
Proximity Computations on
Heterogeneous Computing Systems

Duksu Kim
Ph. D. candidate, Scalable Graphics Lab.,

Korea Advanced Institute of Science and Technology (KAIST)

GTC 2013

Proximity Queries (PQs)

• Compute relative placement or
configuration of two objects
– Collision detection

– Distance computation

• Basic operations in various
applications
– Graphics, simulations,

robotics, Etc.
2

Distance
computation

Collision detection

Proximity Queries in App.

3

Others
Collision
detection

Motion planning

[Jia 2010] [Liangjun 2008]

Others

Ray
tracing

Realistic redering

[Our in-house render]

from Bochang’s paper

Proximity Query Acceleration

• Various acceleration techniques

– Acceleration hierarchies

– Culling algorithms

– Specialize algorithms for a target application

– Approximation algorithms

• Achieve several orders of magnitude
performance improvement

4

Proximity Query Acceleration

• Not enough to achieve real-time
performance for large-scale models
and complex scenes

5

Continuous collision detection

N-body benchmark
consisting of 34K triangles

Less than 10 frames/second

(Intel i7 2.93Ghz CPU)

Demands for High Performance

• Model complexity continue to grow for
more realistic and accurate outputs

• Applications requires interactive/real-time
performance

from Creative AssemblyĜs ęRome: Total warĚ N-body simulation from NVIDIA

Parallel Computing Trend

• Multi/Many-core architectures

– Multi-core CPU

– Graphics processing unit (GPU)

7
Image from NVIDIA

Parallel Computing Trend

• Multi/Many-core architectures

• Heterogeneous architectures

– Different types of computing devices in a system

• Multi-core CPUs and GPUs in a PC

– Intel Sandy Bridge, AMD Fusion, Sony Cell, ..

Images from NVIDIA

Related Work

• Multi-core CPU-based approaches
– Metric-based load-balancing method [Lee 2010]

– Front based task decomposition method [Tang 2009]

– Parallel BVH construction [Wald 2007] [Ize 2007]

– Voxel-based method [Lawlor 2002]

• GPU-based proximity query algorithms
– Visibility queries [Govindaraju 2005]

– Image-based approach [Govindaraju 2005]

– Unified GPU-framework for proximity queries

[Sud 2006] [Lauterbach 2010]

– Specialized on certain types of models

[Vassilev 2001] [Baciu 2002] [Govindaraju 2005*]
9

- Achieve high performance improvement
- Use only multi-core CPUs or GPUs
- Do not provide real-time performance yet for

large-scale models

Our Goals & Approaches

• Achieve real-time performance

– In various proximity queries for large-scale models

• Efficiently utilize all available computing
resources for proximity computations

– Both GPUs and multi-core CPUs

• Design an optimization-based scheduling
(work distribution) algorithm

10

Previous Work:

Hierarchical Jobs

Non-hierarchical Jobs

HPCCD:
Hybrid Parallel Continuous Collision Detection

Previous Work:

Hierarchical Jobs

Non-hierarchical Jobs

HPCCD:
Hybrid Parallel Continuous Collision Detection

- Branch prediction
- Cache

- Massive parallelism

Random accesses

Solving cubic equations

Results

1313

94K triangles

• Manually specify distribution rules depending on
knowledge on the application

* This work was published at Computer Graphics Forum 2009
(received the distinguished paper award form Pacific Graphics 2009)

Previous Work:

Limitations

1414

• Manually specify distribution rules depending on
knowledge on the application

• No guarantee to efficient utilization of computing
resources

Previous Work:

Current Work

15

• Previous work: Manual scheduling

– Application dependent heuristics

– No guarantee to optimality

Current Work

• Optimization-based scheduling
– Automatically distribute dynamically

generated jobs while considering the
optimal utilization of computing resources

16

• Previous work: Manual scheduling

Current Work – Results

FPS

+GTX480 +GTX480 +GTX580GTX480

Collision detection
Fracturing benchmark (252K Tri.)

Ours

Work stealing
(an well-known
algorithm for dynamic
workload distribution)

Use same GPUs (low heterogeneity)

(With our optimization-based scheduling)

Current Work – Results

FPS

+Tesla2075

+GTX480
+GTX580

+GTX285

Collision detection
Fracturing benchmark (252K Tri.)

Ours

Work stealing

Use different GPUs (high heterogeneity)

(With our optimization-based scheduling)

Outline

• Motivation

• Our approach

– Optimization-based scheduling

• Results

• Conclusion

19

Overview

20

Proximity
query

Resource

Resource

Resource

Optimization
based job

scheduling
Leaf-level

computation

Hierarchical

Overview

21

Proximity
query

Resource

Resource

Resource

Optimization
based job

scheduling
Leaf-level

computation

Hierarchical

Related Work: Scheduling

• Scheduling for homogeneous resources
– Do not consider properties of heterogeneous

computing environments

• Application-dependent heuristics
– Unclear how well these techniques can be

applied to other applications

• Optimization-based scheduling
– Compute optimal job distribution that minimize

computation time

22

Related Work: Scheduling

• Scheduling for homogeneous resources
– Do not consider properties of heterogeneous

computing environments

• Application-dependent heuristics
– Unclear how well these techniques can be

applied to other applications

• Optimization-based scheduling
– Compute optimal job distribution that minimize

computation time

23

Related Work: Scheduling

• Scheduling for homogeneous resources
– Do not consider properties of heterogeneous

computing environments

• Application-dependent heuristics
– Unclear how well these techniques can be

applied to other applications

• Optimization-based scheduling
– Compute optimal job distribution that minimize

computation time

24

Outline

• Motivation

• Our approach

– Optimization-based scheduling

• Results

• Conclusion

25

Optimization-based Scheduling

26

Expected
running time

model

Optimization
formulation

Iterative LP
solver

• Design an accurate performance model
– Predict how much computation time is required to

finish jobs on a resource

– Important to achieve the optimal scheduling result

Performance Model

• Complex relationship between jobs and
resources

Job type 1

Job type n

Resource 1

Processor

architecture

Memory

Communication

Execution model

…

Resource 2

Processor

architecture

Memory

Communication

Execution model

…

…

Performance Model

• Abstract the complex relationship as an
expected running time model

Job type 1

Job type n

Resource 1

Processor

architecture

Memory

Communication

Execution model

…

Resource 2

Processor

architecture

Memory

Communication

Execution model

…

…
Expected
Running

Time

Performance Model

• Running time is linearly increased as the
number of jobs is increased

29

Performance Model

• Running time is linearly increased as the
number of jobs is increased

• Each computing resource require a specific
amount of setup cost 30

Performance Model

• Inter-device data transfer time depends
on the pair of devices

• Data transfer time is linearly increased as
the number of jobs is increased

31

Expected Running Time Model

• Expected running time on computing
resource i for processing n jobs of job types
j that are generated from computing
resource k

32

Setup time
Processing time

Data transfer time

Expected Running Time Model

• Measure coefficients of our linear
formulation for each proximity query with
sample jobs

– The expected running time model shows high

correlation (0.91 on average) with the observed data

in tested benchmarks

33

Optimization-based Scheduling

34

Expected
running time

model

Optimization
formulation

Iterative LP
solver

• Formulate an optimization problem
– Based on the expected running time model

– Need to represent the scheduling problem as a
form of optimization problem

Optimization Formulation

• Minimize makespan problem

35

Processing time

Processing time

Processing time

Processing time

CPU 1

CPU 2

GPU 1

GPU 2

Time

Computing
resource

Makespan (L)

①

Optimization Formulation

• We calculate optimal job distribution with
the expected running time

36

① The expected processing time of computing resources is equal
or smaller than the makespan

Resource i Rest time for completing
already assigned jobs

Processing time for
jobs will be assigned

Expected processing time

Makespan

Optimization Formulation

• We calculate optimal job distribution with
the expected running time

37

① The expected processing time of computing resources is equal
or smaller than the makespan

② There is no missing or duplicated jobs

①

②

Optimization Formulation

• We calculate optimal job distribution with
the expected running time

38

①

②

③
① The expected running processing of computing resources is

equal or smaller than the makespan

② There is no missing or duplicated jobs

③ Each job is atomic

Job distribution

Optimization-based Scheduling

39

Expected
running time

model

Optimization
formulation

Iterative LP
solver

Optimization-based Scheduling

40

Expected
running time

model

Optimization
formulation

Iterative LP
solver

• High computational cost
– Jobs are dynamically generated at runtime

– Optimization process takes long time to apply to interactive or
real-time applications

NP-hard Problem!

Optimization-based Scheduling

41

Expected
running time

model

Optimization
formulation

Iterative LP
solver

Positive floating-point numbers

Designed iterative solve to handle
the piece-wise condition

Optimization-based Scheduling

42

Expected
running time

model

Optimization
formulation

Iterative LP
solver

Positive floating-point numbers

Designed iterative solve to handle
the piece-wise conditionPlease see the technical report for the details

(http://sglab.kaist.ac.kr/Hybrid_parallel)

Outline

• Motivation

• Our approach

– Optimization-based scheduling

• Results

• Conclusion

43

Results

• Applied to various application

– Collision detection

– Motion planning

– Global illumination

Results

Collision detection (146K Tri.)

FPS

+Tesla2075

+GTX480

+GTX580

Hex-core CPUs
(Intel Xeon (2.93GHz))

+GTX285

Ours
Work
steal

Round-robin

Use different GPUs

Results

Motion planning

(137K Tri., 50K samples)

FPS Ours

Work
stealing

Round-robin

Global illumination

(436K Tri., 80M rays)

FPS

Work
stealing

Round-robin

Ours

Use different GPUs

Use different GPUs

Outline

• Motivation

• Our approach

– Optimization-based scheduling

• Results

• Conclusion

47

Conclusion

• Present a novel scheduling algorithm
– Design the expected running time model

– Formulate the scheduling problem as an optimization
problem

– Propose a novel iterative optimization solver

• Efficiently utilize heterogeneous computing
systems
– Achieve high scalability with additional computing

resources

– In various proximity queries
48

Future Work

• Apply to other applications

• Design a better scheduling algorithm

49

References
• [Lee 2010] Simple and Parallel Proximity Algorithms for General Polygonal Models, Youngeun Lee et al, Journal of

Computer Animation and Virtual Worlds, 2010

• [Govindaraju 2005] CULLIDE: Interactive collision detection between complex models in large environments using
graphics hardware, EG. Workshop on Graphics Hardware, 2003

• [Govindaraju 2005*] Collision detection between deformable models using chromatic decomposition," ACM Trans. on
Graphics, 2005

• [Lauterbach 2010] gProximity: Hierarchical GPUǦbased Operations for Collision and Distance Queries, C Lauterbach et al.,
EG 2010

• [Tang 2009] Multi-core collision detection between deformable models, M. Tang et al., in SIAM/ACM Joint Conf. on
Geometric and Solid & Physical Modeling, 2009

• [Wald 2007] On fast construction of sah-based bounding volume hierarchies, I. Wald, IEEE Symposium on Interactive Ray
Tracing, 2007.

• [Ize 2007] Asynchronous BVH construction for ray tracing dynamic scene on parallel multi-core architectures, T. Ize et al.,
Eurographics Symposium on Parallel Graphics and Visualization, 2007.

• [Baciu 2002] Image-based techniques in a hybrid collision detector, G. Baciu and S. Wong, IEEE TVCG, 2002.

• [Lawler 2002] A voxel-based parallel collision detection algorithm, O. S. Lawlor and V. K. Laxmikant, Super-computing,
2002.

• [Sud 2006] Fast Proximity Computation among Deformable Models using Discrete Voronoi Diagrams, A. Sud et al., ACM
SIGGRAPH, 2006.

• [Vassilev 2001] Fast cloth animation on walking avatars, T. Vassilev et al., Computer Graphics Forum (Eurographics), 2001.
50

Thanks

51

Any questions?

Project homepage:
http://sglab.kaist.ac.kr/hybrid_parallel
* This work was submitted to a journal and under a minor revision.

(bluekdct@gmail.com)

