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Figure 1: This figure shows some of the sample views of our tested scenes, Boeing777 and SponzaMuseum consisting of up to
500 M triangles. In handling multiple view requests, our renderer robustly allocates heterogeneous computing resources to

reduce the idle time, achieving high horizontal scaling,.

ABSTRACT

We present a timeline based scheduling method for Monte Carlo ray
tracing of out-of-core models on distributed memory clusters. We
abstract different setups of various compute and memory devices
into a graph-based representation, and estimate the time for job
execution and data transfer in a simple timing model. Our sched-
uler allocates not only jobs to processors, but also data transfers
to memory channels. This approach allows us to control the I/O
overload, which is the principal bottleneck in rendering massive-
scale scenes. To manage dependencies of data transfers and data
intensive jobs, each job and data transfer is arranged on the time-
line with dependency relations. Based on this model, our scheduler
aims to increase data locality by allocating a job that takes the least
time to fetch required data on a given compute device. This goal is
achieved by optimizing the data transfer path to maximize latency
hiding effects. We have implemented a path tracer on our frame-
work and tested massive models up to 500 M triangles. Compared to
prior state-of-the-art scheduling techniques, our renderer achieved
higher horizontal scalability on flexible device configurations.
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1 INTRODUCTION

Monte Carlo ray tracing techniques have been widely adopted
for generating high-quality photorealistic rendering results. In its
application, the ever-increasing demands on high-quality results,
and thus on increasing model complexity, has brought a serious
challenge upon achieving high performance in a scalable way [Yoon
et al. 2008]. Especially, it has been known to be a hard problem to
realize high performance on Monte Carlo ray tracers for out-of-core
models which cannot be stored in main memory [Moon et al. 2010].

For Monte Carlo ray tracing techniques that deal with out-of-
core data, the bandwidth of memory hierarchy has been a common
bottleneck, due to their inherently random data access patterns
over the scene data. In this case, such low data locality often causes
expensive I/O transfers between different memory devices. Improv-
ing locality of out-of-core rendering at scheduling level has been
well studied [Silva et al. 2002]. Along with it, various scheduling
methods have been studied for supporting a diverse set of device
configurations and heterogeneous computing resources [Berman
et al. 1996; Kim et al. 2013].

Nonetheless, it has remained as a challenging problem to design
robust scheduling techniques that achieve a high throughput of
Monte Carlo ray tracers. Specifically, it has been understudied to
consider both locality and utilization in complex device configura-
tions, which can occur in modern cloud computing environments
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and remote rendering systems. Considering both factors at the
same time is challenging when the rays are incoherent, and the
overhead of data fetching is considerable. Besides, the scheduler
must operate without a complete set of ray paths at any moment,
making it even hard to schedule the jobs optimally.

Main contributions. In this paper, we address the problem of
achieving the high performance, i.e., the smallest makespan, the
end-to-end running time of processing all the tasks, of performing
Monte Carlo ray tracing in a diverse set of device configurations.
For accomplishing the objective, our method manages the schedule
consisting of data fetches and the actual rendering job executions.
Our timeline-based approach considers data locality in a given
device configuration while resolving dependency of jobs. Our con-
tributions are summarized as follows:

e We formulate our problem specification to consist of a device
connectivity graph (DCG) and a timing model that describes
the time of executing a job and transferring a data block from
one memory device to another. Our formulation is general
enough to consider data locality, different I/O bandwidths, and
data dependency.

e We present a simple, iterative algorithm, Greedy Makespan
Balancing (GMB) algorithm, to schedule and distribute jobs
from the initial workload. Our GMB algorithm attempts to
pull out maximum utilization while seeking the opportunity
of hiding the data transfer latency as much as possible.

e We apply our scheduling approach to a distributed out-of-
core path tracer, to show the robustness of our framework. It
optimizes the schedule on a device configuration consisting
of eight heterogeneous nodes, and shows better horizontal
scalability than the state-of-the-art schedulers, up to about
40 % higher throughput of ray processing.

2 RELATED WORK

Given more than three decades of research for MC ray tracing,
many scheduling algorithms have been proposed for both domains
of out-of-core rendering [Silva et al. 2002] and distributed render-
ing [Chalmers and Reinhard 1998].

At a high level, any techniques from both fields focus on achiev-
ing at least one of two scheduling goals: improving utilization and
data locality. Unfortunately, both issues are well known to be in a
trade-off relation in distributed memory rendering systems [Salmon
and Goldsmith 1988], as reducing the data fetch overhead narrows
the flexibility of job distribution to exploit load balance, and vice
versa. Such effect summarizes that achieving near-optimal through-
put remains a challenging problem to the date.

2.1 Distributed-memory ray tracing

The study of distributed-memory ray tracing aims at realizing par-
allelization over the distributed memory systems. In such systems,
most techniques focus on achieving high utilizations of homoge-
neous devices (e.g., same CPU cores), while maintaining data lo-
cality reasonably well. These methods can be classified as image
space and domain space decomposition techniques.

The image space decomposition strategy lets each process to take
a set of initial samples in the image space and to handle all the
subsequent rays originated from those samples [DeMarle et al. 2005,
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2004, 2003; Keller et al. 2017; Parker et al. 1998; Wald et al. 2003b,a,
2004, 2001]. This approach benefits from natural load balancing
and shows a high ray coherence on primary rays, but the potential
incoherence of secondary rays limits the data locality.

On the contrary, the domain decomposition strategy [Childs et al.
2006; Howison et al. 2012, 2010; Kobayashi et al. 1988; Reinhard
et al. 1999; Reinhard and Jansen 1997] allocates a domain, which is
a set of scene data, e.g., a part of a scene space subdivision, to each
process. Each ray is paired with the domain to be intersected, and
if a ray enters a domain, the process who owns that domain takes
ownership over the ray to process. This method takes an advantage
of data locality over the image space decomposition strategy by
minimizing the number of loads, but suffers from distribution issues
such as load imbalance and high communication overhead.

Reinhard et al. [1999; 1997] proposed hybrid approaches utiliz-
ing components of the two strategies above. This hybrid approach
allows a process to be the process generating samples or the pro-
cess holding the data domain, by considering various information
such as ray types. Large-scale volume rendering techniques [Childs
et al. 2006; Howison et al. 2012] have been proposed along this
line, mainly for primary rays. Navratil et al. [2014] inspected bene-
fits of various scheduling methods including conservative hybrid
techniques in homogeneous clusters . Their analysis has provided
insight on which scheduling techniques are better for specific appli-
cations. Our framework incorporates such preference in our timing
and bandwidth models.

While our method also belongs to a class of hybrid approaches,
our method optimizes a scheduling function considering data lo-
cality, network bandwidth, and utilization, by using an iterative
scheduling algorithm.

2.2 Out-of-core rendering

Out-of-core rendering [Silva et al. 2002] is another field of study on
scheduling techniques for rendering out-of-core data such as large-
scale geometries or shadings [Eisenacher et al. 2013]. Unfortunately,
the random access generated by MC rendering on such data can
cause enormous I/O overheads. As the bottleneck is located on the
fetch cost between the memory hierarchies, scheduling for such
jobs has been studied to maximize the data availability, leading to
improving the overall rendering performance.

A family of ray batching techniques for Monte Carlo rendering
techniques has been successfully established with explicitly con-
trolling the data locality over the memory hierarchy [Budge et al.
2009; Moon et al. 2010; Pharr et al. 1997; Steinhurst et al. 2005].
Pharr et al. [1997] presented a decomposition of workloads such
as ray intersections into smaller ones depending on a unit data
block and reordered them using the cost-benefit function. Budge et
al. [2009] applied this technique to CPU/GPU hybrid workstation
with simple priority-based heuristics. Moon et al. [2010] proposed a
similar approach with rays ordered by the space-filling curve based
on approximate hit points. Our framework smoothly integrates the
ray batching technique with global scheduling and distribution to
reduce total makespan over the entire distributed memory system.

2.3 Specification techniques

Ray batching has some similarities to the domain decomposition
strategy described in distributed memory techniques, in a sense
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that rays are sorted to the data domain and processed. There are,
however, differences between them. For example, distributed mem-
ory renderers allocate data blocks to computing resources and move
jobs between them to match the jobs and required data. On the
other hand, the out-of-core renderer dynamically fetches the data
block from a memory device to process the jobs.

To generalize strategies mentioned above, different characteris-
tics of them must be specified within a problem instance. Specifi-
cally, a device configuration and work dependency must be encoded,
and each of them has been separately studied in different fields:
distributed heterogeneous schedulers [Berman et al. 1996; Kim et al.
2013; Potts 1985; Shchepin and Vakhania 2005] and data-parallel
execution frameworks [Isard et al. 2007; Larsen et al. 2016; Loques
et al. 1998], respectively.

Berman et al. [1996] and Kim et al. [2013] schedule unstructured
jobs in heterogeneous device configurations by formulating the
transfer and execution time, and optimize the schedule with linear
programming to minimize the makespan accordingly. Their algo-
rithm plans a semi-optimal schedule with a setup cost of issuing
jobs, but the data availability is not considered, and its scheduling
cost becomes intractable in the case of multiple devices. Data-
parallel frameworks such as P-RIO, Dryad, and Legion [Bauer et al.
2012; Isard et al. 2007; Loques et al. 1998] can specify dependent par-
allel jobs in a graph-based manner, and schedule them to maximize
the throughput. However, the communication channels are either
homogeneous or predefined, which is not enough to determine the
best data transfer path between the memory hierarchy.

Unfortunately, most aforementioned prior methods do not con-
sider our problem of global illumination, in a sense that only one
of these two concepts of device configurations and job dependency
are focused. We propose a general formulation considering both of
them for addressing our problem.

3 PROBLEM SPECIFICATION

In this section, we describe our approach to the scheduling prob-
lem. We argue that out-of-core rendering techniques for Monte
Carlo ray tracing (e.g., path tracing) have characteristics of dy-
namic/dependent tasks in Sec. 3.1. We then formalize a specification
for such applications, using a device connectivity graph (DCG) and
the execution timing model of jobs in Sec. 3.2. A combination of
them forms a problem instance for our scheduler to work on. We
explain our scheduling method to solve the problem in Sec. 4.

3.1 Characteristics of Monte Carlo Ray Tracing

In terms of parallelism, the job structure of Monte Carlo ray trac-
ing has two interesting performance characteristics that a robust
scheduler must consider: the incoherence among generated rays,
and the dynamic and dependent nature of ray generation. While
recent studies have focused on the nature of ray incoherency, we
focus on the dynamic nature of the task.

In the stochastic process of Monte Carlo ray tracing methods,
new rays (e.g., secondary rays) can be spawned from tracing other
rays. As aresult, neither the distribution of future jobs (e.g., process-
ing rays) nor their required data can be deterministically known at
a time that we run our scheduling module. Therefore, it limits the
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Figure 2: An illustration of a device connectivity graph, rep-
resenting a multi-GPU cluster with two nodes.

exploration of the scheduling space until dependent rays are pro-
cessed, forming job-job dependencies. This characteristic is known
as dynamic tasks in the field of scheduling, which poses challenges
to achieving a schedule with high quality.

Such dependency relation is further expanded in out-of-core
rendering. Before the jobs are executed, the required data must be
fetched to the main memory, which forms data-job dependencies.
As the cost of data fetches is dominant in out-of-core rendering,
these dependencies need to be handled by the scheduler as well.

To consider both kinds of dependencies, the timing when each
job or data fetch is done must be analyzed and encoded into the
schedule. In next section, we present various tools to address them.

3.2 Device Connectivity Graph (DCG) and
Timing Model

Given a set of tasks, the goal of our scheduler is to create a schedule
that minimizes the makespan. In our work, the scheduling result
is to assign jobs to available computing resources, while consider-
ing data locality and data dependency among jobs for achieving
the highest throughput. In the case of out-of-core rendering, the
schedule consists of data transfer between memory devices and the
actual job execution in compute devices, once the required data has
been gathered and transferred to the attached memory device.

The communication cost between memory devices (e.g., disk
and network I/O costs) for massive models usually dominates the
running time of the overall rendering process. It is thus important
to consider such connectivity constraints and timing behavior into
the scheduler. To consider such connectivity, we propose a device
connectivity graph with timing models. Based on these models, we
expect the running time of tasks in compute devices.

Device Connectivity Graph (DCG).. We propose to use a novel
device connectivity graph to estimate the expensive data transfer
costs better. This graph describes the connectivity of memory de-
vices and thus communication time behavior between them (Fig. 2).
Each vertex of the graph is a memory device, and each edge be-
tween two vertices represents a communication channel between
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memory devices. Each compute device is associated with a memory
device that is directly accessible from the compute device.

The scheduler controls which data should be present at which
memory device, to ensure that the attached compute device can
properly access the data on its job execution. A required data can be
transferred along a path from a source to a destination in multiple
hops. For example, in a case where the central scene database is
physically separated from worker nodes, the scene data can be
transferred along a network path where multiple nodes participate.

Our device connectivity graph is inspired by a network graph.
Nonetheless, this concept was not used in prior out-of-core sched-
uling methods. Furthermore, the network connectivity graph con-
siders only the node-level communication between nodes (e.g., the
LAN connection between two nodes in Fig. 2), not the commu-
nication level of memory devices (e.g., PCle, SATA, and LAN in
Fig. 2). Instead, we consider different types of memory devices
and allow data transfers through any paths between two memory
devices (e.g., from the disk to GPU memory), resulting in higher
throughput (Sec. 4.4).

Timing model. To minimize the actual makespan, a performance
model is required to define a timing relationship between jobs and
compute devices. Specifically, we want to estimate the execution
time of jobs and the transfer time of required data. The transfer
time depends on the latency and bandwidth of a communication
channel, and the size of data. The execution time of a job in a
compute device depends on the type of the job, the size of input
data, and the compute device that processes it. Note that a job may
take multiple input data — e.g., ray intersection job requires both
scene data and ray data to be processed.

Ideally, precise modeling techniques are preferred for producing
high-quality schedules, but there are too many factors and high
overheads to obtain such models. To minimize the scheduling over-
head, we formulate a simple linear timing model, while avoiding
taking complex, hardware-specific internal parameters into consid-
eration. Our timing model defines the processing time and transfer
overhead, as a linear function of the size of workload. More specif-
ically, the transfer overhead, Trrans(di — dj, w), of moving a
data block w from a memory device d; to another memory device
dj is defined as the following:

[wl

Tew (d; — dj)’ @

Trrans(di = dj, w) = Tpar(d; — dj) +

where Ty o7(d; — dj) and Tgw (d; — d;) represent two parameters
of the communication channel, the setup cost of the channel, i.e.,
the network latency, and the bandwidth, respectively.

Similarly, the processing time, Tgxgc(d, j, W), of a job of type
Jj taking a set of input data blocks W =< w1, wa, ... > ona compute
device d is defined as the following:

0, ifw=0

Texec(d, j, W) = { Tserup(d, j) )
+TraTE(d, j) , otherwise
- (lwil, [wal, ...)

where Tsgryp(d, j) is the constant setup cost (e.g., GPU kernel
launch overhead) for launching a job of type J; in the d compute
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device, and TraTE(d, j) represents the weight vector describing
how each input data wy, wy, ... contributes to the execution time
based on its size.

This model assumes that jobs with a payload n take O(n). For the
transfer overhead, this is straightforward in most network connec-
tions. For processing time, most ray intersection and sampling jobs
scale linearly over the number of rays to be processed, as long as the
complexity of each scene subdivision is uniformly distributed. For
a more sophisticated processing time model for varying complexity,
see [Larsen et al. 2016]. To verify our timing model empirically, we
have measured the execution time for each job with varying input
sizes, and found that observed execution times align well with our
linear formulation; see the plot of the measured execution times
available in the sup. report.

Our formulation for the timing model is similar to the linear
approximation that Kim et al. used [2013] in proximity query
jobs, but separates the data transfer term from the processing term.
This separation enables our scheduler to compute the data transfer
overhead separately from the cost of job processing itself. This
property is critical for out-of-core ray batching techniques, which
need to consider the data availability on a compute device.

4 GREEDY MAKESPAN BALANCING (GMB)
SCHEDULER

Given the specification of DCG and timing model, we are ready to
discuss our scheduling method, greedy makespan balancing (GMB)
algorithm. Before we explain our method, we first explain how to
handle jobs with dependency.

4.1 Handling Dependency

The scheduler must meet the constraint of various dependencies be-
tween job execution and data fetching. For example, a job can only
be executed after all the required data associated with the job are
fetched first to the corresponding memory device. Another example
is in-between dependencies of jobs themselves (e.g., accumulating
the image, generating rays, and intersection tests).

Our scheduler first takes a dependency graph of jobs to know de-
pendencies between jobs. Fig. 3 shows an example of a dependency
graph of jobs to perform path tracing. To simplify the process of
handling the dependencies of jobs and data fetching within our
scheduler, we treat a data transfer as a separate job, run by a chan-
nel between memory devices, i.e. an edge in DCG. As a result,
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Figure 4: This figure shows an overview of our timeline
based scheduling. In this example, the scheduler maintains
four timelines of compute devices (dy and d;) and channels
(mop — mj and m; — my). The schedule has four E-jobs (blue
intervals, jo, j1, j4 and j5) and two T-jobs (orange intervals, j»
and j3). Each job holds interval as well as dependency rela-
tion to other jobs. For example, an E-job, j4, executed by the
compute device dy, requires data from another compute de-
vice dy, which also performs a prior E-job jj. The scheduler
considers the dependency and computes a scheduling result
by adding T-jobs, j2 and j3, through the memory channels
between the corresponding memory devices of dy and d».

we design our scheduler to allocate jobs to both compute devices
and memory channels, where the former takes executable jobs,
henceforth E-jobs, and the latter takes data transfer jobs, hence-
forth T-jobs. This approach allows us to manage jobs and data fetch
canonically, simplifying the design and implementation; additional
justifications of our choice is available at the sup. report.

Scheduling dependent jobs in a timeline. Given dependency con-
straints, our scheduler generates series of E-jobs and T-jobs for each
device or channel. For that, our scheduler generates a schedule,
i.e., scheduling result, on the timelines. Each device or channel
maintains its own timeline, and we estimate an interval of a job.
We also record a dependency of execution orders for jobs. The
main goal of our scheduler is then reformulated to compute the
timelines for compute devices and memory channels. The execu-
tion of a schedule is done by following the timeline in order, while
waiting for dependent jobs to be finished. An example of a schedule
timeline is illustrated in Fig. 4.

4.2 Creating a Schedule

Given a specification consisting of DCG and timing models, obtain-
ing an optimal schedule is NP-hard. Specifically, the problem of
minimizing the makespan for a simple unrelated parallel system and
its p-approximation (where p < %) are known to be NP-hard [Gra-
ham et al. 1979; Lenstra et al. 1990]. This problem can be reduced
from ours by assuming the complete connection between devices
and the independence of jobs. We thus strive to find an approximate,
but efficient scheduling approach for our problem.

Our scheduling method is based on the wisdom of previous
approaches. A common approach of many ray batching techniques
is to schedule blocks, whose job granularity is high and fetch cost is
low, aiming to reduce both setup and fetch time [Pharr et al. 1997].
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In the field of distributed rendering, many systems prioritize on
load balancing, while trying to hide latency, effectively reducing
the fetch time and increasing the portion of job processing of the
final makespan [Wald et al. 2004].

Specifically, we aim to minimize makespan by reducing the idle
time of compute devices, which are composed of the following parts
in the decreasing priority:

(1) True idle time. Idling of a device can be caused by many
different reasons. If a compute device is not scheduled nor
waiting for a data, we define it to be the true idle state. Load
balancing reduces the time for this state.

(2) Fetching time. When a compute device is allocated for an
E-job whose required data is unavailable at the time, it must
wait for required data to arrive, i.e. waiting for T-jobs on input
data to be completed. An example of reducing such time is
latency hiding based on a prefetching.

(3) Setup time. A device has started an E-job, and is expected
to use the constant setup time corresponding to the term
Tserup(d, j) in Eq. 2. This cost can be minimized by increas-
ing the granularity of work.

We now explain the strategy to reduce the idle time consisting
of the aforementioned three parts. Whenever a new job is created,
we push it to a global job queue. We run our scheduler based on
the timeline concept, and invoke our scheduler when one of the
compute devices exhausts every job in its timeline and enters the
idle state. Alternatively, a dedicated scheduler process may run in
one of the compute devices and manage the timeline, to hide the
scheduling latency at higher synchronization cost.

Given this context, our scheduler finds a compute device d that
has the minimal execution time, and then assigns an E-job j re-
trieved from the global job queue to the device d. Choosing the
E-job j is described in Sec. 4.3. When the scheduler assigns the
E-job to the device, the scheduler also assigns its dependent T-jobs
to channels before the E-job. The assigning process of dependent
T-jobs is described in Sec. 4.4.

This scheduling algorithm iterates until all available jobs are
exhausted or each compute device has been scheduled to proceed
to a certain execution time threshold k (e.g., 2000 ms). The reason
why we schedule devices up to the execution time threshold is
that there could be many newly generated jobs due to the dynamic
nature of our application, and it is thus beneficial for the scheduler
to reschedule with those newly generated jobs for achieving the
better scheduling quality.

As an example in Fig. 4, assume that the schedule initially had
two E-jobs, jo and j;. (1) When one of the compute devices enters
the true idle state (in the example, dy enters the idle state first at ¢1),
(2) it executes the scheduling module. (3) The scheduling module
iteratively allocates the job onto the schedule of all compute devices,
up to the duration of execution time threshold k (that is, to the point
of t; + k). (4) The resulting schedule is broadcasted and synchro-
nized among the compute devices and channels. The pseudocodes
of the scheduling module are enlisted in the sup. report.

4.3 Job Selection

Job selection is performed once a compute device d is chosen. In
this context, an E-job j is selected based on its smallest fetching
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Figure 5: This figure illustrates an example of adding a job onto the current schedule for a cluster consisting of three connected
pairs of compute and memory devices. The scheduler tries to assign a job, ji, to d;, which is the least occupied compute device
in the current schedule as illustrated in (b). To evaluate the fetch overhead of dependent data, w;1, of ji, the scheduler performs
analysis on which transfer path is the most efficient for each job to reduce the fetch time. Suppose that the data w1 is located
in ms. In (c), the scheduler considers two choices: 1) sending the data in the direct path of m3 — my, and 2) taking an indirect
path of m3 — m; — my. It turns out that the indirect path shows a faster fetch time over the direct path.

overhead; i.e. a job that can be started earliest is chosen at the
moment (Fig. 5). If multiple jobs have the same fetching overhead,

the scheduler chooses the job with the smallest setup time over the
Tserup(d, j)

Texec(d, j, W)?

words, we prefer a job with higher granularity, i.e. the load of work.

The main technical challenge for the job selection is to estimate
fetching overheads of E-jobs located in the global job queue. To
estimate such fetching overheads at a compute device d, it is critical
to compute possible data transfer paths to load the dependent T-
jobs into the memory device associated with the compute device d.
This is explained in the subsequent section.

total execution time, i.e. as a tie-breaker. In other

Possible starvation and workarounds. A job is considered fetch-
free if it has zero fetching overhead. If there are fetch-free jobs, the
one with the highest granularity is chosen. Note that the fetching
overhead is measured from the moment of adding a job in d. If all
dependency chain of T-jobs for j can be resolved before d enters
an idle state in the current timeline, then j is considered fetch-free,
avoiding starvation if it has the highest granularity.

If the execution time threshold k is short enough, then current
scheduling window of k may get filled by fetch-free E-jobs before
any dependent T-jobs can be resolved for other E-jobs. In such case,
those E-jobs may get forced to wait indefinitely until fetch-free jobs
are exhausted, leading to the starvation. In our implementation, we
have avoided the problem by setting the high value for execution
time threshold k, long enough to ensure any E-job has a chance
to become fetch-free within the scheduling window of k. Alterna-
tively, we may introduce the concept of aging for each job, if the
application has a more strict constraint on its responsiveness.

4.4 Finding a Fetch Path

Before launching an E-job j on a compute device d, its associated
memory device, my, must have all required data for the job j. For

each input data block w of the job j, we check if it is available in
mg. For this process, the scheduler maintains which data blocks
are in which memory device at the point when each timeline of
related channels is finished.

If all input data blocks exist in my, the fetch cost for the E-
job j is zero and it can be scheduled at the end of the timeline of
d. Otherwise, our scheduler attempts to schedule T-jobs to fetch
missing data from other devices to my by constructing a transfer
path between them, before the E-job j is scheduled.

Construction of a transfer path. In a simple case where the data is
available from a source at the beginning and the schedule is empty,
the problem of finding a transfer path is simplified into finding the
shortest path in DCG, where the weight of each edge, i.e. channel,
represents a transfer time (Trrans) of the requested data block.
As it is preferable to fetch the data as soon as the channels are
ready, generated T-jobs can be directly chained into each other as
illustrated in Fig. 4, i.e., j2 and j3.

Based on this intuition, we propose Smallest Datapath Contention
(SDC) algorithm based on Dijkstra’s algorithm [1959], which also
considers other jobs that are already scheduled in channels. Given
a DCG, a current schedule snapshot p, a requested data block w,
and a target compute device mg, our SDC algorithm finds a transfer
path within DCG that fetches w into m at the earliest time.

Considering available time of data. Given a schedule p, the time
when data block w is available to each source memory device may
differ. We thus handle it by adding a virtual source vertex S onto
the DCG. We add an edge between S and each of memory device d
that has w. The weight of each new edge is set to the time when a
device is ready for sending the data, i.e. the time when the memory
device has held or received w, and is ready to send the data. Once
we introduce the virtual source vertex S, the problem transforms
into obtaining the transfer path from S to my.
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Availability of channels. On each step of searching for candidates
to expand the path, Dijkstra’s algorithm evaluates the accumulated
path length from a vertex p to a candidate vertex g by simply adding
the edge cost, wpq, to the shortest path. Such accumulation process
corresponds to the case where it is possible to send the data block
from p to q as soon as the data in p is available.

For our case, however, the channel, Cpq> between two memory
devices p and q should be available, to make the transfer through
cpq- If the channel cpq is busy, the transfer must be delayed to
the point when the channel is available. As a result, the shortest
cost toward p can be superseded by the waiting time of Cpg> 1€,
FinishTime(cpq). The final cost update equation to evaluate the
extended path length, [s.. ¢, is thus defined as the follows:

lswsq = max(lsp, FinishTime(cpq)) + Wpq- ®)

A pseudocode of finding a fetch path is available in the sup. report.

5 GMB SPECIALIZED FOR PATH TRACING

In this section, we describe how to apply our GMB scheduler to
accelerate the path tracer, one of well-known Monte Carlo ray
tracing methods. We choose path tracing for the demonstrative
purpose and its simplicity, but we believe that many other ray
tracing methods such as bidirectional path tracing [Lafortune and
Willems 1993] and photon mapping [Hachisuka et al. 2008]) can be
supported in a similar manner.

5.1 Jobs of Path Tracing

Fig. 3 illustrates processing jobs with related input and output data
of path tracing in the data flow diagram format. Our decomposition
of path tracing tasks is similar to that of Budge et al. [2009] in a
sense that each job can be efficiently run also in SIMD compute de-
vices such as GPUs, with some differences that enable a higher level
of parallelization. Especially, the method of Budge et al. lets each
cluster node handle a part of jobs defined by image plane decompo-
sition and then schedules those local jobs, i.e., rays generated from
a part of the image plane over each node. On the other hand, our job
formulation supports parallelization of all those jobs over different
nodes by distributing and scheduling jobs globally. Specifically,
our scheduler strives to reduce the makespan by transferring jobs
and their dependent data from a node to another through memory
channels. It is a novel feature that prior methods did not consider.
We also add common job structures of remote rendering such as
image requesting and additive composition of framebuffers, which
is detailed in the sup. report.

In the perspective of the GMB scheduler, each data block is
independent and can be transferred as described in Sec. 4.4, with
the following specifics: 1) Framebuffers are only allowed to be
moved for AdditiveCompose, and 2) if a (Shadow)RayQueue is
transferred to a memory device that already has a queue with
the same type and associated SceneData, their rays are merged
to the recipient queue. For detailed management technique of
(Shadow)RayQueues, see [Laine et al. 2013].

5.2 Dynamic Job Prediction

As we have discussed in Sec. 3.1, the unpredictable nature of Monte
Carlo rendering casts many schedulers including ours to work on
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Figure 6: This figure shows an example of future job predic-
tions generated from processing the RayQueue of the center
cell shown in yellow. For rays located in RayQueue of the cen-
ter cell, we predict how many rays should be appended to
RayQueue; for each adjacent cell i. The distribution weight w;
is determined by the relative ratio of the surface area from
the current cell to that of the cell i. As predicted results of
ray hits, n, shadow rays and n. secondary rays are predicted
to be generated and appended to corresponding ray queues.

a snapshot of jobs at a particular time. If future events that are
likely to happen can be estimated well, we can consider such jobs
in addition with the current snapshot. This in turn realizes better-
populated data blocks and higher performance.

To achieve this goal, we predict those future jobs by inspecting
data blocks associated with jobs that are currently under processing.
We then infer which data block can be accessed in the near future
and prefetch them at the scheduling stage for higher performance.
In particular, during the scheduling phase, we anticipate jobs of
RayIntersect and ShadowIntersect that might be generated in
future. We focus on these two jobs as they are dominant and the
most I/O intensive jobs. We then attempt to schedule them along
the rest of jobs that were already requested, allowing the scheduler
to prefetch the dependent data and process those future jobs.

For utilizing future events in the scheduler, we need to predict
job types and their amount, i.e., the number of rays per ray queue
associated with each data block. As a result, jobs of (Shadow)-
RaylIntersect are expected in the following three cases (Fig. 6):

No intersection. A ray may propagate into one of the neighboring
SceneDatas, e.g., an adjacent cell in the uniform grid, if it does
not intersect with geometry contained in the current one. For
this, we first estimate the hit ratio, «, of a ray that is updated per
SceneData. This value is maintained by averaging the hit ratio over
prior intersection results on the corresponding SceneData. This
is a reasonable assumption for temporally coherent scenes, as the
ray distribution on such scenes tends not to change drastically. ng,
the number of those rays that do not intersect is then estimated as
ng = (1 — @)|R|, where |R| is the number of rays in the current ray
queue. Since these rays are assumed to be distributed uniformly,
we assign these rays uniformly to those neighboring cells to the
current cell. Note that we predict future jobs without accessing
individual ray information that would incur a high computational
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Figure 7: Anillustration of node connection setup for our ex-
perimental hardware setup. Nodes of type A, B,C, D are GPU
workstations, while node R is a commodity desktop. Nodes
with type A are interconnected with 1GbE LAN (green line),
while others are connected with 100MbE LAN (blue line).

overhead. Our chosen strategy is simple yet conservative because
it tends to anticipate the worst case scenario, where the rays are
equally scattered to all those neighboring cells, which is usually
the most time-consuming case.

Shadow ray generation. When the direct illumination sampling
is adopted, an intersection of a non-shadow ray guarantees to
generate a new shadow ray. The number of these shadow rays, np,
is expected by n, = a|R|. These shadow rays are expected to be
processed with the current SceneData, as its origin lies on the hit
point of the parent ray. We thus assign them to the ray queue of
the current cell.

Secondary ray generation. An intersection of a non-shadow ray
can create a non-shadow ray, when the path is survived, i.e. the ray
passes the Russian roulette test. Those survived rays are simply
determined by the expectation with current ray properties (e.g.,
attenuation). We maintain the average of the pass possibility, S,
over the current RayQueue, so that we can predict how much rays
would survive the Russian roulette process on average. The number
of such secondary rays, nc, is then expected as n, = af|R|, and its
job is assigned to the current cell.

Incorporating predicted jobs into the scheduler. When our sched-
uler is initiated as described in Sec. 4, it also predicts future jobs,
Ji1s--+»Jim, for each job j; in the input job queue, as mentioned
above. We let each predicted job j;; to have a link to its preced-
ing job j;. This prediction process can be applied recursively to
even predicted jobs. We thus also introduce the maximum depth
of prediction as a user parameter. At the end of executing a job
of (Shadow)RaylIntersect, we inspect the output data block (e.g.,
the size of RayQueue) to determine whether its future jobs are pre-
dicted correctly or not. When the prediction turns out to be unable
to execute, e.g., an expected E-job is not generated, we discard the
predicted job and its whole dependent jobs such as its T-jobs.

Overall, our prediction has up to 75 % accuracy on average with
the tested benchmarks, albeit its simplicity. Thanks to the high
prediction accuracy, we have observed up to 85 % overall throughput
improvement. More detailed analysis is available in the sup. report.

6 EXPERIMENTAL RESULTS

We have implemented our framework and tested its performance
over a cluster of GPU workstations as illustrated in Fig. 7 along with
its memory channel bandwidths. The testing system is composed

Son and Yoon

Boeing777 | SponzaMuseum

Num. of triangles 496 M 245 M
Model mem. footprints | 26.5 GiB 12.3 GiB
Num. of data blocks 129 65
Image spec. 5122, 4spp 20482, 128spp

Table 1: This table shows various statistics of each tested
scene. The memory footprint includes input scene data and
acceleration data structure for Monte Carlo ray tracing. spp
represents Sample Per Pixel.

of eight nodes, consisting of four homogeneous nodes (type A: i7-
4770, 8-core, Titan), three heterogeneous workstation nodes (type
B: 17-4790, 8-core, Titan / type C: E5-2690, 16-core, Titan / type
D: E5-2690, 16-core, TitanX) and one commodity desktop node
(type R: i7-3770, 4-core, GTX980). Each type of node has one SATA
storage, 8GB main memory and different type of CPU and GPU.
Type A nodes are interconnected with 1GbE LAN, while others
are connected with 100MbE LAN. In total, heterogeneous 8-node
consists of 84 compute devices and 24 memory devices. The exact
specification for each node is noted in sup. report.

For comparative study, we have implemented two prior methods
from Budge et al. [2009] and Navratil et al. [2014] on the same hard-
ware configuration. The first method [Budge et al. 2009] distributes
jobs in the image-space decomposition to each node and performs
case-by-case analysis for allocating jobs to CPU and GPU. The
second method [Navratil et al. 2014] is a dynamic ray scheduling
framework for distributed memory parallel systems. On imple-
menting [Navratil et al. 2014], we choose LoadAnyOnce policy as
it exhibits high performance on global illumination scenes. Origi-
nally, this method runs on homogeneous CPU clusters. We have
thus modified it to run on GPU by allocating additional worker
processes that share GPU ownership on round-robin for each step.

For the implementation of ray intersection kernels in each method,
we use modified kernels from an optimized rendering system [Kim
et al. 2014] for CPU, and from NVIDIA OptiX for GPU. To obtain
the timing model for E-jobs, a sample run has been performed to
measure individual job durations. Then, the architecture-specific
model constants - Tsgryp(d, j) and TraTE(d, j) — are fitted using
the least square method.

As the execution time threshold, k, grows, we have higher chance
to utilize the latency hiding capabilities due to wider planning space.
On the other hand, increasing k might increase the scheduling
overhead and prediction error. Nonetheless, our inspection on a
range of different k values does not show a high variation on the
performance in a range of [200ms, 10000ms] in the tested scenes.
As a result, we simply set this value k = 2000ms in our experiment.

Benchmarks Scenes. We have tested two different scenes rendered
by path tracing (Fig. 1, Table 1). The Boeing777 scene of a highly
complex CAD model consists up to about 500 million triangles. The
SponzaMuseum scene is a virtual museum scene consisting of Crytek
Sponza, St. Matthew, two Lucy, and two David models featuring
scanned models (up to about 250 million triangles) with a high
amount of diffuse reflections. A detailed per-bounce performance
analysis of incoherent rays on this scene is provided in the sup.
report. Each model is subdivided in the stackless kd-tree with
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Figure 8: This figure shows the throughput of each method as more computational resources are added to the system. X-axis
represents the composition of nodes, where Y-axis represents the throughput in the total number of rays shot per second.

rope [Popov et al. 2007] for efficient traversal in both CPU and
GPU. A median-split strategy is used to subdivide the model into
approximately even-sized data blocks.

A number of client processes run on a separate node, generating
image requests. For testing different methods in a uniform setting,
we set each client to request a scene along predefined camera move-
ments, feeding an image request in a frame-by-frame manner. To
see the steady-state behavior of different methods, we increase the
number of clients until each method reaches its peak performance,
and then compare their peak performances.

6.1 Scalability Analysis on Peak Performance

We have evaluated the horizontal scalability by measuring through-
puts of different methods on varying number of nodes. The peak
throughput is measured with the total number of rays shot per unit
time. Fig. 8 shows measured peak throughputs.

In specific, we increasingly add the nodes as follows. We first
attach the homogeneous node A one-by-one to see how the system
scales as the computational resources scales linearly. Then we add
node B, C, and D in increasingly powerful performance to see if
the scheduler captures increasing performance boosts. Finally, we
add the commodity desktop node R to the system to represent the
scenario of remote rendering where the client also participates.
Each node has a full copy of the model dataset on its HDD.

As the number of nodes increases, the tested method shows
higher throughputs. However, the performance per each node
degrades as various overheads such as communication cost and
scheduling overhead increases for all three methods. Nonetheless,
our method scales better horizontally over the prior methods as
our method utilizes available channels better, thanks to locality-
aware job distribution, and optimizes the data transfer path and
prefetching via such available channels. For example, the average
utilization for LAN bandwidth on heterogeneous 8-node setup for
[Budge et al. 2009], [Navratil et al. 2014], and ours are 37.1%, 39.2%
and 87.8%, respectively.

For a single node case (A), our method shows slightly lower
performance compared to others. In this case, there are not much
divergence on paths as the bandwidth of the SATA channel is the
dominant bottleneck here, leaving not much space to optimize the
data transfer path or to plan to prefetch ahead of time. As a result,

— Ours
e—= [Navritil et al. 2014]
*— [Budge et al. 2009]
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Figure 9: This figure shows how throughputs of different
methods increase as time advances on the central scene data-
base scenario for Boeing777 scene on heterogeneous 8-node
setup. Required data is fetched and cached to each node on-
demand. Our method reaches to its peak performance ear-
lier than other tested methods.

this case exhibits only the scheduling overhead (up to about 20 % of
the total runtime) of our method to search for data transfer paths.

Note that the throughput achieved by our method with eight
nodes is about 100 M rays per second. This throughput may be
interpreted low compared to throughputs of recent ray tracers.
However, our reported throughput is achieved with massive models
that cannot be stored in main memory. A recent heterogeneous
rendering method utilizing CPU/GPU with approximated geometry
for the Boeing model reported about 10 M rays per second in a
single node, and its full version using the original geometry reported
lower than 1 M rays per second [Kim et al. 2014].

In addition to our cluster setup, we have also tested a case of
rendering using a single workstation with multi-GPUs, but without
using network data transfers. While our method is not mainly
designed for this case, our method shows a minor improvement,
i.e., up to 8% overall performance improvement over [Budge et al.
2009], which is mainly designed for this case, and 26% improvement
over [Navratil et al. 2014]. The detailed results and analysis are
given in the sup. report.

6.2 Efficiency of Data Fetching

To verify the efficiency of data fetching of different methods, we
have measured how fast they can handle for a scenario using the
central scene database. In this scenario, only one node (master)
has a full copy of the scene data in its HDD, and others (slaves)



HPG *17, July 28-30, 2017, Los Angeles, CA, USA

fetch necessary data via network, and cache into its local HDD.
Specifically, we have measured how fast each method reaches to
its peak performance. In all experiments, the master node is set to
be the node of type D.

As shown in Fig. 9, our method reaches to the peak performance
earlier than previous methods, thanks to the optimization of transfer
paths. In prior methods, all slaves directly request data from the
master, and thus suffer from the LAN bottleneck on the outgoing
link of the master node. On the other hand, our method is able
to determine the availability of each data block on each memory
device, and constructs a transfer path from a slave to another slave
node, offloading the data fetches from the master node. This enables
our approach to converge to the peak performance much faster
than previous methods. In the first 10 seconds, our system utilizes
31% of total bandwidth for slave-to-slave channels for SceneData
transfer, while other methods do not.

7 CONCLUSION AND FUTURE WORK

We have proposed a novel scheduling method for ray tracing out-
of-core data. Our approach aims to minimize the makespan by
considering data locality and expensive I/O bandwidths for vari-
ous device configurations, which are encoded in DCG. Our main
contribution is the iterative scheduling method, greedy makespan
balancing method that considers different data transfer paths to
minimize the makespan. To demonstrate benefits of our method,
we have applied our method to path tracing of two massive models.

Interesting future research directions lie ahead. The complex
shading systems for large-scale textures and volumetric scattering
can utilize our approach with different formulation of job schemes.
For example, the job structure can encode the dependencies of
deferred rendering structures [Eisenacher et al. 2013]. We might
also explore larger scheduling space (e.g., considering multiple steps
on job allocation) for achieving better performance.
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