Scheduling In Heterogeneous
Computing Environments for
Proximity Queries

IEEE TVCG, Sept., 2013

Presenter:

Duksu Kim Jinkyu Lee Junghwan Lee

Insik Shin John Kim Sung-Eui Yoon

KAIST (Korea Advanced Institute of Science and Technology)
This presentation slides are available at http://sglab.kaist.ac.kr/Hybrid_parallel

Proximity Queries (PQS)

« Compute arelative placement or
configuration of two objects

— Collision detection
— Distance computation

Collision detection

« Basic operations in various
applications

— Graphics, simulations,
robotics, Etc. Distance

computation

Proximity Queries in Applications

from Moon et al. 2009

Motion planning

Collision

detection Others

[Jia 2010] [Liangjun 2008]

Realistic redering
Others

/

Ray
tracin

[Our in-house render]

3

Proximity Query Acceleration

» Various prior acceleration techniques have
been proposed (e.qg., culling algorithms)

 Not enough to achieve real-time performance
for large-scale models

FPS:2.16, CPU threads = 1 GPU : OFF

Continuous collision detection

N-body benchmark
consisting of 34K triangles

Less than 10 frames/second
(Intel i7 2.93Ghz CPU)

Demands for High Performance

« Model complexity continues to grow for
more realistic and accurate results

« Applications require real-time performance

e
g
l~ |
J ~ A) A O
-, -
e - -
‘ -

from Creative Assembly’s "Rome: Total war” N-body simulation from NVIDIA

Parallel Computing Trend

* Multi/many-core architectures
— Multi-core CPU
— Graphics processing unit (GPU)

Parallel Computing Trend

« Multi/many-core architectures

 Heterogeneous architectures

— Different types of computing devices in a system
* Multi-core CPUs and GPUs in a PC

— Intel Sandy Bridge, AMD Fusion, Sony Cell, ..

Our Goal & Approaches

« Achieve real-time performance in various
proximity queries for large-scale models

« Efficiently utilize all available computing
resources for proximity computations

— Both GPUs and multi-core CPUs

« Design an optimization-based scheduling
(work distribution) algorithm

Current Work — Results

Fracturing simulation
(252K Tri.)

(With our optimization-based scheduling)

FPS
70

Continuous collision detection Qurs

50 /

- S

: (7 erksieans
/

algorithm for dynamic
P ./0/(
0 : .

workload distribution)
single CPU a Hexa- 2C 2C+GPU 2C+2G 2C+3G 2C+4G

60

core core CPU (1G)
(1€) GTX480 +GTX480 +GTX480 +GTX580

Use same GPUs (low heterogeneity)

Current Work — Results

(With our optimization-based scheduling)

FPS
60) .) ours
Continuous collision detection »

50 /
40

30 / Work stealing
20 ———

) /
Fracturing Simu'ation 0 /| e e

(252K Tri_) single CPU aHexa- 2C : 2C+GPU 2C+2G 2C+3G 2C+4G
core core CPU : (16)
(1C) : I ‘
+GTX285—’+TesIa2075
Use different GPUs (high heterogeneity) : LGTXAS0 :

+GTX580

Related Work

* Multi-core CPU-based approaches
— Metric-based load-balancing method [Lee 2010]
— Front based task decomposition method [Tang 2009
— Parallel BVH construction [wald 2007] [Ize 2007]
— Voxel-based method [Lawlor 2002]

 GPU-based proximity query algorithms
— Visibility queries [Govindaraju 2005]
— Image-based approach [Govindaraju 2005]
— Unified GPU-framework for proximity queries
[Sud 2006] [Lauterbach 2010]
— Specialized on certain types of models
[Vassilev 2001] [Baciu 2002] [Govindaraju 2005*]

11

Related Work

* Multi-core CPU-based approaches
— Metric-based load-balancing method [Lee 2010]

- Achieve high performance improvement
- Use only multi-core CPUs or GPUs

— Unified GPU-framework for proximity queries
[Sud 2006] [Lauterbach 2010]
— Specialized on certain types of models

[Vassilev 2001] [Baciu 2002] [Govindaraju 2005*] -

Related Work

« Utilize both multi-core CPUs and GPUs

— HPCCD: Hybrid Parallel Continuous Collision
Detection [Kim 2009]

« Our previous work

13

Related Work: HPCCD

Hierarchical Jobs

Random accesses

- Branch prediction

Non-hierarchical Jobs R,
- Cache , "

Solving cubic equations

- Massive parallelism

Related Work: HPCCD

(FPS Cloth simulation
8 : # of total CPU threads

> One Intel i7 quad-core (3.2 GHz)
> Two Geforce GTX285s

Without GPU One GPU Two GPUs

 Manually specify distribution rules depending on
the knowledge on the application

* This work was published at Computer Graphics Forum 2009
(received the form Pacific Graphics 2009)

Related Work:

Cloth simulation
50 4 8 : # of total CPU threads

> One Intel i7 quad-core (3.2 GHz)
> Two Geforce GTX285s

Without GPU One GPU Two GPUs

 Manually specify distribution rules depending on
the knowledge on the application

 No guarantee on the efficient utilization of

computing resources

16

Related Work: Scheduling

« Application-dependent heuristics (e.g., HPCCD)

— Unclear how well these techniques can be applied to
other applications

« Scheduling for homogeneous resources

— Do not consider properties of heterogeneous
computing environments

« Optimization-based scheduling
— Designed for general problems

— Compute the optimal job distribution that minimizes
computation time

17

Related Work: Scheduling

« Application-dependent heuristics (e.g., HPCCD)

— Unclear how well these techniques can be applied to
other applications

« Scheduling for homogeneous resources

— Do not consider properties of heterogeneous
computing environments

« Optimization-based scheduling
— Designed for general problems

— Compute the optimal job distribution that minimizes
computation time

18

Our Research Direction

* Previous work: Manual scheduling
— Application dependent heuristics
— No guarantee to optimality

19

Our Research Direction

» Previous work: Manual scheduling

-

« Optimization-based scheduling

— Automatically distribute dynamically
generated jobs, while considering the
optimal utilization of computing resources

20

Outline

Motivation

Our approach
— Optimization-based scheduling

Results
Conclusion

21

Overview

\

[Resource 1

Hierarchical
traversal

O Optimization
PFOXImIty / based job [Resource 2]
queries scheduling

Leaf-level
computation

//) | [Resourcen

Common job types of
various proximity queries

22

Proximity
gueries

Overview

Hierarchical
traversal

Leaf-level
computation

Optimization
based job
scheduling

J

[Resource 1

[Resource 2

[Resource n

J
)
=

23

Outline

Motivation

Our approach
— Optimization-based scheduling

Results
Conclusion

24

Optimization-based Scheduling

- Iterative LP
solver

* Design an accurate performance model

— Predict how much computation time is required to
finish jobs on a resource

— Important to achieve the optimal scheduling result

- Optimization
formulation

model

25

Performance Model

 Performance relationship between jobs
and resources is complex

/ Resource 1 \ ﬁesource 2
l Processor) f Processor
architecture) L architecture
[Job type 1
>)[Memory Memory
>)l Execution model Execution model
[Job type n N) \
§[Communication Communication

Performance Model

* Abstract the complex relationship as an
expected, linear model

[Job type 1] Expected,
linear
Running

Time

[Job type n

Resource 1

)

Processor
architecture

Memory

I
\
7
.
4
\
7

Execution model

Communication

)

[

Resource 2

Processor
architecture

Memory

Execution model

Communication

\C

Performance Model

=—GTX480 --Tesla 2075
Leaf-level compution e s
for CCD g

10 —-Quad-core CP TX285
%‘ Hierarchy traversal
— for CCD _--"
] e”, 0’
g 5 ‘ﬁ‘d’-..
%D ...}”"’. .
g ==
8 O ’I\ Frrrrrrrrrrrrr T T T T T T T T TTTd
A I 5 9 131721 2529 3

The number of jobs (X 1024)

1 5 9 13 17 21 25 29 33
The number of jobs (X 2048)

 Running time is linearly increased as the
number of jobs Is increased

28

p—
W -

-

Processing time (ms)

Performance Model

~==Quad-core CP TX285
Hierarchy traversal
for CCD _--"
-— =— -

-

S5 9 13 17 21 25 29 3
The number of jobs (X 1024)

—GTX480 --Tesla 2075
Leaf-level compution e s
for CCD g

1 5 9 13 17 21 25 29 33

The number of jobs (X 2048)

 Running time is linearly increased as the
number of jobs Is increased

« Each computing resource requires a specific
amount of setup cost

29

Performance Model

 Inter-device data transfer time depends
on the pair of devices

- Data transfer time is linearly increased as
the number of jobs is increased

30

Expected Running Time Model

* T() : Expected running time on computing
resource / for processing 7 jobs of job types
/ that are generated from computing
resource K

Setup time i ,
i Processing time

0, it n;; 18 0

T(A — [w]w nlj) — Tsef u))() + j})r 0C ([j) X zy
+T3, (_,_,,,1_,,5(]1 — 1,7) X n;j, otherwise.

*®, .
** Data transfer time

31

Expected Running Time Model

Measure coefficients of our linear
formulation for each proximity query with
sample jobs

— The expected running time model shows high
correlation (0.91 on average) with the observed data

In tested benchmarks
if n ij 1s O

Tf,(,,,g,(A —]) X n,j otherwise.

32

Optimization-based Scheduling

Expected .
'.3 . Iterative LP
running time .
formulation solver
model
I'(k %y JsMis) {I;,,,,,,t/_/)v’l‘,,,,,,(/,_,‘) < ,,U”
+Ttrans (kK — ©,7) X n;;, otherwise.

 Formulate an optimization problem
— Based on the expected running time model

— Need to represent the scheduling problem as a
form of optimization problem

33

Optimization Formulation

 Minimize the makespan (L) problem

Minimaize L,

Computing
resource

CPU 1
CPU 2
GPU 1
GPU 2

Time

34

Optimization Formulation

« Calculate the optimal job distribution with
the expected running time

Minimize L,

subject to T.os (1) 4|2 ‘;]:‘1 T(i,j,n:5) < L,Vie R

| Expected processing time ‘
RV (NI Rost time for completing Processing time for
already assigned jobs jobs will be assigned

@ The expected processing time of computing resources is equal
or smaller than the makespan

35

Optimization Formulation

 We calculate optimal job distribution with
the expected running time

Minimize L,
subject to Tyest (i)—|—vl / (i, j,n;;) < L,Vie R §&Y

Silnig = n,,Vj € J ©

@ The expected processing time of computing resources is equal
or smaller than the makespan

@ There are no missing or duplicated jobs

36

© ®

Optimization Formulation

We calculate optimal job distribution with
the expected running time

Minimize L, Job distribution

subject to Tyest (i)—|—vl /| (1, 4 n,-,),)’<L Vi e R §@

\{ |1n{ ;=mn;,VjeJ @

n;; €4 77 (zero or positive integers). ©)

The expected running processing of computing resources is
equal or smaller than the makespan

There are no missing or duplicated jobs
Each job is atomic

37

Optimization-based Scheduling

Expected

Optimization

running time .
g formulation

- Iterative LP
solver

Minimize L,
subject to These(i) + V‘lj'illl (2,7,ni) < L.Vie R

=n;,vjeJ

(. zero or positive integers).

38

Optimization-based Scheduling

Expected
running time
model

Optimization

- Iterative LP
solver

formulation

Minimize L, NP-hard Problem!
subject to T.est (1) + S‘|j'j:|1T(i-. Jimig) < L,¥ie R

Rl
Y, nij =mn;,vje.J

ni; € Z(zero or positive integers).

* High computational cost
— Jobs are dynamically generated at runtime

— Optimization process takes long time for interactive or real-time
applications -

Optimization-based Scheduling

Expected
running time
model

Optimization

- Iterative LP
solver

0. URITRLA Designed an iterative LP solving
T(k—i,j,nij) =< Toetup(t,7) + Lproc(t, 7) X nyj algorithm to handle the piece-wise
+Trans (B — 4, 7) X nij, otherwise. [Rge)stsliatels

formulation

Minimize L,

R| ‘
yIBl oy

N € L/ﬁ(ZeT0 OT=pedtttbepitegess) .

Positive floating-point numbers

Optimization-based Scheduling

Expected
running time
model

Optimization

- Iterative LP
solver

formulation

Please see the paper for the details

(

subject to Thest(i) + Eljﬂll(i j.ni;) < L,Vi € R

R| ‘
yIBl oy

N;j € 4" (Zer0 OT=positiveptivtegers.).

Positive floating-point numbers

Outline

Motivation

Our approach
— Optimization-based scheduling

Results
Conclusion

42

Results

» Tested with various applications
— Simulations (Continuous collision detection)
— Motion planning (Discrete collision detection)
— Global |IIum|nat|on (Ray‘TrlangIe intersection)

Results

FPS
80

N-body simulation Ours/i Work

60 (146K Tri.) /}K steal

40 RS
.-.-—--'0’

20 5’::::(:5 Round-robin

0 . .
1C 2C 2C+1G 2C+2G 2C+3G 2C+H4G
Hex-core CPUs +G'I|'X285 \
(Intel Xeon (2.93GHz)) +Tesla2075
_ _ _ _ +GTX480
« For conservative comparison, we did manual tuning to +GTX580

get the best performance for tested methods except for yse different GPUs
ours

Results

FPS
2
s Motion planning
~ (137K Tri., 50K samples)
1 Round-robin
05 =
0 ' stealing
I 2C 20HIG 202G 203G 2CH4G
FPS Use different GPUs
0.08
0.06 Global illumination _
' (436K Tri., 80M rays) " Work
0.04 T, stealing
L -4~ Round-robin
0.02 T - o
;:;:;__;_‘__;___-,;.5-;"\!'
O a T T T T T 1
1C 2C 2C+H1G 2C+2G 2C+3G 2C+H4G

Use different GPUs

Outline

Motivation

Our approach
— Optimization-based scheduling

Results
Conclusion

46

Conclusion

* Presented a novel scheduling algorithm
— Designed the expected running time model

— Formulated the scheduling problem as an
optimization problem

— Proposed a novel iterative optimization solver

« Efficiently utilized heterogeneous computing
resources

— Achieved high scalability with additional computing
resources

— Applied to various proximity queries

47

Future Work

 Extend to other general applications
that have more variety of jobs

* Improve scheduling algorithms further

— Minimize overhead and robustly handle local
minimum Issues

— Design multi-resolution scheduling for large-
scale heterogeneous computing systems

48

References

[Kim 2009] HPCCD: Hybrid Parallel Continuous Collision Detection using CPUs and GPUs, Kim et al., Computer Graphics
Forum (Pacific Graphics) 2009

[Lee 2010] Simple and Parallel Proximity Algorithms for General Polygonal Models, Youngeun Lee et al, Journal of
Computer Animation and Virtual Worlds, 2010

[Govindaraju 2005] CULLIDE: Interactive collision detection between complex models in large environments using
graphics hardware, EG. Workshop on Graphics Hardware, 2003

[Govindaraju 2005*] Collision detection between deformable models using chromatic decomposition,” ACM Trans. on
Graphics, 2005

[Lauterbach 2010] gProximity: Hierarchical GPU-based Operations for Collision and Distance Queries, C Lauterbach et al,
EG 2010

[Tang 2009] Multi-core collision detection between deformable models, M. Tang et al., in SIAM/ACM Joint Conf. on
Geometric and Solid & Physical Modeling, 2009

[Wald 2007] On fast construction of sah-based bounding volume hierarchies, 1. Wald, IEEE Symposium on Interactive Ray
Tracing, 2007.

[Ize 2007] Asynchronous BVH construction for ray tracing dynamic scene on parallel multi-core architectures, T. Ize et al.,
Eurographics Symposium on Parallel Graphics and Visualization, 2007.

[Baciu 2002] Image-based techniques in a hybrid collision detector, G. Baciu and S. Wong, IEEE TVCG, 2002.

[Lawler 2002] A voxel-based parallel collision detection algorithm, O. S. Lawlor and V. K. Laxmikant, Super-computing,
2002.

[Sud 2006] Fast Proximity Computation among Deformable Models using Discrete Voronoi Diagrams, A. Sud et al., ACM
SIGGRAPH, 2006.

[Vassilev 2001] Fast cloth animation on walking avatars, T. Vassilev et al., Computer Graphics Forum (Eurographics),2001.

Thanks I

Any questions?

(bluekdct@gmail.com)

Project homepage:
http://sglab.kaist.ac.kr/hybrid_parallel

(This presentation slides are available at the homepage)

* This work was published at IEEE TVCG

and selected as the for the Sept. 2013 issue
50

