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Proximity Queries (PQS)

« Compute arelative placement or
configuration of two objects

— Collision detection
— Distance computation

Collision detection

« Basic operations in various
applications

— Graphics, simulations,
robotics, Etc. Distance

computation




Proximity Queries in Applications

from Moon et al. 2009
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Proximity Query Acceleration

» Various prior acceleration techniques have
been proposed (e.qg., culling algorithms)

 Not enough to achieve real-time performance
for large-scale models

FPS:2.16, CPU threads = 1 GPU : OFF

Continuous collision detection

N-body benchmark
consisting of 34K triangles

Less than 10 frames/second
(Intel i7 2.93Ghz CPU)




Demands for High Performance

« Model complexity continues to grow for
more realistic and accurate results

« Applications require real-time performance

e
g
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from Creative Assembly’s "Rome: Total war” N-body simulation from NVIDIA



Parallel Computing Trend

* Multi/many-core architectures
— Multi-core CPU
— Graphics processing unit (GPU)




Parallel Computing Trend

« Multi/many-core architectures

 Heterogeneous architectures

— Different types of computing devices in a system
* Multi-core CPUs and GPUs in a PC

— Intel Sandy Bridge, AMD Fusion, Sony Cell, ..




Our Goal & Approaches

« Achieve real-time performance in various
proximity queries for large-scale models

« Efficiently utilize all available computing
resources for proximity computations

— Both GPUs and multi-core CPUs

« Design an optimization-based scheduling
(work distribution) algorithm



Current Work — Results

Fracturing simulation
(252K Tri.)

(With our optimization-based scheduling)
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Current Work — Results

(With our optimization-based scheduling)
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Related Work

* Multi-core CPU-based approaches
— Metric-based load-balancing method [Lee 2010]
— Front based task decomposition method [Tang 2009
— Parallel BVH construction [wald 2007] [Ize 2007]
— Voxel-based method [Lawlor 2002]

 GPU-based proximity query algorithms
— Visibility queries [Govindaraju 2005]
— Image-based approach [Govindaraju 2005]
— Unified GPU-framework for proximity queries
[Sud 2006] [Lauterbach 2010]
— Specialized on certain types of models
[Vassilev 2001] [Baciu 2002] [Govindaraju 2005*]
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Related Work

* Multi-core CPU-based approaches
— Metric-based load-balancing method [Lee 2010]

- Achieve high performance improvement
- Use only multi-core CPUs or GPUs

— Unified GPU-framework for proximity queries
[Sud 2006] [Lauterbach 2010]
— Specialized on certain types of models

[Vassilev 2001] [Baciu 2002] [Govindaraju 2005*] -



Related Work

« Utilize both multi-core CPUs and GPUs

— HPCCD: Hybrid Parallel Continuous Collision
Detection [Kim 2009]

« Our previous work
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Related Work: HPCCD

Hierarchical Jobs

Random accesses

- Branch prediction

Non-hierarchical Jobs R,
- Cache , "

Solving cubic equations

- Massive parallelism



Related Work: HPCCD

(FPS Cloth simulation
8 : # of total CPU threads

> One Intel i7 quad-core (3.2 GHz)
> Two Geforce GTX285s

Without GPU One GPU Two GPUs

 Manually specify distribution rules depending on
the knowledge on the application

* This work was published at Computer Graphics Forum 2009
(received the form Pacific Graphics 2009)



Related Work:

Cloth simulation
50 4 8 : # of total CPU threads

> One Intel i7 quad-core (3.2 GHz)
> Two Geforce GTX285s

Without GPU One GPU Two GPUs

 Manually specify distribution rules depending on
the knowledge on the application

 No guarantee on the efficient utilization of

computing resources
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Related Work: Scheduling

« Application-dependent heuristics (e.g., HPCCD)

— Unclear how well these techniques can be applied to
other applications

« Scheduling for homogeneous resources

— Do not consider properties of heterogeneous
computing environments

« Optimization-based scheduling
— Designed for general problems

— Compute the optimal job distribution that minimizes
computation time

17



Related Work: Scheduling

« Application-dependent heuristics (e.g., HPCCD)

— Unclear how well these techniques can be applied to
other applications

« Scheduling for homogeneous resources

— Do not consider properties of heterogeneous
computing environments

« Optimization-based scheduling
— Designed for general problems

— Compute the optimal job distribution that minimizes
computation time
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Our Research Direction

* Previous work: Manual scheduling
— Application dependent heuristics
— No guarantee to optimality
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Our Research Direction

» Previous work: Manual scheduling

-

« Optimization-based scheduling

— Automatically distribute dynamically
generated jobs, while considering the
optimal utilization of computing resources

20



Outline

Motivation

Our approach
— Optimization-based scheduling

Results
Conclusion

21



Overview

\

[ Resource 1

Hierarchical
traversal

O Optimization
PFOXImIty / based job [ Resource 2 ]
queries scheduling

Leaf-level
computation

// ) | [Resourcen

Common job types of
various proximity queries
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Proximity
gueries

Overview

Hierarchical
traversal

Leaf-level
computation

Optimization
based job
scheduling

J

[ Resource 1

[ Resource 2

[ Resource n

J
)
=
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Outline

Motivation

Our approach
— Optimization-based scheduling

Results
Conclusion
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Optimization-based Scheduling

- Iterative LP
solver

* Design an accurate performance model

— Predict how much computation time is required to
finish jobs on a resource

— Important to achieve the optimal scheduling result

- Optimization
formulation

model

25



Performance Model

 Performance relationship between jobs
and resources is complex

/ Resource 1 \ ﬁesource 2
l Processor ) f Processor
architecture ) L architecture
[ Job type 1
>)[ Memory Memory
>)l Execution model Execution model
[ Job type n N ) \
§[ Communication Communication




Performance Model

* Abstract the complex relationship as an
expected, linear model

[ Job type 1 ] Expected,
linear
Running

Time

[ Job type n

Resource 1

)

Processor
architecture

Memory

I
\
7
.
4
\
7

Execution model

Communication

)

[

Resource 2

Processor
architecture

Memory

Execution model

Communication
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Performance Model
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Leaf-level compution e s
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The number of jobs (X 1024)
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The number of jobs (X 2048)

 Running time is linearly increased as the
number of jobs Is increased
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Processing time (ms)

Performance Model

~==Quad-core CP TX285
Hierarchy traversal
for CCD _--"
-— =— -

-

S5 9 13 17 21 25 29 3
The number of jobs (X 1024)

—GTX480 --Tesla 2075
Leaf-level compution e s
for CCD g

1 5 9 13 17 21 25 29 33

The number of jobs (X 2048)

 Running time is linearly increased as the
number of jobs Is increased

« Each computing resource requires a specific
amount of setup cost
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Performance Model

 Inter-device data transfer time depends
on the pair of devices

- Data transfer time is linearly increased as
the number of jobs is increased
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Expected Running Time Model

* T() : Expected running time on computing
resource / for processing 7 jobs of job types
/ that are generated from computing
resource K

Setup time i ,
i Processing time

0, it n;; 18 0

T(A — [w ]w nlj) — Tsef u))( ) + j})r 0C ([ j ) X zy
+T3, (_,_,,,1_,,5(]1 — 1,7) X n;j, otherwise.

*®, .
** Data transfer time

31



Expected Running Time Model

Measure coefficients of our linear
formulation for each proximity query with
sample jobs

— The expected running time model shows high
correlation (0.91 on average) with the observed data

In tested benchmarks
if n ij 1s O

Tf,(,,,g,(A — ]) X n,j otherwise.
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Optimization-based Scheduling

Expected .
'.3 . Iterative LP
running time .
formulation solver
model
I'(k %y JsMis) {I;,,,,,,t/_/)v’l‘,,,,,,(/,_,‘) < ,,U”
+Ttrans (kK — ©,7) X n;;, otherwise.

 Formulate an optimization problem
— Based on the expected running time model

— Need to represent the scheduling problem as a
form of optimization problem

33



Optimization Formulation

 Minimize the makespan (L) problem

Minimaize L,

Computing
resource

CPU 1
CPU 2
GPU 1
GPU 2

Time

34



Optimization Formulation

« Calculate the optimal job distribution with
the expected running time

Minimize L,

subject to T.os (1) 4|2 ‘;]:‘1 T(i,j,n:5) < L,Vie R

| Expected processing time ‘
RV (NI Rost time for completing Processing time for
already assigned jobs jobs will be assigned

@ The expected processing time of computing resources is equal
or smaller than the makespan
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Optimization Formulation

 We calculate optimal job distribution with
the expected running time

Minimize L,
subject to Tyest (i )—|—vl / (i, j,n;;) < L,Vie R §&Y

Silnig = n,,Vj € J ©

@ The expected processing time of computing resources is equal
or smaller than the makespan

@ There are no missing or duplicated jobs

36



© ®

Optimization Formulation

We calculate optimal job distribution with
the expected running time

Minimize L, Job distribution

subject to Tyest (i )—|—vl /| (1, 4 n,-,),)’<L Vi e R §@

\{ |1n{ ;=mn;,VjeJ @

n;; €4 77 (zero or positive integers). ©)

The expected running processing of computing resources is
equal or smaller than the makespan

There are no missing or duplicated jobs
Each job is atomic
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Optimization-based Scheduling

Expected

Optimization

running time .
g formulation

- Iterative LP
solver

Minimize L,
subject to These(i) + V‘lj'illl (2,7,ni) < L.Vie R

=n;,vjeJ

(. zero or positive integers).
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Optimization-based Scheduling

Expected
running time
model

Optimization

- Iterative LP
solver

formulation

Minimize L, NP-hard Problem!
subject to T.est (1) + S‘|j'j:|1T(i-. Jimig) < L,¥ie R

Rl
Y, nij =mn;,vje.J

ni; € Z(zero or positive integers).

* High computational cost
— Jobs are dynamically generated at runtime

— Optimization process takes long time for interactive or real-time
applications -



Optimization-based Scheduling

Expected
running time
model

Optimization

- Iterative LP
solver

0. URITRLA Designed an iterative LP solving
T(k—i,j,nij) =< Toetup(t,7) + Lproc(t, 7) X nyj algorithm to handle the piece-wise
+Trans (B — 4, 7) X nij, otherwise. [Rge)stsliatels

formulation

Minimize L,

R| ‘
yIBl oy

N € L/ﬁ( ZeT0 OT=pedtttbepitegess ) .

Positive floating-point numbers



Optimization-based Scheduling

Expected
running time
model

Optimization

- Iterative LP
solver

formulation

Please see the paper for the details

(

subject to Thest(i) + Eljﬂll(i j.ni;) < L,Vi € R

R| ‘
yIBl oy

N;j € 4" (Zer0 OT=positiveptivtegers.).

Positive floating-point numbers



Outline

Motivation

Our approach
— Optimization-based scheduling

Results
Conclusion
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Results

» Tested with various applications
— Simulations (Continuous collision detection)
— Motion planning (Discrete collision detection)
— Global |IIum|nat|on (Ray‘TrlangIe intersection)




Results

FPS
80

N-body simulation Ours/i Work
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Hex-core CPUs +G'I|'X285 \
(Intel Xeon (2.93GHz)) +Tesla2075
_ _ _ _ +GTX480
« For conservative comparison, we did manual tuning to +GTX580

get the best performance for tested methods except for  yse different GPUs
ours



Results

FPS
2
s Motion planning
~ (137K Tri., 50K samples)
1 Round-robin
05 =
0 ' stealing
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Outline

Motivation

Our approach
— Optimization-based scheduling

Results
Conclusion
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Conclusion

* Presented a novel scheduling algorithm
— Designed the expected running time model

— Formulated the scheduling problem as an
optimization problem

— Proposed a novel iterative optimization solver

« Efficiently utilized heterogeneous computing
resources

— Achieved high scalability with additional computing
resources

— Applied to various proximity queries

47



Future Work

 Extend to other general applications
that have more variety of jobs

* Improve scheduling algorithms further

— Minimize overhead and robustly handle local
minimum Issues

— Design multi-resolution scheduling for large-
scale heterogeneous computing systems
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Thanks I

Any questions?

(bluekdct@gmail.com)

Project homepage:
http://sglab.kaist.ac.kr/hybrid_parallel

(This presentation slides are available at the homepage)

* This work was published at IEEE TVCG

and selected as the for the Sept. 2013 issue
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