
Scheduling in Heterogeneous

Computing Environments for

Proximity Queries

Duksu Kim Jinkyu Lee Junghwan Lee

Insik Shin John Kim Sung-Eui Yoon

KAIST (Korea Advanced Institute of Science and Technology)

IEEE TVCG, Sept., 2013

Presenter:

This presentation slides are available at http://sglab.kaist.ac.kr/Hybrid_parallel

Proximity Queries (PQs)

• Compute a relative placement or
configuration of two objects

– Collision detection

– Distance computation

• Basic operations in various
applications

– Graphics, simulations,

 robotics, Etc.
2

Distance

computation

Collision detection

Proximity Queries in Applications

3

Others
Collision
detection

Motion planning

[Jia 2010] [Liangjun 2008]

Others

Ray
tracing

Realistic redering

[Our in-house render]

from Moon et al. 2009

Proximity Query Acceleration

• Various prior acceleration techniques have

been proposed (e.g., culling algorithms)

• Not enough to achieve real-time performance

for large-scale models

4

Continuous collision detection

N-body benchmark

consisting of 34K triangles

Less than 10 frames/second

(Intel i7 2.93Ghz CPU)

Demands for High Performance

• Model complexity continues to grow for
more realistic and accurate results

• Applications require real-time performance

from Creative Assembly’s “Rome: Total war” N-body simulation from NVIDIA

Parallel Computing Trend

• Multi/many-core architectures

– Multi-core CPU

– Graphics processing unit (GPU)

6
Image from NVIDIA

Parallel Computing Trend

• Multi/many-core architectures

• Heterogeneous architectures

– Different types of computing devices in a system

• Multi-core CPUs and GPUs in a PC

– Intel Sandy Bridge, AMD Fusion, Sony Cell, ..

Images from NVIDIA

Our Goal & Approaches

• Achieve real-time performance in various

proximity queries for large-scale models

• Efficiently utilize all available computing

resources for proximity computations

– Both GPUs and multi-core CPUs

• Design an optimization-based scheduling

(work distribution) algorithm
8

Current Work – Results

FPS

+GTX480 +GTX480 +GTX580 GTX480

Ours

Work stealing
(an well-known

algorithm for dynamic

workload distribution)

Use same GPUs (low heterogeneity)

(With our optimization-based scheduling)

Continuous collision detection

Fracturing simulation

(252K Tri.)

Current Work – Results

FPS

+Tesla2075

+GTX480
+GTX580

+GTX285

Ours

Work stealing

Use different GPUs (high heterogeneity)

(With our optimization-based scheduling)

Continuous collision detection

Fracturing simulation

(252K Tri.)

Related Work

• Multi-core CPU-based approaches
– Metric-based load-balancing method [Lee 2010]

– Front based task decomposition method [Tang 2009]

– Parallel BVH construction [Wald 2007] [Ize 2007]

– Voxel-based method [Lawlor 2002]

• GPU-based proximity query algorithms
– Visibility queries [Govindaraju 2005]

– Image-based approach [Govindaraju 2005]

– Unified GPU-framework for proximity queries

 [Sud 2006] [Lauterbach 2010]

– Specialized on certain types of models

 [Vassilev 2001] [Baciu 2002] [Govindaraju 2005*]
11

Related Work

• Multi-core CPU-based approaches
– Metric-based load-balancing method [Lee 2010]

– Front based task decomposition method [Tang 2009]

– Parallel BVH construction [Wald 2007] [Ize 2007]

– Voxel-based method [Lawlor 2002]

• GPU-based proximity query algorithms
– Visibility queries [Govindaraju 2005]

– Image-based approach [Govindaraju 2005]

– Unified GPU-framework for proximity queries

 [Sud 2006] [Lauterbach 2010]

– Specialized on certain types of models

 [Vassilev 2001] [Baciu 2002] [Govindaraju 2005*]
12

- Achieve high performance improvement

- Use only multi-core CPUs or GPUs

- Do not provide real-time performance yet for

large-scale models

Related Work

• Utilize both multi-core CPUs and GPUs

– HPCCD: Hybrid Parallel Continuous Collision

Detection [Kim 2009]

• Our previous work

13

Hierarchical Jobs

Non-hierarchical Jobs
- Branch prediction
- Cache

- Massive parallelism

Random accesses

Solving cubic equations

Related Work: HPCCD

15 15

94K triangles

• Manually specify distribution rules depending on

the knowledge on the application

* This work was published at Computer Graphics Forum 2009
 (received the distinguished paper award form Pacific Graphics 2009)

Related Work: HPCCD

16 16

• Manually specify distribution rules depending on

the knowledge on the application

• No guarantee on the efficient utilization of

computing resources

Related Work: HPCCD

Related Work: Scheduling

• Application-dependent heuristics (e.g., HPCCD)
– Unclear how well these techniques can be applied to

other applications

• Scheduling for homogeneous resources
– Do not consider properties of heterogeneous

computing environments

• Optimization-based scheduling
– Designed for general problems

– Compute the optimal job distribution that minimizes
computation time

17

Related Work: Scheduling

• Application-dependent heuristics (e.g., HPCCD)
– Unclear how well these techniques can be applied to

other applications

• Scheduling for homogeneous resources
– Do not consider properties of heterogeneous

computing environments

• Optimization-based scheduling
– Designed for general problems

– Compute the optimal job distribution that minimizes
computation time

18

Our Research Direction

19

• Previous work: Manual scheduling

– Application dependent heuristics

– No guarantee to optimality

Our Research Direction

• Optimization-based scheduling
– Automatically distribute dynamically

generated jobs, while considering the
optimal utilization of computing resources

20

• Previous work: Manual scheduling

Outline

• Motivation

• Our approach

– Optimization-based scheduling

• Results

• Conclusion

21

Overview

22

Proximity

queries

Resource 1

Resource 2

Resource n

Optimization

based job

scheduling

Hierarchical

traversal

.

.

.
.
.
.

Common job types of
various proximity queries

Leaf-level

computation

Overview

23

Proximity

queries

Optimization

based job

scheduling
Leaf-level

computation

Hierarchical

traversal

Resource 1

Resource 2

Resource n

.

.

.
.
.
.

Outline

• Motivation

• Our approach

– Optimization-based scheduling

• Results

• Conclusion

24

Optimization-based Scheduling

25

Expected
running time

model

Optimization
formulation

Iterative LP
solver

• Design an accurate performance model

– Predict how much computation time is required to
finish jobs on a resource

– Important to achieve the optimal scheduling result

Performance Model

• Performance relationship between jobs

and resources is complex

Job type 1

Job type n

Resource 1

Processor

architecture

Memory

Communication

Execution model

…

Resource 2

Processor

architecture

Memory

Communication

Execution model

…

…

Performance Model

• Abstract the complex relationship as an

expected, linear model

Job type 1

Job type n

Resource 1

Processor

architecture

Memory

Communication

Execution model

…

Resource 2

Processor

architecture

Memory

Communication

Execution model

…

…

Expected,

linear

Running

Time

Performance Model

• Running time is linearly increased as the

number of jobs is increased

28

Performance Model

• Running time is linearly increased as the

number of jobs is increased

• Each computing resource requires a specific

amount of setup cost 29

Performance Model

• Inter-device data transfer time depends
on the pair of devices

• Data transfer time is linearly increased as
the number of jobs is increased

30

Expected Running Time Model

• T() : Expected running time on computing
resource i for processing n jobs of job types
j that are generated from computing
resource k

31

Setup time
Processing time

Data transfer time

Expected Running Time Model

• Measure coefficients of our linear

formulation for each proximity query with

sample jobs

– The expected running time model shows high

correlation (0.91 on average) with the observed data

in tested benchmarks

32

Optimization-based Scheduling

33

Expected
running time

model

Optimization
formulation

Iterative LP
solver

• Formulate an optimization problem

– Based on the expected running time model

– Need to represent the scheduling problem as a
form of optimization problem

Optimization Formulation

• Minimize the makespan (L) problem

34

Processing time

Processing time

Processing time

Processing time

CPU 1

CPU 2

GPU 1

GPU 2

Time

Computing
resource

Makespan (L)

①

Optimization Formulation

• Calculate the optimal job distribution with
the expected running time

35

① The expected processing time of computing resources is equal
or smaller than the makespan

Resource i Rest time for completing
already assigned jobs

Processing time for
jobs will be assigned

Expected processing time

Makespan

Optimization Formulation

• We calculate optimal job distribution with
the expected running time

36

① The expected processing time of computing resources is equal
or smaller than the makespan

② There are no missing or duplicated jobs

①

②

Optimization Formulation

• We calculate optimal job distribution with
the expected running time

37

①

②

③

① The expected running processing of computing resources is
equal or smaller than the makespan

② There are no missing or duplicated jobs

③ Each job is atomic

Job distribution

Optimization-based Scheduling

38

Expected
running time

model

Optimization
formulation

Iterative LP
solver

Optimization-based Scheduling

39

Expected
running time

model

Optimization
formulation

Iterative LP
solver

• High computational cost
– Jobs are dynamically generated at runtime

– Optimization process takes long time for interactive or real-time
applications

NP-hard Problem!

Optimization-based Scheduling

40

Expected
running time

model

Optimization
formulation

Iterative LP
solver

Positive floating-point numbers

Designed an iterative LP solving
algorithm to handle the piece-wise
condition

Optimization-based Scheduling

41

Expected
running time

model

Optimization
formulation

Iterative LP
solver

Positive floating-point numbers

Designed iterative solve to handle
the piece-wise condition Please see the paper for the details

(http://sglab.kaist.ac.kr/Hybrid_parallel)

Outline

• Motivation

• Our approach

– Optimization-based scheduling

• Results

• Conclusion

42

Results

• Tested with various applications

– Simulations (Continuous collision detection)

– Motion planning (Discrete collision detection)

– Global illumination (Ray-Triangle intersection)

Results

FPS

+Tesla2075

+GTX480

+GTX580

Hex-core CPUs

(Intel Xeon (2.93GHz))
+GTX285

Ours
Work

steal

Round-robin

Use different GPUs

N-body simulation

(146K Tri.)

• For conservative comparison, we did manual tuning to

get the best performance for tested methods except for

ours

Results

Motion planning

(137K Tri., 50K samples)

FPS Ours

Work

stealing

Round-robin

FPS

Work

stealing

Round-robin

Ours

Use different GPUs

Use different GPUs

Global illumination

(436K Tri., 80M rays)

Outline

• Motivation

• Our approach

– Optimization-based scheduling

• Results

• Conclusion

46

Conclusion

• Presented a novel scheduling algorithm
– Designed the expected running time model

– Formulated the scheduling problem as an
optimization problem

– Proposed a novel iterative optimization solver

• Efficiently utilized heterogeneous computing
resources
– Achieved high scalability with additional computing

resources

– Applied to various proximity queries

 47

Future Work

• Extend to other general applications

that have more variety of jobs

• Improve scheduling algorithms further

– Minimize overhead and robustly handle local

minimum issues

– Design multi-resolution scheduling for large-

scale heterogeneous computing systems

48

References
• [Kim 2009] HPCCD: Hybrid Parallel Continuous Collision Detection using CPUs and GPUs, Kim et al., Computer Graphics

Forum (Pacific Graphics) 2009

• [Lee 2010] Simple and Parallel Proximity Algorithms for General Polygonal Models, Youngeun Lee et al, Journal of
Computer Animation and Virtual Worlds, 2010

• [Govindaraju 2005] CULLIDE: Interactive collision detection between complex models in large environments using
graphics hardware, EG. Workshop on Graphics Hardware, 2003

• [Govindaraju 2005*] Collision detection between deformable models using chromatic decomposition," ACM Trans. on
Graphics, 2005

• [Lauterbach 2010] gProximity: Hierarchical GPU‐based Operations for Collision and Distance Queries, C Lauterbach et al.,
EG 2010

• [Tang 2009] Multi-core collision detection between deformable models, M. Tang et al., in SIAM/ACM Joint Conf. on
Geometric and Solid & Physical Modeling, 2009

• [Wald 2007] On fast construction of sah-based bounding volume hierarchies, I. Wald, IEEE Symposium on Interactive Ray
Tracing, 2007.

• [Ize 2007] Asynchronous BVH construction for ray tracing dynamic scene on parallel multi-core architectures, T. Ize et al.,
Eurographics Symposium on Parallel Graphics and Visualization, 2007.

• [Baciu 2002] Image-based techniques in a hybrid collision detector, G. Baciu and S. Wong, IEEE TVCG, 2002.

• [Lawler 2002] A voxel-based parallel collision detection algorithm, O. S. Lawlor and V. K. Laxmikant, Super-computing,
2002.

• [Sud 2006] Fast Proximity Computation among Deformable Models using Discrete Voronoi Diagrams, A. Sud et al., ACM
SIGGRAPH, 2006.

• [Vassilev 2001] Fast cloth animation on walking avatars, T. Vassilev et al., Computer Graphics Forum (Eurographics), 2001. 49

Thanks

50

Any questions?

Project homepage:
http://sglab.kaist.ac.kr/hybrid_parallel

* This work was published at IEEE TVCG
 and selected as the Spotlight paper for the Sept. 2013 issue

(bluekdct@gmail.com)

(This presentation slides are available at the homepage)

