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Abstract
Hierarchical culling is a key acceleration technique used to efficiently handle massive models for ray tracing,
collision detection, etc. To support such hierarchical culling, bounding volume hierarchies (BVHs) combined
with meshes are widely used. However, BVHs may require a very large amount of memory space, which can
negate the benefits of using BVHs. To address this problem, we present a novel hierarchical-culling oriented
compact mesh representation, HCCMesh, which tightly integrates a mesh and a BVH together. As an in-core
representation of the HCCMesh, we propose an i-HCCMesh representation that provides an efficient random
hierarchical traversal and high culling efficiency with a small runtime decompression overhead. To further reduce
the storage requirement, the in-core representation is compressed to our out-of-core representation, o-HCCMesh,
by using a simple dictionary-based compression method. At runtime, o-HCCMeshes are fetched from an external
drive and decompressed to the i-HCCMeshes stored in main memory. The i-HCCMesh and o-HCCMesh show
3.6:1 and 10.4:1 compression ratios on average, compared to a naively compressed (e.g., quantized) mesh and
BVH representation. We test the HCCMesh representations with ray tracing, collision detection, photon mapping,
and non-photorealistic rendering. Because of the reduced data access time, a smaller working set size, and a
low runtime decompression overhead, we can handle models ten times larger in commodity hardware without the
expensive disk I/O thrashing. When we avoid the disk I/O thrashing using our representation, we can improve the
runtime performances by up to two orders of magnitude over using a naively compressed representation.

1. Introduction
There has been extensive research on designing mesh rep-
resentations optimized for different applications. For sim-
ple rendering, a mesh is often represented by a list of ver-
tices and a list of three vertex indices defining each triangle,
i.e. indexed triangle format. For applications requiring mesh
traversals (e.g., iso-surface extractions), connectivity infor-
mation is stored in a mesh representation or computed on
the fly during streaming processing [ILS05].

Ray tracing and collision detection are widely used for
providing high-quality visualizations and user interactions.
In these algorithms, we need to detect intersecting primi-
tives between two input objects (e.g., a ray and a 3D object
in ray tracing and two 3D objects in collision detection). In
order to efficiently detect these intersecting primitives, hier-
archical traversal and culling by using bounding volume hi-
erarchies (BVHs) are commonly used [TKH∗05,YGKM08].
BVHs are constructed from meshes and leaf nodes of BVHs
contain one or more triangles of the mesh. An intermedi-
ate node of a BVH has a bounding volume (BV) that en-
closes all the triangles contained in the sub-tree rooted at
the node. Axis-aligned bounding boxes (AABBs) are com-
monly used as BVs, because of their simplicity and com-
pactness [TKH∗05, YGKM08].

Due to advances of model acquisition and computer-

aided design techniques, massive models are easily gener-
ated these days. Such massive models can consist of hun-
dreds of millions of triangles and thus use several gigabytes
of memory. In addition, BVHs constructed from these mas-
sive models can use additional gigabytes of memory space.
Although BVHs are intended to accelerate the performance
of applications, the additional memory requirement of using
BVHs can increase the working set size during the hierar-
chical traversal and can increase the data fetching time from
the disk, which could negate the benefits of using BVHs.
This high memory requirement of a BVH is likely to cause
more serious performance issues in the coming years, given
the well-known widening gap between the computational
speed and the data access speed on current commodity hard-
ware [HPG07].

Only a few techniques have been proposed to design com-
pact mesh and BVH representations in order to reduce the
data access time and memory requirements during the hi-
erarchical traversal [CSE06, LYTM08]. None of them sup-
ports various tree structures of BVHs, while providing effi-
cient hierarchical culling and a low runtime access overhead.
Furthermore, these prior techniques do not provide enough
compression ratios to handle large-scale models consisting
of hundreds of millions of triangles on commodity hardware.

Main results: In this paper, we propose a novel hierarchical-
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Figure 1: Applications: These figures show images of applications using our HCCMesh representations. From left, we show a Whitted-style
ray tracing of the St. Matthew, photon mapping on a transparent David model in the Sponza scene, a line-art style rendering of the Lucy model
reflected on a sphere, and collision detection between the Lucy and a CAD turbine model

culling oriented compact mesh representation, HCCMesh,
for massive models. The HCCMesh supports various tree
structures of BVHs and efficiently provides random hier-
archical traversal and culling. To compute the HCCMesh
representation, we first construct a BVH from a mesh and
then decompose the BVH into a single high-level BVH and
multiple low-level BVHs. Then we compress each low-level
BVH into our in-core HCCMesh representation, i-HCCMesh
(Sec. 4), and then further compress it into our out-of-core
representation, o-HCCMesh (Sec. 5). Given a general out-
of-core data access framework (Sec. 3), we selectively fetch
the o-HCCMesh of a low-level BVH requested during the hi-
erarchical traversal and decompress it into the i-HCCMesh.
Our HCCMesh representations offer the following benefits:
• Low memory requirement: Our i-HCCMesh and o-

HCCMesh has 3.6:1 and 10.4:1 compression ratios on av-
erage over a naively quantized representation. This low
memory requirement reduces the data access time and the
size of the working set during the hierarchical traversal.

• High performance improvement: We test our method
on ray tracing, photon mapping, non-photorealistic ren-
dering, and collision detection (Fig. 1 and Sec. 6.1) and
compare our method over the naively quantized represen-
tation. We can handle models ten times larger in these ap-
plications without the expensive disk I/O thrashing by us-
ing our representation (Fig. 2). In the case when we can
avoid the disk I/O thrashing, we can improve the perfor-
mance by up to two orders of magnitude.

2. Related Work
In this section we review prior work, mainly on compression
methods of meshes and BVHs, to handle massive models.

2.1. Efficient Handling of Massive Models
At a high level, techniques that enable efficient handling of
massive models are classified as out-of-core techniques min-
imizing the number of expensive I/O operations [SCC∗02,
CRMS03], multi-resolution techniques reducing the amount
of necessary data [LRC∗02], or data compression methods
reducing the storage requirement [AG04, GGK02].

Mesh compression:

Mesh compression techniques have been well studied and
excellent surveys are available [AG04, GGK02]. Most pre-
vious mesh compression schemes are designed to achieve a
maximum compression ratio as they aim for archival use or
for transmitting massive models. However, these techniques
do not support efficient random hierarchical traversal and
culling for the compressed meshes.

2.2. Tree and BVH Compression
Tree compression techniques have been studied in many dif-
ferent fields [KM90]. These techniques include linearizing
the structure [Jac89] and transforming the tree into a pre-
defined tree [Zer85]. Relatively little research has been done
on compressing BVHs. A BVH has two types of informa-
tion: the BV information and its tree structure.

Encoding BVs: In order to compress BVs, fixed-rate quan-
tization methods are frequently used [CSE06, Ter03]. Also,
hierarchical encoding schemes were developed to achieve a
higher compression ratio [RL00,HMHB06,Kar07]. We pro-
pose a novel BV encoding scheme that tightly integrates the
mesh and the BVH, to achieve a higher compression ratio
while supporting efficient hierarchical traversal and culling.

Encoding tree structures: Many techniques assume a par-
ticular tree structure (e.g., complete tree) in order to re-
move most of cost related to encoding the tree struc-
ture [CSE06,LYTM08,Hav97]. Lauterbach et al. [LYTM08]
introduced the Ray-Strip representation, which implicitly
encodes a complete spatial kd-tree from a series of vertices.
These techniques remove the cost of encoding tree struc-
tures. However, they may have low hierarchical culling ef-
ficiency, since they are incompatible with various optimized
hierarchy construction methods [YGKM08,TKH∗05]. Com-
pact sub-trees [Hav97] reduce the space for tree structures
given an assumption of the complete sub-trees. Lefebvre and
Hoppe [LH07] employed local offsets to encode the location
of child nodes given the pre-ordered layout of the tree. Ja-
cobson [Jac89] introduced a succinct tree, which supports
arbitrary tree structures. The succinct tree supports random
access with O(1) time complexity and shows a compression
ratio that is the asymptotic optimum. Our proposed method
also supports various kinds of tree structures and shows a
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Figure 2: Ray Tracing Time vs. Model Complexity: This graph
shows the rendering time with various model complexities of the
St. Matthew model shown in Fig. 1. We measure the performance
of ray tracing with our HCCMesh, the original (Ori.), and naively
compressed (NCom.) representations.

compression ratio near the optimum in practice, while pro-
viding much faster runtime tree traversal than the succinct
tree.

2.3. Random Access and Compression
Random access has been directly supported by a few
compression techniques on the compressed single-
resolution meshes [YL07, CKLL09] and multi-resolution
meshes [KCL06]. However, it is unclear how to apply
these techniques to our problem. Several octree based
compression techniques are proposed [MCT08, CRMS03]
but octrees are known to show low culling ratios than
BVHs. Recently, Kim et al. [KMKY10] proposed a random-
accessible compressed BVH representation. This method
improved the performance of an out-of-core ray tracer by
using compact out-of-core BVH representation. Our method
compresses even an in-core representation and further
improves the performance of various applications.

3. Overview
In this section we give an overview of our approach to effi-
ciently access meshes and BVHs of massive models.

Meshes and BVHs: Our method takes a triangular mesh
and a BVH constructed from the mesh as two inputs. The
mesh can have multiple attributes (e.g., color and normal)
for each vertex and triangle. We do not assume a partic-
ular hierarchy construction method for BVHs. We, how-
ever, assume a full binary BVH and the AABB as a BV
because of its simplicity and wide use in numerous appli-
cations [TKH∗05, YGKM08]. We further assume that each
leaf node of a BVH contains a single triangle of a mesh. It is
straightforward to extend our method to rooted binary trees
and k-ary trees. In Sec. 7 we extend our method to support
other types of BVs and leaf nodes that contain multiple tri-
angles of the mesh. Unless mentioned otherwise, the term of
a BV refers to an AABB.

Random hierarchical traversal: To perform ray tracing,
collision detection, etc., BVHs of meshes are traversed hi-
erarchically. If a node is accessed during the hierarchical
traversal, its two child nodes are stored in a queue or a stack
and then are used for a breadth-first or depth-first traversal.

Also, a node and its sub-tree can be culled during the traver-
sal. Therefore, it is hard to predict the runtime access pat-
tern on the hierarchies at the preprocessing time or to opti-
mize the access pattern at runtime. We define such an access
pattern as a random hierarchical traversal and optimize our
representation to efficiently support this type of the access
pattern.

3.1. Out-of-Core Runtime Access Framework

To handle meshes and BVHs of massive models
that cannot fit into main memory, we employ an
out-of-core runtime access framework [SCC∗02].
The framework maintains a memory pool, whose
size is determined by the available main memory.

Figure 3: Decomposition
of a BVH to high-level and
low-level BVHs

To use this out-of-core access
framework, we first decom-
pose an input BVH into a sin-
gle high-level sub-BVH and
multiple low-level sub-BVHs
(Fig. 3), using a simple clus-
tering method. For simplicity,
we call these sub-BVHs high-
level and low-level BVHs re-
spectively. We construct a
low-level BVH such that it has less than 512 vertices in the
BVH, in order to design a compact in-core BV represen-
tation (Sec. 4.2). To compute such low-level BVHs, we tra-
verse the original BVH in a bottom-up manner and count the
number of vertices associated with each intermediate node.
If an intermediate node has less than 512 vertices and its par-
ent node has more, then we determine the node to be a root
node of a low-level BVH. All the ancestor nodes above root
nodes of these low-level BVHs are assigned to the high-level
BVH.

As a BVH is traversed, an application may request a BV
node or a mesh element (e.g., a vertex or a triangle). Our
runtime access framework identifies the high-level or a low-
level BVH containing the requested data. If the BVH has not
been loaded yet, we load it, mark its availability in a page ta-
ble, and return the data to the application. We also employ
a simple memory management method based on the least-
recently used (LRU) replacement policy. To implement the
LRU replacement policy, we maintain a LRU list containing
BVHs that have been accessed. This framework is easily ex-
tended to a parallel access mode and is a well-known concept
used in many different out-of-core methods [SCC∗02].

Even with this general out-of-core framework, we found
that it still takes a huge amount of time to load and access
data for massive models. This is mainly because external
drives (e.g., disks) have low reading performance and be-
cause BVHs and meshes have high memory requirements.
Also, once the size of working set is greater than the avail-
able main memory, expensive I/O thrashing occurs and dras-
tically degrades the performance.
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Figure 4: Out-of-core Runtime Access Framework: Given the
framework, our main contributions (shown with blue colors) are
compact in-core and out-of-core HCCMesh representations and
compression methods that allow fast runtime decompression per-
formance.

3.2. Our Approach
In order to reduce the data fetching time from external drives
and to lower the memory requirement of meshes and BVHs,
we compute our HCCMesh representation for each low-
level BVH. Our HCCMesh representation has in-core and
out-of-core parts. The in-core HCCMesh representation, i-
HCCMesh, tightly integrates the mesh and BVH represen-
tations. We compress i-HCCMeshes further to reduce the
expensive data access time from external drives for appli-
cations that run in an out-of-core mode. We do not compress
the high-level BVH since it is frequently used and is rela-
tively small (e.g., 4 MB for a model consisting of 100 M tri-
angles). Fig. 4 shows the overall structure of the out-of-core
access framework with our main contributions.

When a low-level BVH is requested at runtime, we
fetch its corresponding o-HCCMesh from an external drive,
decompress it, and store it in main memory as our i-
HCCMesh representation which efficiently supports the ran-
dom hierarchical traversal. In order to enable a high over-
all performance improvement, our methods support high
compression ratios and fast decompression performance.
If all the i-HCCMeshes fit into main memory, the o-
HCCMeshes are sequentially fetched and decompressed
into the i-HCCMeshes as the application begins. When all
the o-HCCMeshes, but not all the i-HCCMeshes, fit into
main memory, we load the o-HCCMeshes to main mem-
ory without any decompression and then decompress them
into the i-HCCMeshes when necessary, in order to remove
the expensive disk I/O access at runtime. Otherwise, the o-
HCCMeshes are fetched on demand from the disk and de-
compressed into i-HCCMeshes while using the LRU-based
memory management.

4. i-HCCMesh Representation
In this section we describe our in-core HCCMesh represen-
tation, i-HCCMesh, and discuss its results.

4.1. Overall Representation
A common AABB node records two types of information:
1) the minimum and maximum bounds of an AABB and 2)
information about its tree structure. Each intermediate node
has two left and right indices to encode the left and right

Figure 5: i-HCCMesh of a Low-Level BVH: The i-HCCMesh
consists of a header, a BV array, an inter-connection array, and
a vertex array. There are three different BV node types in the i-
HCCMesh and two bits are used to encode the type of a node.

child nodes. Each leaf node stores a triangle index in the
same position used for recording the left or right indices in
the intermediate nodes. This simple AABB representation
uses 32 bytes and efficiently supports the random hierarchi-
cal traversal. However, using this simple AABB representa-
tion on massive models may require huge amounts of mem-
ory space (e.g., more than 6 GB for a mesh consisting of
100 M triangles).

An i-HCCMesh representation of a low-level BVH
(Fig. 5) consists of a header, a BV node array, an inter-
connection array, and a vertex array. The header contains
the numbers of BV nodes and vertices associated with the
BVH. The BV node array contains the BV information and
the inter-connection array represents the tree structures of
the BVH. Also, the vertex array contains the mesh informa-
tion. Each BV node in the i-HCCMesh is compressed to take
only 4 bytes.

4.2. Encoding Bounding Volumes
The BV of a node is constructed to tightly enclose all the
triangles contained in the sub-tree of the node [YGKM08,
TKH∗05]. Therefore, at least one vertex of a mesh is on a
boundary of a BV and can define the boundary (see the par-
ent BV in Fig. 6-(a)). This observation [LYTM08] allows us
to efficiently encode the BV information of AABBs.

Since an AABB has 6 extents (minimum x, y, z and maxi-
mum x, y, z), we identify 6 vertices that define the 6 extents.
Since these vertices are often shared among multiple BVs,
we store their coordinates in the vertex array (Fig. 5) and
use indices to the array to define extents of a BV. This repre-
sentation requires 6×C bits to define an AABB, where C is
the number of bits required to encode an index to the vertex
array. If a low-level BVH contains many vertices, its work-
ing set size will increase and the cache coherence will lower
during the hierarchical traversal. Therefore, in our current
implementation, we set C to 9, which limits the size of the
vertex array to 512 vertices. Later we will explain another
reason why we choose C to be 9 particularly.

We further reduce the memory requirement of the BV by
observing that some of 6 vertex indices defining an AABB
are not required during the hierarchical traversal of a BVH.
As we traverse the hierarchy, the BV information of a parent
node of the currently accessed node can be easily available
by caching and fetching the BV of the parent node in a stack
or queue used for the hierarchical traversal. Since BVs are
constructed to enclose triangles tightly, some of extents of a
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Figure 6: 2D Example of In-core BV Encoding: (a) The figure
shows AABBs of a node, its two child AABBs, and vertices defining
extents of the BVs. (b) Vertices defining BVs are shown. (c) Reuse
mask and vertices that are additionally specified are shown. (d) The
final BV encoding for two child nodes.

BV and its parent BV may be identical. In the case of the
AABB, the following property is satisfied.

Inheritance property: For each coordinate axis (e.g., x, y,
and z), one of the minimum extents of two child AABB
nodes is inherited from (and thus same to) the minimum ex-
tent of their parent AABB node. The same property holds
for maximum extents. Its proof is trivial.

Because of the inheritance property, at least 6 of the 12 ex-
tents of two child nodes are same as the extents of their par-
ent BV. Therefore, instead of encoding all the 12 extents us-
ing vertices, we can reuse 6 of the 12 extents from a parent
AABB.

In order to compactly encode the inherited extents, we use
a 6-bit reuse mask. Each bit of the reuse mask corresponds
to either minimum or maximum extent in x, y, and z coordi-
nate dimensions. If a left AABB node inherits an extent from
its parent AABB, we set the extent’s corresponding bit to 1.
Otherwise, we compute a vertex index defining the extent.
We perform this process for each of 6 different extents. In-
stead of maintaining another reuse mask for the right node,
we use the same reuse mask for the right AABB node. For
the right node, we inherit an extent from the parent node,
when the bit is set to be 0. It is possible that both child
nodes may inherit the same extent from their parent node,
but only one of the two child nodes inherits the extent in our
scheme. A 2D example of our in-core BV encoding is shown
in Fig. 6. It is worth mentioning that an inheritance property
and a reuse mask similar to ours have been introduced in an
earlier work [Kar07].

In our scheme, two child AABB nodes are represented by
a 6-bit reuse mask and by 6 vertex indices. We divide them
in half and distribute three vertex indices and three bits of
the reuse mask to each child node. We store all the BVs of
a low-level BVH in the BV array associated with the BVH
(see Fig. 5). This representation requires 3×C + 3 bits per
BV. Since we use 9 bits for C in our current implementation,
the in-core BV information uses 30 bits, which are stored in
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Figure 7: Tree Templates: The left figure shows possible tree
templates of a height of 1, 2, and 3, with its ID. The right figure
shows a tree partitioning example with sub-trees that have up to a
height of 3 and the computed tree template IDs.

4 bytes; the unused two bits are used to encode three differ-
ent types of a node, which will be explained later in Sec. 4.3.

When a BV of a node is requested at runtime, we identify
extents inherited from its parent BV, using 6-bit wide reuse
mask and six vertex indices stored in the node and its sibling
node.

4.3. Encoding Tree Structures
In order to compactly represent tree structures, we propose
a novel structure, tree templates. k-height tree templates are
defined as all the possible tree structures of trees having a
k tree height; the height of a tree containing only one node
is 1. For example, suppose that we have a tree with a height
of 3. There are only 3 different tree structures and thus there
are three 3-height tree templates (see Fig. 7-(a)).

To represent the structure of a tree with any height us-
ing tree templates, we horizontally partition the tree into
sub-trees consisting of a height of k in a top-down manner.
This simple partitioning method computes sub-trees consist-
ing of a height of 1 to k. Then we encode the tree structure
of each sub-tree by encoding an index to all the possible 1-
to k-height tree templates (see Fig. 7-(b)). The number of
k-height tree templates, T (k), is computed as the following
(see the supplementary report for the proof that is available
at our project URL):

T (k) =
{

2∗T (k−1)∗(∑
k−2
i=1 T (i))+T (k−1)2 for k ≥ 3

1 for 1≤ k ≤ 2

This function grows extremely fast, O(22k
), but it is reason-

ably small when k is small (e.g. T (3) = 3 and T (4) = 21). In
our current implementation, we use 1- to 4-height tree tem-
plates since there are only 26 different types.

Let us call an intermediate node of the original BVH, but
a leaf node within a sub-tree after the partitioning to be a
template leaf node. We also call all the rest of intermediate
nodes template intermediate nodes (see Fig. 7-(b)). We still
call leaf nodes of the original BVH leaf nodes. These are
three types of a BV node in our representation.

Although we represent each partitioned sub-tree with a
tree template, the links between tree templates (e.g, blue ar-
rows in Fig. 7-(b)) should be encoded additionally. We call
such links inter-connections. However, there is not enough
space to encode this information in the 4 byte BV struc-
ture. To encode these inter-connections, i.e., child nodes of

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



T. Kim, Y. Byun, B. Moon, Y. Kim, S. Lee & S. Yoon / HCCMeshes: Hierarchical-Culling oriented Compact Meshes

template leaf nodes, within the 4 byte BV structure, we use
the inter-connection array for each low-level BVH (Fig. 5).
Then we design each template leaf node to record an index,
icidx2, pointing to the inter-connection array. We store the in-
dex, icidx2, in the position of a vertex index in the template
leaf node (see the structure of template leaf nodes in Fig. 5)
and then store the vertex index at an entry referred by the in-
dex icidx2 in the inter-connection array. In addition to record-
ing a vertex index, each entry of the inter-connection array
records 1) two IDs of tree templates of the left and right sub-
trees and 2) two indices that point to the root BVs of these
two sub-trees in the BV array. Once we have accessed an en-
try in the inter-connection array from a template leaf node,
we can traverse to the left or the right child node of the node.

4.4. Encoding Meshes
We quantize vertex geometry and normals of the mesh using
simple quantization methods [RL00] and colors are also en-
coded by using a color palette. We store three vertex indices
of the triangle stored in each leaf node in the same positions
where three vertex indices are recorded for an intermediate
node. Therefore, we can use a 4 byte BV structure for leaf
nodes too.

Note that each low-level BVH has its vertex array contain-
ing vertices used by the BVH. This representation can im-
prove the cache coherence during the BVH traversal, since
every required vertex is located in the array. However, it can
lower the compression ratio, since vertices shared by multi-
ple triangles can be stored multiple times in different low-
level BVHs. We found that 14% of vertices of the original
mesh are duplicated in our tested models and these dupli-
cated vertices take 5% of the size of i-HCCMesh.

5. o-HCCMesh Representation
We further compress i-HCCMesh for the out-of-core case,
which requires the expensive data access time to read data
from an external drive. Since the i-HCCMesh is already
compressed, it is hard to compress the i-HCCMesh further
using general compression methods (e.g., gzip). Therefore,
we propose a dictionary-based compression method that al-
lows a fast decompression performance while compressing
more.

5.1. Compression Method
We compress an i-HCCMesh of a BVH by traversing each
node of the BVH in a depth-first order. When we encounter
a leaf node during the traversal, we encode its contained
mesh information: 3 vertex indices, vertex coordinates, and
their attributes. To compress the mesh information, we use
the streaming mesh compression method [ILS05], since it
runs quite fast while achieving a high compression ratio. We
modify the streaming mesh compression method that em-
ployed a statistical compression method [Sal07] to use our
simple dictionary-based compression method, which will be
explained later in Sec. 5.2. We make this modification since
the statistical compression lowers the runtime performance

of applications compared to using our method; the statisti-
cal compression achieves only 18% more compression, but
has 2 times slower decompression performance. We also use
our dictionary-based compressor to encode tree template IDs
and inter-connections.

We quantize each vertex coordinate to 16 bits and store
it in the o-HCCMesh. We further compress it using a par-
allelogram prediction method [AG04] and then encode the
prediction error using our dictionary-based compressor. To
apply the prediction method, we construct the mesh infor-
mation during compression and decompression as used in
the streaming mesh compression method [ILS05]. We also
treat other attributes in a similar manner.

We do not encode any of the BV information in the o-
HCCMesh, because they can be reconstructed from the en-
coded tree structures and the mesh information contained
in leaf nodes. Once we decoded the tree structure and the
mesh information of the BVH symmetrically to the com-
pression method, then we traverse the decompressed tree in
a bottom-up manner and re-construct the AABB information
of a node based on the vertex information contained in the
sub-tree rooted at the node. This BV reconstruction process
is done efficiently in linear time, proportional to the number
of triangles contained in the BVH.

5.2. Dictionary-based Compression
We employ one more layer of compression using a simple
dictionary-based compressor. This compressor maintains a
dictionary consisting of s different entries. We create a sepa-
rate dictionary for each compression context (e.g., tree tem-
plates, vertex indices, reuse masks, etc.). In order to choose
symbols to be included in the dictionary, we compute a prob-
ability table for symbols and then choose the s symbols that
appear the most frequently. If a symbol currently being en-
coded is in the table, then the index of the table entry is en-
coded. Otherwise, we simply encode the symbol itself. We
use a fixed number of bits to encode an index of a dictio-
nary entry, instead of a Huffman encoding [Sal07], since we
prefer to have faster decompression performance.

We propose a simple, but automatic method for determin-
ing the size, s, of a dictionary, in order to achieve an optimal
compression ratio for each compression context. Let f (i) be
the probability function of the ith symbol appearing in the
input symbols, sorted in the order of a decreasing probabil-
ity. Also, let p be the probability that an input symbol being
encoded is in the dictionary. Then, p = ∑

s
i=1 f (i) and the

number of bits, B(s), required to represent the compressed
data is p log2(s)+(1− p)Co, where Co is the number of bits
required to encode the original symbols.

The size, s, of the dictionary table achieving an optimal
compression ratio can be found by minimizing the required
number of bits, B(s). Note that as we increase s, the term of
p log2(s) monotonically increases from zero, while the term
of (1− p)Co monotonically decreases from Co. Therefore, as
we increase s, B(s) will decrease initially and then increase
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at one point, sm. The optimal s is simply computed by choos-
ing either sm−1 or sm that gives us a lower B(·).

6. Results and Applications
We have implemented and tested our method with a variety
of applications that require random hierarchical traversal and
culling. We use an 2.83 GHz quad-core machine with 4 GB
main memory and 1 K by 1 K image resolution for all the
rendering results, unless mentioned otherwise. Refer to the
accompanying video for visual results of our applications.

We have computed our i-HCCMeshes and o-HCCMeshes
with various benchmark models (Table 1). We compare HC-
CMeshes with the original uncompressed mesh and BVH,
which uses the simple AABB node (32 bytes), vertex co-
ordinates (12 bytes), vertex normals (12 bytes), vertex col-
ors (12 bytes), and triangles (32 bytes) [Wal04]. We also
compare HCCMeshes with a naively compressed BVH and
mesh, whose vertex, normal, BVs, and colors are quantized
in the same manner applied to the HCCMesh representa-
tion. We call the original and naively compressed represen-
tations to be Ori. and NCom. respectively. We use cache-
oblivious layouts [YGKM08] for meshes and BVHs of Ori.
and NCom. since they are known to reduce the number of
cache misses.

Compression ratio and decompression performance: On
the tested benchmark models, the i-HCCMeshes achieve
7.2:1 and 3.6:1 compression ratios on average over Ori.
and NCom. respectively. Also, the o-HCCMeshes achieve
20.9:1 and 10.4:1 compression ratios on average over Ori.
and NCom. respectively (Table 1). Our compression method
can process 102 K triangles per second to compute the i-
HCCMeshes and o-HCCMeshes together. Our decompres-
sion method decoding from the o-HCCMeshes to the i-
HCCMeshes can process 2.3 M triangles per second, when
we use a single core and exclude the time spent on reading
data from an external drive.

6.1. Applications
To demonstrate the benefits of using our HCCMesh repre-
sentation, we test our method on a variety of applications
that require random hierarchical traversal and culling on the
meshes. At a high level, our tested applications can be clas-
sified as ray tracing applications (including Whitted-style
ray tracing, non-photorealistic rendering, multi-resolution
ray tracing, and photon mapping) and collision detection ap-
plication. Also, we discuss how we can apply our methods
to compress other types of hierarchies such as kd-trees and
multi-resolution hierarchies. We found that the performance
of our method follows a similar pattern in many of these
applications. Therefore, we report results of extensive tests
only with the Whitted-style ray tracing to explain main run-
time characteristics of our method.

6.1.1. Whitted-Style Ray Tracing
We implement a Whitted-style BVH-based ray
tracer [LYTM06] that can use HCCMeshes, Ori., and

Model T Ty OS NS i-HCCMesh o-HCCMesh
(M) pe BV Tr M CS CR CR’ Tr M CS CR CR’

St. Matthew 372 S 40459 20226 2836 600 1997 5474 7.4 3.7 478 1212 1738 23.3 11.6
Sim. St. Ma. 128 S 13925 6961 976 212 700 1902 7.3 3.7 167 496 678 20.5 10.3
Lucy 28 S 3008 1502 210 46 154 413 7.3 3.6 36 113 153 19.7 9.8
David 8 S 897 449 63 13 46 122 7.4 3.7 11 33 45 19.9 10.0
Power plant 13 C 1547 738 97 24 125 248 6.2 3.0 18 71 92 16.8 8.0
DE tanker 82 C 10142 4794 623 162 880 1677 6.0 2.9 116 477 614 16.5 7.8
Iso-surface 102 I 11148 5572 781 171 594 1554 7.2 3.6 135 510 657 17.0 8.5
Turbine 2 S 192 96 13 2.9 9.9 26.4 7.3 3.6 2.3 8.6 11 17.4 8.7
Sponza .06 A 12.9 5.2 0.5 0.1 1.9 2.6 5.0 2.0 0.1 0.4 0.9 14.3 5.8

Table 1: Benchmark Models: T(M) is the number of million
triangles. S, C, I, and A in the Type column represent scanned,
CAD, iso-surface, and architecture types of models. OS, NS, and
CS are the sizes of original, naively compressed, and HCCMesh
representations. BV and Tr are the BV information and tree struc-
tures in BVHs respectively. M is the mesh information stored in each
HCCMesh representation. These are shown in a megabyte unit. CR
and CR’ are compression ratios over the OS and NS respectively.
Sim. St. Ma. represents a simplified St. Matthew model consisting of
128 M triangles.

NCom. Moreover, in order to compare the performance
of the ray tracer on various model complexities (Fig. 2),
we compute several simplified versions (e.g., from 1 M to
256 M versions) of the St. Matthew model consisting of
372 M triangles. We use 7 point light sources with shadow
and reflections to generate the rendering result shown in the
leftmost image of Fig. 1.

When Ori. and NCom. fit into the available main mem-
ory, the performance of the ray tracer using only the i-
HCCMeshes shows 33% and 6% lower performance than
Ori. and NCom. respectively, mainly because of the over-
head of decompressing the i-HCCMeshes (Fig. 2). However,
from the 64 M version of the St. Matthew model for Ori.
and from the 128 M version of the same model for NCom.,
Ori. and NCom. do not fit into main memory. On the other
hand, the i-HCCMeshes of the 64 M and 128 M versions fit
into main memory and we improve performances by more
than two orders of magnitude over Ori. and NCom. by us-
ing the i-HCCMeshes. Such a huge performance improve-
ment is achieved by reducing the memory requirement and
by avoiding the expensive disk I/O thrashing.

Note that the performance using the i-HCCMeshes goes
down when we test the original 372 M St. Matthew model,
since the i-HCCMeshes of the model do not fit into the 4 GB
main memory and require the disk I/O access at runtime.
However, by using the o-HCCMeshes and i-HCCMeshes to-
gether, we can reduce the disk I/O access time and achieve
63 times and 34 times improvements over using the Ori. and
NCom. respectively. The HCCMeshes of our biggest tested
model can fit into the 4 GB main memory. We expect that
models consisting of more than 800 M triangles would not fit
in the 4 GB main memory. However, even in this case, we ex-
pect that our method would improve performances close to
the o-HCCMesh’s storage reduction (e.g., up to 20 times and
10 times) for the tested applications over Ori. and NCom..

6.1.2. Non-Photorealistic Rendering (NPR)
NPR is attracting more attention, since it can effectively con-
vey salient features of models to viewers. Recently, a GPU-
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based real-time technique has been developed to render re-
flections and refractions in line-art styles [KYYL08]. How-
ever, this technique has not been tested with massive models,
which cannot be efficiently handled by GPU ray tracing. We
implement this technique with our CPU-based Whitted-style
ray tracer (Sec. 6.1.1) using our HCCMesh representations.
We use 25 point lights in the Sponza scene with the Lucy
model (Fig. 1). For all the tests in the rest of the paper, we
use a single-core CPU with 2 GB memory memory. Using
our representation takes 15 seconds for the NPR of the scene
and improves the performance by a factor of about two or-
ders of magnitude over using Ori. because of removing the
disk I/O thrashing.

6.1.3. Multi-Resolution Ray Tracing
Multi-resolution techniques are widely used to improve
the performance of many rendering algorithms [LRC∗02].
One downside of most multi-resolution representations is
that they usually require more storage space than single-
resolution representations. Our HCCMesh representations
can be applied to reduce the storage and memory require-
ments of multi-resolution representations.

We apply our method to a BVH augmented with LOD
representations for multi-resolution ray tracing [YLM06].
A LOD representation of this method consists of a normal
of a LOD plane and an associated LOD error. We quantize
floating point data. Then as we traverse the tree in a depth-
first order, we compress the quantized data further by using
a simple prediction method and by encoding the prediction
error using our dictionary-based compressor. For example,
when we have to compress a normal of a node, we predict
its normal based on the normal associated with a node we
encountered earlier during the hierarchy traversal. Note that
we cannot store this LOD information into our 4 byte in-
core BV structure of the i-HCCMesh. Instead, we compute
LOD representations only for template leaf nodes. The orig-
inal multi-resolution ray tracing method [YLM06] also com-
putes their LODs for nodes, whose depths are multiples of
three or four in the hierarchy. For these template leaf nodes
we encode their additional LOD representations in the inter-
connection array of each low-level BVH.

The original multi-resolution representation takes
8.7 GB [YLM06] for the 128 M version of the St. Matthew
model. The i-HCCMesh and o-HCCMesh representations
reduce its storage requirement to 859 MB and 393 MB
respectively. Note that typical working set sizes of the
multi-resolution rendering methods are chosen to be smaller
than the available main memory. Therefore, we do not
expect our HCCMeshes to improve the runtime perfor-
mance of multi-resolution rendering methods. However, our
method shows a comparable performance (e.g., 32% lower
performance) to the multi-resolution ray tracer using the
original multi-resolution representation [YLM06].

6.1.4. Photon Mapping
Photon mapping is a widely used for generating photorealis-
tic visualizations. The rendering quality of photon mapping

depends on the number of photons generated. For complex
illuminations and scenes, we may have to generate a huge
number of photons. Also, photon mapping uses a kd-tree or
BVH of triangles of the model. Therefore, the memory re-
quirement of photon mapping can be very high.

Although our HCCMesh representations are designed
mainly for meshes and their associated BVHs, they can also
be applied to photons, i.e. point clouds and photon kd-trees.
In an in-core representation, we compress the tree structures
of kd-trees using our tree templates. Each kd-node of the
photon kd-tree contains information about a photon’s in-
coming direction, intensity, etc. However, we do not com-
press these data further in the in-core representation, since
they are already compactly represented in the photon kd-
trees [Jen01]. In an out-of-core representation we compress
data using a prediction and error encoding technique similar
to the one used to encode the LOD representation.

To render the David model in the Sponza scene with pho-
ton mapping (see Fig. 1), we generate 66 million photons
from 34 light sources. The original photon kd-tree requires
2 GB of memory. Our in-core and out-of-core representa-
tions take 1.6 GB and 0.4 GB respectively; the compres-
sion ratio for the in-core representation is small, since we
only compress the tree structure. We achieve a compara-
ble rendering performance by using the HCCMeshes to that
achieved by using the original representation.

6.1.5. Collision Detection
Collision detection is an essential technique for enabling
user interaction. In practice, BVHs are widely used in prac-
tice [LM03]. We implement a rigid body simulation and
drop the Lucy model on the top of a CAD turbine model
(Fig.1). The uncompressed original, Ori., and the naively
compressed, NCom., representations use 3.2 GB and 1.6 GB
respectively, while the HCCMeshes reduce the memory re-
quirement to 164 MB. Both our HCCMeshes and NCom. fit
into the 2 GB main memory. By using the HCCMeshes, col-
lision detection takes 184 ms for each simulation time step
and we improve the performance by 2.1 times and 25 times
over NCom. and Ori. respectively. Since the data access pat-
tern of collision detection is more localized than ray trac-
ing [YM06], we achieve lower performance improvements
(e.g., 25 times) than those (e.g., about three orders of mag-
nitude) achieved with ray tracing, even when we remove the
disk I/O thrashing.

7. Discussions and Comparisons
In this section we discuss extensions to our method and com-
pare our method to other prior methods.

Other types of BVs: Our method can be applied to oriented
bounding boxes [GLM96] and spherical BVs. Typically, the
spherical BVs are widely used and a sphere is specified by its
center and radius. We can represent spheres tightly enclosing
triangles of a mesh with vertices of the mesh, since a sphere
can be uniquely represented by four vertices. However, it is
not easy to take advantage of inheritance property in the case
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of spherical BVs since vertices may not be shared by parent
and child BVs. Our method can be applied to encoding kd-
trees, as demonstrated with photon kd-trees in Sec. 6.1.4.

Leaf nodes containing multiple triangles: We can easily
extend our current HCCMesh representation to encode mul-
tiple triangles in each leaf node. We currently specify three
vertex indices of a triangle in each leaf node. Instead, we
can use a triangle array containing vertex indices of all the
triangles contained in a low-level BVH. Then we can simply
encode the starting and end positions of vertex indices of tri-
angles contained in a leaf node. We can construct a BVH for
multiple triangles stored in each leaf node on the fly at run-
time. We found that our representations with a single trian-
gle in each leaf node perform better than those with multiple
triangles (e.g., 1, 4, 16, and 128) to each leaf node for ray
tracing the St. Matthew model. This is mainly because com-
puting a BVH requires O(nlogn) time complexity, compared
with the O(n) time complexity of reading BVs from our rep-
resentation, where n is the number of triangles contained in
the BVH. Another alternative to building BVHs on the fly is
to perform intersection tests without building BVHs. How-
ever, we found that this alternative method shows worse re-
sults than building the BVHs on the fly in the ray tracing
application. Moreover, this alternative method can be very
problematic for collision detection, since it causes quadratic
time complexity.

We also compute a BVH of the 372 M St.Matthew model
by assigning 16 triangles to each leaf node and then naively
compress the BVH by quantizing BVs, vertices, etc. This
naively compressed BVH takes 7.1 GB and it takes 21 min-
utes for ray tracing the model in the scene setting as shown in
the leftmost image of Fig. 1. We also test a BVH constructed
by assigning 128 triangles to each leaf nodes, but found that
this performs worse than assigning 16 triangles to each leaf
node. The HCCMesh that contains a single triangle in each
leaf node takes 1.7 GB and takes 100 seconds for ray tracing
the model. Our method requires much less memory require-
ment and performs better than the naively compressed BVH
that contains multiple triangles in each leaf node.

Comparisons: Our method shows even higher compres-
sion ratios (e.g., about 3 times and 8 times higher than the
ReduceM [LYTM08] and the LBVH [CSE06] respectively)
and, more importantly, supports various tree structures that
are constructed from different optimized hierarchy construc-
tion methods [YGKM08, TKH∗05]. Since an optimized hi-
erarchy can show 2 or more performance improvement than
a naively constructed hierarchy [Wal04], our method can
perform better and handle bigger data sets. The RACB-
VHs [KMKY10] support various tree structures. However, it
does not use any compact in-core representation nor tightly
integrate meshes and BVHs; it simply uses a separate com-
pact mesh representation, RACMs [YL07]. Therefore, our
i-HCCMesh and o-HCCMesh representation achieve 7.2:1
and 1.6:1 higher compression ratios over the in-core and
out-of-core representation of the RACBVH/RACM respec-
tively. We compare the performance of ray tracing the orig-

inal St. Matthew model with our representation and the
RACBVH/RACM. Our method improves the performance
by 20 times over the RACBVH/RACM. Furthermore, our
method has been tested with a much broader set of appli-
cations which have different characteristics, compared to all
the work mentioned above.

We also compare our method using tree templates with
succinct trees [Jac89]. Encoding tree structures using tree
templates shows a 30% lower compression ratio, but im-
proves the performance of the tree traversal by 4.4 times
over using succinct trees for ray tracing the St. Matthew
model. This performance improvement is due to the more ef-
ficient random access performance of our tree template rep-
resentation. We also compare the performance of ray trac-
ing using the o-HCCMeshes of the 128 M version of the St.
Matthew model to that using gzipped i-HCCMeshes com-
pressed by running the gzip to i-HCCMeshes. We com-
press each low level BVH and corresponding mesh inde-
pendently to support random access. The o-HCCMeshes are
compressed more by 3 times to the gzipped i-HCCMeshes.
Moreover, ray tracing using the o-HCCMeshes runs 17 times
faster than ray tracing using the gzipped i-HCCMeshes.

Compared with prior mesh compression methods men-
tioned in Sec. 2.1, the storage overhead of our representa-
tions may be high. This is mainly because our HCCMesh
representations are designed to support efficient random hi-
erarchical traversal and culling on the encoded mesh rather
than achieving the highest compression ratio.

Limitations: Our method can be easily applied to rooted
binary trees and k-ary trees. However, their compression
ratios may be lower than those of computed with full bi-
nary trees, since there are many more tree templates with
rooted binary trees and k-ary trees. Also, our i-HCCMesh
and o-HCCMesh representations have runtime decompres-
sion overheads. For small models that can fit into main mem-
ory, the overhead of our method may lower the runtime per-
formance (e.g., by 33% for the Whitted-style ray tracing)
compared to using the uncompressed data, as discussed in
Sec. 6.

8. Conclusion and Future Work
We have presented a HCCMesh representation, which
tightly integrates a mesh and a BVH. We believe that our
HCCMesh representation is the first method that has been
tested on various applications including rendering and colli-
sion detection that require the random hierarchical traversal.
The i-HCCMesh and o-HCCMesh achieved 3.6:1 and 10.4:1
compression ratios on average over a naively compressed
representation respectively. We can reduce the memory re-
quirement of handling massive models and thus can han-
dle models ten times larger without the expensive disk I/O
thrashing. Moreover, by avoiding the disk I/O thrashing, we
observed performance improvements by up to two orders of
magnitude, compared to the original and naively compressed
representations. Also, even if our HCCMeshes cannot fit into
main memory, we expect that our method would improve
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performances by a factor close to its compression ratios to
the original and other compressed representations.

In addition to addressing the current limitations of our
method, we would like to extend our current method to
highly parallel architectures such as GPUs and Larrabee ar-
chitecture. Second, we would like to further improve the de-
compression performance of our method by exploiting data-
level parallelism of GPUs and Larrabee architectures.
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