Proximity Computations on
Heterogeneous Computing Systems

GTC 2013

Duksu Kim

Ph. D. candidate, Scalable Graphics Lab.,
Korea Advanced Institute of Science and Technology (KAIST)

Proximity Queries (PQs)

- Compute relative placement or
configuration of two objects

— Collision detection
— Distance computation

Collision detection

- Basic operations in various
applications

— Graphics, simulations, o
robotics, Etc. ODistance

computation

Proximity Queries in App.

from Bochang’s paper

Motion planning

Collision

detection Others

[Jia 2010] [Liangjun 2008]

Realistic redering
Others

/

Ray
tracin

[Our in-house render]
K]

Proximity Query Acceleration

« Various acceleration techniques
— Acceleration hierarchies
— Culling algorithms
— Specialize algorithms for a target application
— Approximation algorithms

» Achieve several orders of magnitude
performance improvement

Proximity Query Acceleration

* Not enough to achieve real-time
performance for large-scale models
and complex scenes

FPS: 2.16, CPU threads = 1 GPU : OFF

Continuous collision detection

N-body benchmark
consisting of 34K triangles

Less than 10 frames/second
(Intel i7 2.93Ghz CPU)

Demands for High Performance

« Model complexity continue to grow for
more realistic and accurate outputs

« Applications requires interactive/real-time

performance
S - v ; WA N
o G o
- S
~ A \ '
y ¥ .- - -
\ -

from Creative Assembly’s "Rome: Total war” N-body simulation from NVIDIA

Parallel Computing Trend

« Multi/Many-core architectures
— Multi-core CPU
— Graphics processing unit (GPU)

Parallel Computing Trend

« Multi/Many-core architectures

* Heterogeneous architectures

— Different types of computing devices in a system
« Multi-core CPUs and GPUs in a PC

— Intel Sandy Bridge, AMD Fusion, Sony Cell, ..

Related Work

« Multi-core CPU-based approaches
— Metric-based load-balancing method [Lee 2010]

Achieve high performance improvement
Use only multi-core CPUs or GPUs

Do provide performance for
Iarge -scale models

— Unified GPU-framework for proximity queries
[Sud 2006] [Lauterbach 2010]
— Specialized on certain types of models
[Vassilev 2001] [Baciu 2002] [Govindaraju 2005*] o

Our Goals & Approaches

« Achieve real-time performance
— In various proximity queries for large-scale models

- Efficiently utilize all available computing
resources for proximity computations

— Both GPUs and multi-core CPUs

* Design an optimization-based scheduling
(work distribution) algorithm

10

Previous Work:

. HPCCD:
Hybrid Parallel Continuous Collision Detection

Hierarchical Jobs

Non-hierarchical Jobs

2NN

Previous Work:

HPCCD:
Hybrid Parallel Continuous Collision Detection

Hierarchical Jobs

Random accesses

- Branch prediction Non-hierarchical Jobs ety

- Cache V 1)
. . . ol 2 5
Solving cubic equations W/

- Massive parallelism

Previous Work:

Results

(FPS Cloth simulation
8 : # of total CPU threads

94k triangles

> One Intel i7 quad-core (3.2 GHz)
> Two Geforce GTX285s

Without GPU One GPU Two GPUs .‘

5 bﬁy/.— P T

- Manually specify distribution rules depending on
knowledge on the application

* This work was published at Computer Graphics Forum 2009
(received the form Pacific Graphics 2009)

Previous Work:

Limitations

(FPS Cloth simulation
2 4 8 : # of total CPU threads

> One Intel i7 quad-core (3.2 GHz)
> Two Geforce GTX285s

Without GPU One GPU Two GPUs

- Manually specify distribution rules depending on
knowledge on the application

* No guarantee to efficient utilization of computing
resources y

Current Work

* Previous work: Manual scheduling
— Application dependent heuristics
— No guarantee to optimality

15

Current Work

» Previous work: Manual scheduling

-

« Optimization-based scheduling

— Automatically distribute dynamically
generated jobs while considering the
optimal utilization of computing resources

16

Current Work — Results

(With our optimization-based scheduling)

FPS
70

Collision detection Ours
Fracturing benchmark (252K Tri.))/‘

50

40 //)// _—

) s
/

algorithm for dynamic
0 : . ‘

workload distribution)
single CPU a Hexa- 2C 2C+GPU 2C+2G 2C+3G 2C+4G

60

core core CPU (1G)
(1€) GTX480 +GTX480 +GTX480 +GTX580

Use same GPUs (low heterogeneity)

Current Work — Results

(With our optimization-based scheduling)

FPS
60

Ours
Collision detection y
Fracturing benchmark (252K Tri.) /

40 /
* Work stealing
i / B

10 /

0 / S I,‘

50

single CPU a Hexa- 2C 2C+GPU 2C+2G 2C+3G 2C+4G
core core CPU (1G)
(1€) : l ‘
{+GTX283 1a2075
. . . H +1es
Use different GPUs (high heterogeneity) : +GTX480 :

+GTX580

Outline

Motivation

Our approach
— Optimization-based scheduling

Results
Conclusion

19

Proximity
query

Overview

Hierarchical

Leaf-level
computation

\

Optimization
based job
scheduling

J

[Resource

[Resource

[Resource

J
J
J

Proximity
query

Overview

Hierarchical

Leaf-level
computation

\

Optimization
based job
scheduling

J

[Resource

]
2 [Fosoes)
]

[Resource

Related Work: Scheduling

« Scheduling for homogeneous resources

— Do not consider properties of heterogeneous
computing environments

« Application-dependent heuristics

— Unclear how well these techniques can be
applied to other applications

« Optimization-based scheduling

— Compute optimal job distribution that minimize
computation time

22

Related Work: Scheduling

« Scheduling for homogeneous resources

— Do not consider properties of heterogeneous
computing environments

« Application-dependent heuristics

— Unclear how well these techniques can be
applied to other applications

« Optimization-based scheduling

— Compute optimal job distribution that minimize
computation time

23

Related Work: Scheduling

« Scheduling for homogeneous resources

— Do not consider properties of heterogeneous
computing environments

« Application-dependent heuristics

— Unclear how well these techniques can be
applied to other applications

« Optimization-based scheduling

— Compute optimal job distribution that minimize
computation time

24

Outline

Motivation

Our approach
— Optimization-based scheduling

Results
Conclusion

25

Optimization-based Scheduling

- Optimization - Iterative LP
formulation solver
model

» Design an accurate performance model

— Predict how much computation time is required to
finish jobs on a resource

— Important to achieve the optimal scheduling result

26

Performance Model

« Complex relationship between jobs and
resources

Resource 1 \ ﬁesource P

Processor f Processor
architecture) \ architecture

[Job type 1

Memory Memory

Execution model Execution model

[Job type n \

>)
>)
§[Communication Communication

Performance Model

* Abstract the complex relationship as an
expected running time model

[Job type 1]

Expected
Running
Time

[Job type n

Resource 1

)

Processor
architecture

Memory

Execution model

Communication

\

)

[

Resource 2

Processor
architecture

Memory

Execution model

Communication

\C

Performance Model

10 —-Quad-core CP TX285
’g Hierarchy traversal
= for CCD _--"
] e”, 0’
g 5 ‘ﬂ‘d’-..
%D ...éy)". .
g ==

8 O ’I\ Frrrrrrrrrrrrr T T T T T T T T TTTd
& I 5 9 13 17 21 25 29 3

The number of jobs (X 1024)

=—GTX480 --Tesla 2075
Leaf-level compution e s
for CCD g
el e
rrrrrrrrrrrrrrrrrrrrr T T T T T

1 5 9 13 17 21 25 29 33
The number of jobs (X 2048)

* Running time is linearly increased as the
number of jobs is increased

29

Performance Model

10 —-Quad-core CP TX285 —GTX480 Tesla 2075
) Hierarchy traversal Leaf-level compution P
£ forcecp =" forCCD T
s prats e

§0 :IT_\'\-—\—\—\IHII\\IH\I\HIHIIHI\ T-\’I‘\\-IHIHIHIHIHI\H\HHIIH
£ S 9 13 17 21 25 29 3 1 5 9 13 17 21 25 29 33

The number of jobs (X 1024) The number of jobs (X 2048)

* Running time is linearly increased as the
number of jobs is increased

- Each computing resource require a specific
amount of setup cost 30

Performance Model

* Inter-device data transfer time depends
on the pair of devices

- Data transfer time is linearly increased as
the number of jobs is increased

31

Expected Running Time Model

« Expected running time on computing
resource / for processing 7 jobs of job types
/ that are generated from computing
resource K

Setup time , ,
i Processing time

0, it n;; 18 0

—"TT rans (/ll — [,]) X Nyj, otherwise.

‘# °
** Data transfer time

32

Expected Running Time Model

 Measure coefficients of our linear
formulation for each proximity query with
sample jobs
— The expected running time model shows high

correlation (0.91 on average) with the observed data
In tested benchmarks

, if n ij 1s 0

Tf,(,,,g,(L — 1, j) X n,, otherwise.

33

Optimization-based Scheduling

Expected .
P . Iterative LP
running time B
ormulation solver
model
T'(k — i,7,ni;) I'Ii_,,,,,,u__,)v Tooroe(isg) > ,,U”
T rans (B — i, 7) X n;j, otherwise.

* Formulate an optimization problem
— Based on the expected running time model

— Need to represent the scheduling problem as a
form of optimization problem

34

Optimization Formulation

* Minimize makespan problem

Minimize L,

Computing
resource

CPU 1
CPU 2
GPU 1
GPU 2

Time

35

Optimization Formulation

* We calculate optimal job distribution with
the expected running time

Minimize L.

subject to| T, .cs (1) +|2 ‘;]:‘1 T(i,j,n:5) < L.Vie R

| Expected processing time ‘
RV (NI Rost time for completing Processing time for
already assigned jobs jobs will be assigned

@ The expected processing time of computing resources is equal
or smaller than the makespan

36

Optimization Formulation

* We calculate optimal job distribution with
the expected running time

Minimize L,
subject to Tyest (1)—|—V‘| / T'(2,j,ni;) < L.VieR

‘ |l ;3 = Ny, \V/] cJ

@ The expected processing time of computing resources is equal
or smaller than the makespan

@ There is no missing or duplicated jobs

37

© ®

Optimization Formulation

We calculate optimal job distribution with
the expected running time

Job distribution
subject to Tyest (1)—|—V‘| d (1, 4 n,},)’< L.VieR

‘(|l n; 7 —), , v'] “— e_]

Nij € 2 77 (zero or positive integers).

The expected running processing of computing resources is
equal or smaller than the makespan

There is no missing or duplicated jobs

Each job is atomic 2

Optimization-based Scheduling

Expected

Optimization

running time)
g formulation

model

- Iterative LP
solver

Minimize L,
subject to These(i) + E‘_j‘il’l’(i.__j. n;) <L VieR

Rl -
X, nij =mn;,vje.J

ni; € Z"(zero or positive integers).

39

Optimization-based Scheduling

Expected

Optimization
formulation

- Iterative LP
solver

running time
model

Minimize L, NP-hard Problem!
subject to Tyesi(i) + E_L"]:'lﬂ"‘* Jimig) < LVi€ R

wIRl s
X, nij =mn;,vje.J

ni; € Z"(zero or positive integers).

« High computational cost
— Jobs are dynamically generated at runtime

— Optimization process takes long time to apply to interactive or
real-time applications 40

Optimization-based Scheduling

Expected
running time
model

Optimization
formulation

- Iterative LP
solver

0, LWIFRLAE Designed iterative solve to handle
T(k = i,5,ni5) = § Tsetup(t:7) + Tproe(t,) X nij the piece-wise condition

+Ttrans(k — 1,7) X n;;, otherwise.

Minimize L.
subject to Tyest(i) + S0 T(i, joni;) < LVi€ R

R .
S‘izl]_'”-j,j =n; VjeJ

nij € ZT (zero or-pesibits

Positive floating-point numbers

Optimization-based Scheduling

Expected

Optimization
formulation

- Iterative LP
solver

running time
model

Please see the technical report for the details

(

subject to Trest(i) + EL"QIT(i, J,ni;) <L, Vic R

R| ‘
vIBlL oy

Nnij € fj‘ﬁ(_ Zero or-pesitivasintegers).

Positive floating-point numbers,,

Outline

Motivation

Our approach
— Optimization-based scheduling

Results
Conclusion

43

Results

* Applied to various application
— Collision detection
— Motion planning
— Global |IIum|nat|on

Results

FPS
80
Collision detection (146K Tri.) Ours__» .
60 >
/;(/ steal
40 D e ST
----0’
20 " Round-robin
0 . |
1C 2C 2C+1G 2C+2G 2C+3G 2C+H4G
|
Hex-core CPUs \
GTX285
(Intel Xeon (2.93GHz)) i +Tesla2075 \
+GTX480
+GTX580

Use different GPUs

Results

FPS
2
s Motion planning
~ (137K Tri., 50K samples)
| Round-robin
meme=gemmonTR
0.5 7 Work
0 stealing
1C 2C 2CHIG 202G 2C43G 2CHG
FPS Use different GPUs
0.08
0.06 Global illumination N
' (436K Tri., 80M rays) e Work
0.04 ,‘ s stealing
" __4~~" Round-robin
0.02 e
e ="
O a T T T T T 1
1C 2C 2041G 2C+2G 2C+3G 2C+4G

Use different GPUs

Outline

Motivation

Our approach
— Optimization-based scheduling

Results
Conclusion

47

Conclusion

* Present a novel scheduling algorithm
— Design the expected running time model

— Formulate the scheduling problem as an optimization
problem

— Propose a novel iterative optimization solver

 Efficiently utilize heterogeneous computing
systems

— Achieve high scalability with additional computing
resources

— In various proximity queries

48

Future Work

* Apply to other applications
* Design a better scheduling algorithm

49

References

[Lee 2010] Simple and Parallel Proximity Algorithms for General Polygonal Models, Youngeun Lee et al, Journal of
Computer Animation and Virtual Worlds, 2010

[Govindaraju 2005] CULLIDE: Interactive collision detection between complex models in large environments using
graphics hardware, EG. Workshop on Graphics Hardware, 2003

[Govindaraju 2005*] Collision detection between deformable models using chromatic decomposition,” ACM Trans. on
Graphics, 2005

[Lauterbach 2010] gProximity: Hierarchical GPU-based Operations for Collision and Distance Queries, C Lauterbach et al,,
EG 2010

[Tang 2009] Multi-core collision detection between deformable models, M. Tang et al., in SIAM/ACM Joint Conf. on
Geometric and Solid & Physical Modeling, 2009

[Wald 2007] On fast construction of sah-based bounding volume hierarchies, I. Wald, IEEE Symposium on Interactive Ray
Tracing, 2007.

[Ize 2007] Asynchronous BVH construction for ray tracing dynamic scene on parallel multi-core architectures, T. Ize et al,
Eurographics Symposium on Parallel Graphics and Visualization, 2007.

[Baciu 2002] Image-based techniques in a hybrid collision detector, G. Baciu and S. Wong, IEEE TVCG, 2002.

[Lawler 2002] A voxel-based parallel collision detection algorithm, O. S. Lawlor and V. K. Laxmikant, Super-computing,
2002.

[Sud 2006] Fast Proximity Computation among Deformable Models using Discrete Voronoi Diagrams, A. Sud et al, ACM
SIGGRAPH, 2006.

[Vassilev 2001] Fast cloth animation on walking avatars, T. Vassilev et al,, Computer Graphics Forum (Eurographics), 2001.
50

Thanks R

Any questions?

(bluekdct@gmail.com)

Project homepage:
http://sglab.kaist.ac.kr/hybrid_parallel

* This work was submitted to a journal and under a minor revision.

51

