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Proximity Queries (PQs)

- Compute relative placement or
configuration of two objects

— Collision detection
— Distance computation

Collision detection

- Basic operations in various
applications

— Graphics, simulations, o
robotics, Etc. ODistance

computation
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Proximity Query Acceleration

« Various acceleration techniques
— Acceleration hierarchies
— Culling algorithms
— Specialize algorithms for a target application
— Approximation algorithms

» Achieve several orders of magnitude
performance improvement



Proximity Query Acceleration

* Not enough to achieve real-time
performance for large-scale models
and complex scenes

FPS: 2.16, CPU threads = 1 GPU : OFF

Continuous collision detection

N-body benchmark
consisting of 34K triangles

Less than 10 frames/second
(Intel i7 2.93Ghz CPU)




Demands for High Performance

« Model complexity continue to grow for
more realistic and accurate outputs

« Applications requires interactive/real-time

performance
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from Creative Assembly’s "Rome: Total war” N-body simulation from NVIDIA



Parallel Computing Trend

« Multi/Many-core architectures
— Multi-core CPU
— Graphics processing unit (GPU)




Parallel Computing Trend

« Multi/Many-core architectures

* Heterogeneous architectures

— Different types of computing devices in a system
« Multi-core CPUs and GPUs in a PC

— Intel Sandy Bridge, AMD Fusion, Sony Cell, ..




Related Work

« Multi-core CPU-based approaches
— Metric-based load-balancing method [Lee 2010]

Achieve high performance improvement
Use only multi-core CPUs or GPUs

Do provide performance for
Iarge -scale models

— Unified GPU-framework for proximity queries
[Sud 2006] [Lauterbach 2010]
— Specialized on certain types of models
[Vassilev 2001] [Baciu 2002] [Govindaraju 2005*] o



Our Goals & Approaches

« Achieve real-time performance
— In various proximity queries for large-scale models

- Efficiently utilize all available computing
resources for proximity computations

— Both GPUs and multi-core CPUs

* Design an optimization-based scheduling
(work distribution) algorithm

10



Previous Work:

. HPCCD:
Hybrid Parallel Continuous Collision Detection

Hierarchical Jobs

Non-hierarchical Jobs

2NN




Previous Work:

HPCCD:
Hybrid Parallel Continuous Collision Detection

Hierarchical Jobs

Random accesses

- Branch prediction Non-hierarchical Jobs ety

- Cache V 1)
. . . ol 2 5
Solving cubic equations W/

- Massive parallelism



Previous Work:

Results

(FPS Cloth simulation
8 : # of total CPU threads

94k triangles

> One Intel i7 quad-core (3.2 GHz)
> Two Geforce GTX285s

Without GPU One GPU Two GPUs .‘

5 bﬁy/.— P T

- Manually specify distribution rules depending on
knowledge on the application

* This work was published at Computer Graphics Forum 2009
(received the form Pacific Graphics 2009)



Previous Work:

Limitations

(FPS Cloth simulation
2 4 8 : # of total CPU threads

> One Intel i7 quad-core (3.2 GHz)
> Two Geforce GTX285s

Without GPU One GPU Two GPUs

- Manually specify distribution rules depending on
knowledge on the application

* No guarantee to efficient utilization of computing
resources y



Current Work

* Previous work: Manual scheduling
— Application dependent heuristics
— No guarantee to optimality

15



Current Work

» Previous work: Manual scheduling

-

« Optimization-based scheduling

— Automatically distribute dynamically
generated jobs while considering the
optimal utilization of computing resources

16



Current Work — Results

(With our optimization-based scheduling)

FPS
70

Collision detection Ours
Fracturing benchmark (252K Tri.))/‘

50

40 //)// _—

) s
/

algorithm for dynamic
0 : . ‘

workload distribution)
single CPU a Hexa- 2C 2C+GPU 2C+2G 2C+3G 2C+4G

60

core core CPU (1G)
(1€) GTX480 +GTX480 +GTX480 +GTX580

Use same GPUs (low heterogeneity)



Current Work — Results

(With our optimization-based scheduling)
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Outline

Motivation

Our approach
— Optimization-based scheduling

Results
Conclusion

19



Proximity
query

Overview
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Optimization
based job
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Related Work: Scheduling

« Scheduling for homogeneous resources

— Do not consider properties of heterogeneous
computing environments

« Application-dependent heuristics

— Unclear how well these techniques can be
applied to other applications

« Optimization-based scheduling

— Compute optimal job distribution that minimize
computation time

22
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Related Work: Scheduling

« Scheduling for homogeneous resources
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Outline

Motivation

Our approach
— Optimization-based scheduling

Results
Conclusion
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Optimization-based Scheduling

- Optimization - Iterative LP
formulation solver
model

» Design an accurate performance model

— Predict how much computation time is required to
finish jobs on a resource

— Important to achieve the optimal scheduling result

26



Performance Model

« Complex relationship between jobs and
resources

Resource 1 \ ﬁesource P

Processor f Processor
architecture ) \ architecture

[ Job type 1

Memory Memory

Execution model Execution model

[ Job type n \

>)
>)
§[ Communication Communication




Performance Model

* Abstract the complex relationship as an
expected running time model

[ Job type 1 ]

Expected
Running
Time

[ Job type n

Resource 1

)

Processor
architecture

Memory

Execution model

Communication

\

)

[

Resource 2

Processor
architecture

Memory

Execution model

Communication
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Performance Model
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* Running time is linearly increased as the
number of jobs is increased

29



Performance Model
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* Running time is linearly increased as the
number of jobs is increased

- Each computing resource require a specific
amount of setup cost 30



Performance Model

* Inter-device data transfer time depends
on the pair of devices

- Data transfer time is linearly increased as
the number of jobs is increased

31



Expected Running Time Model

« Expected running time on computing
resource / for processing 7 jobs of job types
/ that are generated from computing
resource K

Setup time , ,
i Processing time

0, it n;; 18 0

—"TT rans (/ll — [, ]) X Nyj, otherwise.

‘# °
** Data transfer time

32



Expected Running Time Model

 Measure coefficients of our linear
formulation for each proximity query with
sample jobs
— The expected running time model shows high

correlation (0.91 on average) with the observed data
In tested benchmarks

, if n ij 1s 0

Tf,(,,,g,(L — 1, j) X n,, otherwise.

33



Optimization-based Scheduling

Expected .
P . Iterative LP
running time B
ormulation solver
model
T'(k — i,7,ni;) I'Ii_,,,,,,u__,)v Tooroe(isg) > ,,U”
T rans (B — i, 7) X n;j, otherwise.

* Formulate an optimization problem
— Based on the expected running time model

— Need to represent the scheduling problem as a
form of optimization problem

34



Optimization Formulation

* Minimize makespan problem

Minimize L,

Computing
resource

CPU 1
CPU 2
GPU 1
GPU 2

Time

35



Optimization Formulation

* We calculate optimal job distribution with
the expected running time

Minimize L.

subject to| T, .cs (1) +|2 ‘;]:‘1 T(i,j,n:5) < L.Vie R

| Expected processing time ‘
RV (NI Rost time for completing Processing time for
already assigned jobs jobs will be assigned

@ The expected processing time of computing resources is equal
or smaller than the makespan

36



Optimization Formulation

* We calculate optimal job distribution with
the expected running time

Minimize L,
subject to Tyest (1 )—|—V‘| / T'(2,j,ni;) < L.VieR

‘ |l ;3 = Ny, \V/] cJ

@ The expected processing time of computing resources is equal
or smaller than the makespan

@ There is no missing or duplicated jobs

37
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Optimization Formulation

We calculate optimal job distribution with
the expected running time

Job distribution
subject to Tyest (1 )—|—V‘| d (1, 4 n,},)’< L.VieR

‘( |l n; 7 — ), , v'] “— e_]

Nij € 2 77 (zero or positive integers).

The expected running processing of computing resources is
equal or smaller than the makespan

There is no missing or duplicated jobs

Each job is atomic 2



Optimization-based Scheduling

Expected

Optimization

running time )
g formulation

model

- Iterative LP
solver

Minimize L,
subject to These(i) + E‘_j‘il’l’(i.__j. n;) <L VieR

Rl -
X, nij =mn;,vje.J

ni; € Z"(zero or positive integers).

39



Optimization-based Scheduling

Expected

Optimization
formulation

- Iterative LP
solver

running time
model

Minimize L, NP-hard Problem!
subject to Tyesi(i) + E_L"]:'lﬂ"‘* Jimig) < LVi€ R

wIRl s
X, nij =mn;,vje.J

ni; € Z"(zero or positive integers).

« High computational cost
— Jobs are dynamically generated at runtime

— Optimization process takes long time to apply to interactive or
real-time applications 40



Optimization-based Scheduling

Expected
running time
model

Optimization
formulation

- Iterative LP
solver

0, LWIFRLAE Designed iterative solve to handle
T(k = i,5,ni5) = § Tsetup(t:7) + Tproe(t, ) X nij the piece-wise condition

+Ttrans(k — 1,7) X n;;, otherwise.

Minimize L.
subject to Tyest(i) + S0 T(i, joni;) < LVi€ R

R .
S‘izl]_'”-j,j =n; VjeJ

nij € ZT (zero or-pesibits

Positive floating-point numbers



Optimization-based Scheduling

Expected

Optimization
formulation

- Iterative LP
solver

running time
model

Please see the technical report for the details

(

subject to Trest(i) + EL"QIT( i, J,ni;) <L, Vic R

R| ‘
vIBlL oy

Nnij € fj‘ﬁ(_ Zero or-pesitivasintegers).

Positive floating-point numbers,,



Outline

Motivation

Our approach
— Optimization-based scheduling

Results
Conclusion
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Results

* Applied to various application
— Collision detection
— Motion planning
— Global |IIum|nat|on




Results
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Results
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Motivation

Our approach
— Optimization-based scheduling

Results
Conclusion
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Conclusion

* Present a novel scheduling algorithm
— Design the expected running time model

— Formulate the scheduling problem as an optimization
problem

— Propose a novel iterative optimization solver

 Efficiently utilize heterogeneous computing
systems

— Achieve high scalability with additional computing
resources

— In various proximity queries

48



Future Work

* Apply to other applications
* Design a better scheduling algorithm

49
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Thanks R

Any questions?

(bluekdct@gmail.com)

Project homepage:
http://sglab.kaist.ac.kr/hybrid_parallel

* This work was submitted to a journal and under a minor revision.
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