a result, we conclude that hit points between rays and the scene are
more important features to our problem than ray directions and ray
origins, which have been widely considered as reordering measures
in most prior works.

An issue of the HPH method is that it requires hit points between
rays and the scene to reorder rays. However, computing these hit
points requires processing rays by traversing the hierarchy and ac-
cessing the mesh, which may cause a high number of cache misses
that we attempted to avoid by reordering. To address this problem,
we compute approximate hit points efficiently by performing the in-
tersection tests between rays and simplified representations of the
original models.

4.2 Approximate Hit Points

We compute a simplified mesh of the original model using an out-
of-core mesh simplification method [Yoon et al. 2008]. This sim-
plification method decomposes an input model into a set of clusters,
each of which can be stored in main memory. Then, we simplify
each cluster one by one. In order to compute approximate hit points
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Figure 4: This figure shows an ordering of hit points with the Z-curve ordering of cells
in the uniform grid.

that are close to the exact hit points, the simplified model should be
geometrically similar to the original model. We use quadrics and
choose edge collapses in an increasing order of simplification errors
for each cluster by using a heap [Garland and Heckbert 1997] within
each cluster. While simplifying each cluster, we also allow simpli-
fying edges that span multiple clusters. For a simplified mesh, we
set the bounding box of the simplified model to be the bounding box
of the original model. Therefore, if a ray does not intersect with the
bounding box, it is guaranteed that the ray does not intersect with the
original model.

For each simplified mesh, we build a hierarchy in the same manner as
building the hierarchy for the original model. In order to reduce the
overhead of computing hit points with the simplified meshes at run-
time, we drastically simplify the models. In our tests, we use simpli-
fied models consisting of 2% of the complexity of the original mod-
els. We found that this strikes a good balance between the overhead
of our method and the approximation quality and thus achieves the
best performance improvement of using our ray reordering method
(see Sec. 5.1).

To compute approximate hit points of rays, we perform intersection
tests between the rays and the simplified models of the scene. If a ray
intersects with one primitive of the simplified models, we use the hit
point for the ray reordering by using a space-filling curve. If the ray
does not intersect with any primitives of simplified models, but one
of the bounding boxes of the original models, we use the intersection
point between the ray and the bounding boxes as a virtual hit point
and use it for the ray reordering. For other rays that do not intersect
with any of the bounding boxes, we terminate the processing of these
rays, since it is guaranteed that they do not intersect with the original
models of the scene. We use the computed approximate hit points
only for reordering, not for other computations (e.g., shading).

4.3 Space-Filling Curve based Reordering

Once we compute approximate hit points for rays stored in the ray
buffer, we reorder these rays by using a Z-curve, a simple space-
filling curve. Since a Z-curve is defined in a uniform structure, we
place hit points in a variation of a grid structure and compute order-
ing keys for these hit points and their corresponding rays by using
a Z-curve ordering of cells in the grid structure. More specifically,
we propose to use a two-level nested grid structure in order to rep-
resent more points uniquely for reordering with low time and space
overheads.

The two-level grid structure consists of a high-level grid, where each
cell of the high-level grid contains a low-level grid. Each high-level
and low-level grid has 23¢ grid cells, where 2° is the number of cells
in each x, y, and z dimension. Since we use the two-level grid struc-
ture, our two-level grid has 25¢ cells. Extents of the high-level grid
are set to be the bounding volume of the scene. We initialize each
cell of the high-level grid to have a unique ordering key value com-
puted from a Z-curve ordering of cells. An example of the Z-curve
ordering of uniform grid cells is shown in Fig. 4. Given the three di-
mensional coordinates of a hit point, we can get an ordering key by
referring the grid cell containing the point. We can easily compute
the grid cell containing the point by using a simple hash function
that computes the grid index from the coordinates of the point. Let
us call the ordering key computed from the high-level grid high-level
ordering key (Kp,).

’ Scene Rendering time (hour) | Num. of Disk I/O Accesses (M)

W/ORe. |  WI/Re. W/ORe. | W/ Re.
[ Path tracing [ 48.72 [ 322 [ 24.04 [ 2.05
| Photon mapping [ 165.62 [ 1261 [ 6254 | 8.13 |

Table 1: This table shows the overall rendering time and the number of the disk I/O
accesses that occurred during the generation of a rendering image for each benchmark.
W/O Re. and W/ Re. represent without reordering and with reordering rays respec-
tively.

We also compute a low-level ordering key (K;) of a point by referring
to a low-level grid whose extents are set to the cell of the high-level
grid that contained the point. Note that we can use the same grid
structure and pre-computed ordering key values for both the high-
level and low-level grids. Only the hash functions that compute grid
indices from coordinates of points are different between the high-
level and low-level grids. Once we compute the high-level and low-
level ordering keys, our final ordering key value, K, of a ray is
defined as K; = K, * 2%¢ + K, where 23 indicates the number of
low-level cells contained in each cell of the high-level grid.

In our current implementation, we choose ¢ to be 6. In this case,
our two-level grid structure decomposes the bounding volume of the
scene into more than 68 billion uniform-sized cells. Therefore, most
final ordering keys computed from rays are likely to be unique with
models that we can have in practice. Also, our two-level grid struc-
ture has very little overhead of computing the ordering key values
and requires only 2 MB to store the pre-computed Z-curve order-
ing key values for the high-level and low-level grids. We also tried
Hilbert-curves, but found that using Z-curves has a lower memory
requirement given our grid structure, while having only minor per-
formance degradation (e.g., 2%) to Hilbert-curves.

Once we compute the ordering key values for rays, we sort rays based
on the ordering key values. We use the 2-way merge sort due to its
simplicity. After sorting rays using their associated approximate hit
points, sorted rays are processed in the ray processing module.

5 Results and Discussions

We have implemented and integrated our ray reordering module in a
CPU-based out-of-core ray tracing system that uses bounding vol-
ume hierarchies (BVHs) with axis-aligned bounding volumes for
models. We use 512 by 512 image resolutions and perform vari-
ous tests with a machine consisting of a 3.0 GHz processor, a disk
that supports a sequential reading performance of 101 MB per sec-
ond, and 4 GB memory with the 32 bit Windows unless mentioned
otherwise. Although the machine has 4 GB main memory, all the
programs in the 32 bit Windows can use only up to 3.25 GB. Also,
the Windows OS in our test machine uses about 0.2 GB. Therefore,
our ray tracer can use up to about 3.05 GB.

Our ray buffer consists of in-core and out-of-core parts. We allocate
100 MB of the main memory space to an in-core ray buffer. Once the
in-core buffer is full, we push these rays into an out-of-core ray buffer
on the disk and then store the next rays in the in-core ray buffer. If
there are no more rays that we can generate, we sort the rays stored in
the in-core and out-of-core ray buffers. We test our method with two
global illumination methods: path tracing and photon mapping, both
of which generate many incoherent rays to produce realistic visual
effects. We generate primary rays in Z-curves for all the tests.

Path tracing: The left image of Fig. 1 shows an unbiased render-
ing image of the St. Matthew, two Lucy, and two David models in
the Sponza scene using a path tracing method [Shirley and Morley
2003; Pharr and Humphreys 2004]. This scene consists of 104 M
triangles; we do not use any instancing for duplicate models. BVHs
and meshes of models in the scene take 12.8 GB. Since our ray tracer
with the 32 bit test machine can use only 3.05 GB, the machine can
cache 23.8% of all the data for our out-of-core ray tracer. To illu-
minate the scene, we use § area lights. We generate 100 primary
rays (i.e., paths) per pixel and use a simple importance sampling by
generating shadow rays to the lights. We use the Russian roulette
method to determine the path length. In this scene and machine
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Figure 5: This graph shows the rendering time of path tracing in the Sponza scene
with different physical main memory sizes. Our ray tracer can utilize the memory space
except for the space of the Windows OS, which is about 0.2 GB.

configurations, our method achieves a 15.1 times performance im-
provement over rendering without reordering rays. We measure the
number of the disk I/O accesses occurring during the accessing of
meshes and BVHs (see Table 1), by using the Windows built-in per-
formance monitor tool, perfimon. By reordering rays, we reduce the
number of the disk I/O accesses that occurred without reordering
rays by 91.4%. We also measure the average disk I/O access per-
formance (MB/sec.) per disk I/O access. We found that reordering
rays improves the disk I/O access performance by 183%. This is be-
cause the disk I/O accesses become more coherent and the disk can
process these I/0 accesses with a higher reading performance during
the random accesses on BVHs and meshes. Because of these two
factors, the reduction of disk I/O accesses and the improvement of
disk I/O performance, we achieve more than an order of magnitude
performance improvement by caching only 23.8% of all the data in
main memory.

Photon mapping: The right image of Fig. 1 shows a rendering of
the transparent St. Matthew and two transparent dragon models in
the Cornell box scene using the photon mapping method [Jensen
2005]. This scene consists of 128 M triangles and takes 15.7 GB
for its meshes and BVHs; therefore, the machine can cache only
19% of the total model size. We use 4 lights, generate 25 primary
rays per pixel and 10 final gathering rays, and use 100 samples for
the irradiance estimation for various performance tests. In this con-
figuration, our method achieves a 13.1 times improvement compared
to rendering without reordering rays. By reordering rays, we reduce
87% of the disk I/O accesses and improve the disk I/O performance
by 195%.

5.1 Analysis

We discuss various factors that affect the performance of our method
with the path tracing benchmark of the Sponza scene in this section,
unless mentioned otherwise.

Performance vs. cache size: We measure the overall rendering
time of path tracing the Sponza scene, as a function of the avail-
able memory size with and without using our ray reordering method
(see Fig 5). For this test, we use a 64 bit machine; note that the
OS uses 0.2 GB space from the physical main memory. When we
use 16 GB main memory, the whole data of the scene can be up-
loaded into main memory. Even in this case, our method improves
the performance by 24% over not using our reordering method, be-
cause our method improves the cache utilizations of L1/L2 caches.
As we decrease the memory size, the performance of ray tracing also
decreases. Nonetheless, the performance with our ray reordering
method decreases more gracefully. By caching 1.8 GB, 14.1% of
the whole data, in main memory, our method shows a 16 times im-
provement. Even when the available memory size is 0.8 GB, 6.2%
of the whole data, our method can render the Sponza scene without
I/O thrashing.

Cache-oblivious nature of our method: Our method uses Z-
curves for reordering rays and has the cache-oblivious property
caused by using the space-filling curve [Yoon and Lindstrom 2006]
that works with different cache parameters. Therefore, it can re-
duce cache misses for various caches including L1/L2 caches, main
memory, and disk. To demonstrate the cache-oblivious property of

our method, we test our method with photon mapping of the Ar-
madillo model consisting of 346 K triangles in the Cornell box (see
the accompanying report for its image). The whole data of this small
scene takes 43.5 MB, which fits into main memory. In this case, we
reorder rays when our in-core ray buffer is full, instead of dump-
ing rays stored in the ray buffer to out-of-core ray buffer. In this
scene, our method shows 23% performance improvement by reorder-
ing rays. We also measure the L2 cache miss ratios by simulating the
6MB wide 24-way set-associative L2 cache of our test machine. We
observe more than two times cache miss reduction by reordering rays
compared to without reordering rays. Also, even when we perform
path tracing of the 12.8 GB Sponza scene with 16 GB main memory,
we achieve 24% performance improvement because of the reductions
of the L1/L2 cache misses.

Multi-core architectures: We also test our method in the 32 bit ma-
chine with a quad-core CPU. Our reordering method can be easily
parallelized since computing ordering keys of hit points is done by
simply accessing a grid cell referred by a hash function and read-
ing the ordering key stored in the cell. Also, the 2-way merge sort
method that we used for sorting rays can be easily parallelized. We
measure the performance improvement by reordering rays when we
use four threads for ray tracing and our reordering method. By re-
ordering rays, we achieve 10.5 times improvement over without re-
ordering rays when we use four threads in the quad-core CPU ma-
chine.

Performance vs. complexity of simplified models: The com-
plexity of simplified models can affect the performance improve-
ment of our ray reordering method. We measure the performance
improvement caused by our reordering method with different com-
plexities of simplified models. We achieve the highest performance
when we use simplified models whose model complexities are 2% of
original models. Moreover, we also found that the performance of
our method does not decrease much as we use drastically simplified
models (e.g., 0.0125% of the original models for the simplified mod-
els). We attribute this result to the high quality of our simplification
method based on quadrics and edge collapses. We also measure the
total overhead of our method, which consists of computing approx-
imate hit points and sorting rays stored in the ray buffer. We found
that the overhead of our method is 6% of the total rendering time
when we use 2% of the original model complexity for the simplified
models.

Limitations: Our method has certain limitations. Our ray reorder-
ing method like other ray reordering methods may not work with
shaders that do not allow deferred shading, though most general
shaders work with the deferred shading. Also, there is no guarantee
that our method will improve the performance of ray tracing because
of the overhead of our method. Nonetheless, we achieved perfor-
mance improvements with all the tests with our benchmarks.

5.2 Comparisons

There have been a few ray reordering methods that attempt to achieve
a higher ray coherence and the performance improvement for ray
tracing [Pharr et al. 1997; Navratil et al. 2007; Budge et al. 2009].
It is very hard to directly compare these methods with our method.
However, our method has two main advantages over the prior works:
the high modularity and the cache-obliviousness.

Most previous methods reorder rays as they traverse their scenes
or acceleration hierarchies [Pharr et al. 1997; Navratil et al. 2007,
Budge et al. 2009], because the data access patterns of rays are
known during the scene or hierarchy traversal. The main benefit of
these methods is that since the data access patterns of rays to the hier-
archies and meshes are known during the traversal, sorting rays with
this information can result in a low number of cache misses. How-
ever, this approach will require a tight integration between the ray
reordering module and the ray processing module, causing a com-
plication to the overall ray tracing system and a major restructuring
of existing systems in order to use these reordering methods. One
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[ Complexity of simplified model | 0.0125% [ 005% | 2% | 8% |

[ Rendering time (sec.) [ 11,983 [ 11,691 [ 11,591 [ 12,053 ]

[ Overhead (sec.) | 674 | 688 [ 797 | 1236 |
Table 2: This table shows the overall rendering time and the total overhead of our
method as a function of model complexity of simplified models, represented in the per-
centage of the original model complexity, in the Sponza benchmark.

prior method [Mansson et al. 2007] tried to achieve a high ray coher-
ence by reordering rays based on a ray coherence metric instead of
coupling the ray reordering and the hierarchy traversal. However, a
higher runtime performance was not demonstrated based on their ray
coherent metrics compared to not reordering rays. On the other hand,
our method shows more than an order of magnitude performance im-
provement based on our HPH method, while our method decouples
the ray reordering module from the ray processing module.

Also, all the prior works focused on improving the performance of
ray tracing for either massive models that cannot fit into main mem-
ory [Pharr et al. 1997] or small models [Navratil et al. 2007] that
fit into main memory, but do not in the L1/L2 caches. Since these
methods use cache-aware ray reordering approaches that require the
knowledge of parameters of a cache, these methods reduce the num-
ber of cache misses only with the cache. On the other hand, our
method is cache-oblivious and is not optimized with a particular
cache parameter. Instead, it works with various caches, including
the L1/L2 caches, main memory, and disk. Since it is very important
to reduce the number of cache misses with these different caches,
the cache-obliviousness of our method enabled us to achieve the per-
formance improvement for different tested models that span from
the Armadillo model consisting of 346 K triangles that fits to main
memory to the St. Matthew model consisting of 128M triangles that
cannot fit into main memory.

We also compare the performance of our method with the semi-
nal ray reordering work proposed by Pharr et al. [1997] that uses
a scheduling grid and processes rays to maximize the cache utiliza-
tion while considering the cache information. According to the re-
sults reported in their paper [Pharr et al. 1997], this method takes
about 2.15 times longer path tracing time when the method caches
14.1% of the total data of a lake scene compared to the best result
achieved by using memory that can contain the whole data. In our
path tracing benchmark using our test machine that can cache 14.1%
of all the data, our method takes 1.73 times longer time compared to
our best performance, achieved when we use 16 GB main memory.
Moreover, if we run the cache-aware method proposed by Pharr et
al. [1997] in our test machine with the same cache configuration, it
may not show more than 1.73 times performance improvement than
our cache-oblivious method, since the cache-aware method cannot
reduce the number of cache misses occurring when we have enough
memory that can contain all the data. Also, the cache-aware method
showed a lower performance compared to without reordering rays,
when all the data are stored in main memory because it does not re-
duce the cache misses of the L1/L2 caches and their reordering over-
head may be high. Although we are comparing apples with oranges,
we argue that our cache-oblivious method can show comparable per-
formance to the cache aware method [Pharr et al. 1997], unless our
method shows a higher performance.

6 Conclusion and Future Work

We have presented a novel, cache-oblivious ray reordering method
that achieves the performance improvement for various models. We
have proposed a novel hit point heuristic (HPH) as a ray reordering
measure and used the Z-curve to reorder rays based on their approx-
imate hit points, which are computed from simplified models of the
original models. We have applied our method to path tracing and
photon mapping, both of which require lots of incoherent rays to
generate realistic visual images with massive models that cannot fit
into main memory. By reordering these rays, we have achieved more
than an order of magnitude performance improvement by caching
less than 20% of all the data. Moreover, our method shows a per-
formance improvement for small models that can fit into main mem-
ory. This performance improvement is caused by reducing the cache

misses of the L1/L2 caches. In addition to having the cache-oblivious
property, our method can be easily applied to many existing ray trac-
ing systems with a minor modification, since our ray reordering mod-
ule is decoupled from other common ray tracing modules. Because
of the high modularity and cache-obliviousness that can improve the
performance for a wide set of models, our method can be useful and
widely applied to many existing and future ray tracing systems.

There are many exciting future directions lying ahead. Currently, we
have tested our ray reordering method only with the CPU architec-
ture. It will be very interesting how our method can be extended to
handle incoherent rays and improve GPU cache utilizations in GPU-
based global illumination methods. It will be also interesting to apply
our method to hybrid ray tracers that run on both CPUs and GPUs.
Also, we would like to extend our method to consider ray directions,
in addition to hit points of rays. This may improve the ray coher-
ence further. Finally, we presented a cache-oblivious ray reordering
method for ray tracing in this paper. This idea can be applied to
many different applications whose main bottleneck is in the data ac-
cess time. Therefore, we would like to extend our current method to
different computer graphics applications.
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