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Abstract— As personal autonomous mobility is getting to be
more widely adopted, it is more important to consider comfort-
ability of stuffs and persons carried by such mobility. In this
work, we define the comfort of a trajectory as forces, specifically,
translational force, received to objects carried by a robot while
following the trajectory by measuring impulse. To maximize
such a comfort, we propose a novel, kinodynamic comfort path
planning method based on our definition of comfort. Our work
is based on direct collocation method for handling our non-
convex objective function. We also introduce Bidirectional
Obstacle Detection(BOD) that identifies the distances along
the perpendicular directions to the trajectory. This is mainly
designed for avoiding obstacles while minimizing forces causing
discomfort. Our experimental results show that our method can
compute trajectories whose comfort measures can be up to 18
times higher than those computed by prior related objectives,
e.g., squared velocity used for generating smooth trajectory.

I. INTRODUCTION

Personal autonomous mobility or service robots are getting
higher attention thanks to rapid advances on the related tech-
nology. While developing robotic hardware itself is impor-
tant, considering objects and humans interacting with those
robots are also important. Interaction with robots is getting
more important, since various robots (e.g., Tesla self-driving
cars) are readily available to us. Among many technical
challenges, we focus on comfort of stuffs or humans carried
by a robot during following the trajectory to the destination.

Generating comfortable trajectory for objects carried by
a robot is related to controlling forces applied to them.
In this regard, studying various dynamic properties and
kinodynamic planning has been extensively studied [1].
Nonetheless, there have been relatively less work directly on
defining and generating comfortable trajectories for a robot
and its carried objects.

Main contributions. In this paper, we present a novel
definition on the comfort and its counterpart concept, dis-
comfort. Our discomfort metric directly measures forces,
specifically, translational force, applied to the object car-
ried by a robot (Sec. IV). Since our discomfort and other
objective functions (e.g., obstacle avoidance) can be non-
convex, we design our optimization framework based on
the direct collocation approach, starting from a spline based
initial trajectory using the interior-point method. We then use
our novel obstacle avoidance method, Bidirectional Obstacle
Detection (BOD), that reduces causing discomfort during our
iterative optimization, while avoiding obstacles (Sec. IV-B).
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To show the benefit of our approach experimentally, we
have implemented our comfort kinodynamic planner and
compared its performance against other approach. Thanks to
the generality of our optimization framework, we were able
to compare our objective function with other prior metrics.
Our experimental result shows that our method has up to
18 times higher comfort values than those prior metrics.
Furthermore, our method does not exceed an acceptable
comfort limit while generating reasonably short travel time,
while the variance of forces, which is intuitively related to the
concept of comfort, received during following our trajectory
is significantly lower, i.e., 1:6 to 1:90, than others (Sec. V).

II. RELATED WORK

In this section, we review previous approaches directly
related to our work.

A. Path Planning for Comfortable Trajectory

Generating a comfortable trajectory is an important issue,
especially when a robot delivers its fragile carried objects. To
address this problem, a few works [2]–[4] have been studied
to consider the comfort of a target, mainly about human.

Morales et al. [2], [3] proposed a human-comfort factor
map, which represents human safety (e.g., distance to obsta-
cles and visibility) and comfort factors according to linear
velocity and acceleration of a wheelchair. In Gulati et al. [4]
also dealt with comfort as their cost function by regarding
a weighted sum of travel time and integration of jerk and
angular derivatives as a comfort factor. The reason why they
formulate such a cost function of the comfort is based on
designing of road [5], railway vehicles [6] and movement of
human arm [7]. Furthermore, they presented a formulation
that can be used in a specific configuration, such as given
start/goal velocity and acceleration.

Most previous works including aforementioned stud-
ies [2]–[4] and additionally [8] focused only on the comfort
of human feeling. However, what we need to consider about
is not only human comfort, but applied forces to anything
that robots carry. In order to minimize forces that are
applied to those target objects along a trajectory, we consider
impulse (Sec. IV) during tracking the trajectory, resulting in
improving comfort of those target objects.

B. Kinodynamic Planning

Our formulation of generating comfortable trajectory con-
siders forces imposed to objects carried by a robot. As
a result, considering dynamic properties of the robot is
required when planning the trajectory, and thus our work
is based on kinodynamic planning [1].



At a high level, there are mainly three orthogonal ap-
proaches to solve kinodynamic planning. The first approach
is generating a smooth path using splines and then properly
adjusting controls to follow the path. generates a smooth
path that has continuous-curvature and then computes veloc-
ity/acceleration according to the generated path.

The second one is based sampling-based approaches,
thanks to the success of various sampling methods (e.g.,
Rapidly-exploring Random Tree(RRT) [9]). One popular
approach in this category is Kinodynamic RRT* [10]. This
approach applies non-linear dynamics by linearizing the
dynamics using the first-order Taylor approximation. On the
other hand, Lee et al. [11] suggested a pre-computed database
containing robot motions in accordance with dynamics and
retrieve motions to extend an RRT-based random tree.

Optimization-based planning is the third category for solv-
ing the kinodynamic planning problem. Covariant Hamil-
tonian Optimization for Motion Planning (CHOMP) [12]
is one of the most popular techniques in this category.
Its cost function is a weighted sum of smoothness and
obstacle avoidance, and is optimized by an iterative covariant
gradient technique. On the other hand, Direct collocation
method [13] transcribes the trajectory optimization problem
into a non-linear program (NLP) and is widely used for the
trajectory optimization [14], [15]. Trajectory replanning [14]
uses the method when optimizing the trajectory represented
by uniform B-splines.

Our work is based on trajectory optimization to handle
the dynamic property of a robot, i.e., the direct collocation
method that can optimize the trajectory efficiently. We give
its background in Sec. III.

C. Obstacle Avoidance for Optimization-based Planning

Many optimization based planners [12], [14] use a distance
field to avoid obstacles. Another way of avoiding obstacles
is introduced by utilizing star-shaped obstacles [16]. In the
latter case, trajectories are forced to be outside of the obstacle
by making the distance from the trajectory to the center of
the star-shaped obstacle to be larger than the distance from
obstacle boundary to the center.

The aforementioned methods work well. However, for re-
ducing discomfort further, we introduce a novel technique of
avoiding obstacles named Bidirectional Obstacle Detection
(BOD), which considers only perpendicularly local regions
around the trajectory.

III. BACKGROUND

Our work is based on the direct collocation method [13]
for trajectory optimization. We briefly review its main con-
cept in this section. Notations of terms are summarized in
Table I and used throughout the paper.

A. Direct Collocation Method of Trajectory Optimization

Although some special cases of optimal control prob-
lems like Linear-Quadratic Regulator (LQR) has analytic
solutions [17], generally optimal trajectories are generated
by numerical methods because of the complexity of most

TABLE I
NOTATIONS

Notation Description

N Last index of zero-indexed collocation
points

x(t) State at time t
u(t) Control at time t
f (t,x(t),u(t)) System dynamics, ẋ = f (t,x(t),u(t))
tk Time at kth collocation point. Subscripted

by k means at time tk
t f Travel time
C, O Comfort objective and obstacle objective
h(t0,x0,u0, tN ,xN ,uN)= 0 Boundary conditions of the trajectory

applications [18]. At a high level, Indirect method and direct
method are two main approaches of numerical methods for
dealing with trajectory optimization problem. Among them,
we discuss direct collocation method in this paper that our
method is based on.

The main idea of the direct method is to convert the
continuous trajectory optimization problem into a discrete
non-linear program (NLP), which is called transcription.
To this end, the trajectory is divided into several points
named collocation points. The direct collocation method then
interpolates those collocation points with splines, which are
curves defined piecewise-polynomials.

In the transcription part, we consider three things. The
first one is approximating an objective function, J(·). The
objective function is usually composed of terminal and inte-
gral objectives. To approximate the integral objective, many
integral approximation methods are available e.g., Simpson’s
rule. For easy implementation and computational speed, we
use the basic trapezoidal quadrature method in our work
(Sec. IV-C).

The second component of the transcription is about system
dynamics. Dynamics of a robot are treated as constraints in
the direct collocation method, and we thus rewrite the system
dynamics into equality constraints of NLP. We convert the
differential form of system dynamics to the integration form
and then, similar to the approximation of integration above,
approximate the system dynamics. Those approximated sys-
tem dynamics between every pair of two collocation points
are used as equality constraints of the NLP problem.

The last component is handling other constraints, e.g.,
boundary conditions, of the problem. This can be simply
done by constraining all the collocation points instead of
constraining functions of continuous time.

For the interpolating part, various interpolation methods
can be applied. Since we use the trapezoidal collocation
method in our work, controls and system dynamics are inter-
polated by linear approximation. The states are quadratically
interpolated because states x(t) are an integration of the
system dynamics.

The main advantage of using the direct collocation method
is that optimizing a vector of variables of NLP is easier than
optimizing continuous functions of trajectory optimization
problem [19] In addition, the resultant NLP of the tran-
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Fig. 1. A simple car-like model on the 2-D space. px and py are the
reference positions of the car. θ and φ are angles of car body and steering.
v is longitudinal velocity. l is a length between front and rear tire axises.
F|| and F⊥ are longitudinal and centripetal forces, respectively, while F is
a sum of them. Carried objects by the car are depicted as red; they can be
anything like a person or a stuff.

scription is a large-sparse NLP in general [18], and thus
many efficient large-scale-sparse NLP solvers [20]–[22] are
available, thanks to its sparsity on the Jacobian and Hessian
matrix of the objective function and constraints.

IV. KINODYNAMIC COMFORT PLANNER

Our main goal of this work is generating a comfortable
trajectory. Smooth paths have been widely studied [4], [8],
[12], and thus can be candidates for such comfortable trajec-
tory. Nonetheless, the smoothness does not necessarily mean
the comfort, because a comfortable trajectory is a particular
subset of smooth trajectories. As a result, for generating
comfortable trajectory, we introduce a novel definition of
comfort considering longitudinal and lateral force in Sec. IV-
A. We then propose our obstacle avoidance method in
Sec. IV-B, followed by our final transcribed objective at
Sec. IV-C.

For the sake of simplicity, we explain our work on a
simple, car-like model (Fig.1), but if the system dynamics
are known, any robot models can be adopted to our work.
The states and system dynamics of the car-like model are as
follows:

x =
{

px, py,v,θ ,φ
}T

, u = {a,ω}T

ẋ = f (t,x,u) =
{

v cosθ ,v sinθ ,a,
v
l

tanφ ,ω
}T

m: mass of carried object

where px and py are positions in the 2D space and v is the
tangential velocity. θ and φ are angles of the car body and
steering, respectively (Fig. 1). a and ω are controls of the
system, which are tangential acceleration and angular veloc-
ity of steering, respectively. All those values are functions
of time, but we omit the parameter of time for simplicity,
unless it is better to show the time parameter. Based on this
model, we introduce an objective function of our planner that
consists of travel time t f , comfort objective C, and obstacle
objective O by defining a new definition of comfort and
proposing a novel obstacle avoidance technique.

A. Definition of Comfort
The meaning of comfort in our work is not only limited

to human feeling. Qualitatively speaking, we use the term
of comfort to indicate how low forces deforming states of a
object carried by a robot are, where the carried object could
be human or stuffs, e.g., a person using personal mobility or
food delivered by an autonomous vehicle which should be
moved comfortably.

Intuitively speaking, the lower the forces are on the carried
object, the more comfort the object feels. In this perspective,
we also define its objective named discomfort that should be
minimized to compute a comfortable trajectory. From now
on, we focus on discussing how to minimize the discomfort,
which is actually measured and used in our optimization
framework.
Definition of Discomfort. Our definition of the discomfort
is to measure the forces applied to the object. However,
since the mass of the carried object does not vary during
the travel, we are going to care only about accelerations
from here. Because what we want to find is not exact
‘comfortable value’, but ‘optimized trajectory’, and we thus
quantitatively measure translational acceleration. In the case
of the simple car-like model (Fig. 1), F|| is proportional to the
longitudinal acceleration and F⊥ is proportional to the lateral
acceleration. If the mass, m, of the object is maintained along
the trajectory, these accelerations are directly proportional to
longitudinal and centripetal forces, respectively.

When a robot accelerates following the path, the carried
object located in the robot receives a force in the opposite
direction to the accelerations. Consequently, those opposite
directional translational accelerations are proper to represent
the discomfort of the carried object. Since the magnitude
of the acceleration is mainly related to the discomfort, we
finally define discomfort as the squared magnitude of the
translational acceleration:

Discom f ort = 1
m2 ‖F‖2 = 1

m2 ‖F||+F⊥‖2 = a2 +κ2v4,

where κ is the curvature of the trajectory and it can also be
represented by tanφ

l .
Note that the curvature was also considered for prior

methods generating smooth paths. For example, continuously
changing curvature is essential to move smoothly especially
when a car faces conjunction with a straight line and another
curve; when the curvature of a trajectory is discontinuous, a
robot has to stop wherever discontinuity occurs [23].

Our trajectory optimization method naturally maintains the
continuous-curvature, because as we interpolate collocation
points, curvatures associated with them are interpolated con-
tinuously thanks to the continuity of the tangent function
between ±π

2 . On top of that, our definition takes a further
step on measuring applied accelerations to the carried objects
even on paths with continuous-curvatures.
Total Discomfort and Peak Discomfort. With the new
definition of discomfort, there are two ways of measuring
the discomfort of a trajectory. One is an integration of the
discomfort along the trajectory, which is proportional to
impulse, and the other one is measuring the peak value of the



discomfort. Since these two different ways are important,
we consider both of the total and peak of discomfort of a
trajectory within our optimization framework.

The total discomfort can be easily treated as an integration
term of the objective function. On the other hand, the peak
discomfort is not easy to deal with. This is mainly because
just finding and reducing the maximum discomfort value of
a trajectory may lead the NLP not to converge properly due
to the discontinuity of derivatives of the max function [19].
Instead, with given minimizing the total discomfort, we treat
the peak discomfort as a constraint:

minimize
∫ t f

0
C(t)dt =

∫ t f

0
a2 +κ

2v4 dt

subject to a2(t)+κ
2(t)v4(t)< Cmax, ∀t ∈ [0, t f ].

where Cmax is a user-provided allowance on the peak dis-
comfort.
Initial Trajectory for Interior-Point Method. To compute
a trajectory satisfying our objective function, we use the
Interior-Point Method (IPM), which is one of the popular
non-linear optimization methods that can find a local opti-
mum for non-convex problems [24].

Note that many motion planning problems belong to innate
non-convex optimization category [12]. In these problems
including ours, an initial guess on the trajectory is crucial
not only for convergence, but also for where to converge. It
is therefore desirable to start with a proper initial guess by
taking account of our objective function.

We compute an initial trajectory in two steps. Firstly, we
apply the cubic Hermite spline to generate a basic smooth
path without considering any obstacles, for computing a
smooth path with reduced curvature:

Hermite spline H(t̂) =


1
t̂
t̂2

t̂3


T 

1 0 0 0
0 1 0 0
−3 −2 3 −1
2 1 −2 1




p0
m0
p1
m1

 ,
where, p0 and m0 are starting point and its tangent, and
p1 and m1 are ending point and its tangent. t̂ ∈ [0,1] is
normalized parameter.

From the smooth spline, px, py and θ can be inversely
calculated. The steering angle φ and longitudinal velocity v
can be also calculated from the derivative of θ and (px, py),
which are θ̇ = v

l tanφ and (ṗx = v cosθ , ṗy = v sinθ ), re-
spectively.

Secondly, starting from the computed spline, we refine
the trajectory by optimizing the objective function with-
out considering obstacles using aforementioned optimization
method, IPM. While obstacles are not considered, such initial
trajectories can lead the final trajectory better for local
planning.

Fig. 2 shows two different types of initial trajectories
shown in red: linearly initialized trajectory (a) and proposed
trajectory (b), given a circular obstacle. We refine those initial
trajectory based on our kinodynamic comfort planner for
computing our final trajectory shown in blue. The tested
two different methods converge to different optima, due to

(a) Linearly interpolated (b) Our spline based one

Fig. 2. Two comfortable trajectories against a simple circular obstacle.
Red and blue trajectories are initial and final trajectories. (a): the states are
linearly initialized. (b): the states are initialized based on our method.
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Pout dR

dL
Start

Fig. 3. Example of Bidirectional Obstacle Estimation. X f ree is free space
and Xobs is obstacle space. The red dotted line is boundary search line from
inside of an obstacle and the blue dotted line is boundary search line from
outside of an obstacle. Orange points are the collocation points. Pin is a
collocation point which is inside of the obstacle. Pout is a collocation point
which is outside of the obstacle.

the non-convexity of the configuration obstacle space, even
though the obstacle is geometrically convex. Besides, our
initial trajectory converges to a more comfort trajectory;
the discomfort of a final trajectory starting from our initial
trajectory is 65.75% less than the value of a trajectory staring
from the linearly initialized trajectory in the above case.

B. Avoiding Obstacles with Minimum Discomfort

Starting from the initially created trajectory, we refine it,
while considering obstacles. In many trajectory optimiza-
tion methods, obstacle avoidance is achieved by iteratively
pushing the trajectory away from obstacles. To perform the
process while reducing generating any additional discomfort,
we propose a novel way of avoiding obstacles, named
Bidirectional Obstacle Detection (BOD), which pushes the
trajectory perpendicularly to the trajectory on collocation
points.

We optimize our trajectory by pushing collocation points
of the trajectory perpendicular to the trajectory (Fig. 3). The
reason why we use the perpendicular direction for pushing
the points is to minimize an effect, e.g., changes of veloc-
ity and acceleration, of avoiding obstacles. In this regard,
prior trajectory optimization methods, e.g., CHOMP [12],
project their workspace gradient of distance function, which
is obtained commonly by signed distance filed, at each
collocation point orthogonally to the movement direction of
the trajectory.

To realize our goal effectively, our BOD method uses
a new distance function, d(x), whose gradient is directly



Fig. 4. Left: observed obstacle boundaries (red) by our BOD method.
Right: the original global map and trajectory (blue).

perpendicular to the trajectory. When pushing collocation
points of the trajectory perpendicular to the direction of
the movement, which is same to the direction of the trajec-
tory, the change of velocity, caused by obstacle avoidance,
is minimized because inner product between the moving
direction and pushing direction is almost zero which is
similar to orthogonal force has no effect to the displacement.
Minimizing the velocity change caused by avoiding obstacles
is important to attain comfort.

Our BOD method uses a discretized map on the environ-
ment like occupancy maps [25] that can be constructed from
sensor data. Our method aims to detect obstacle boundaries
in two orthogonal directions at each collocation point perpen-
dicular to the trajectory. To efficiently perform the obstacle
detection, we uses the Bresenham’s Algorithm [26], an well-
known traversal method on regular structures.

For each collocation on the trajectory, the tangent vector
is identical to its θ . Consequently, we can compute two
perpendicular lines at the point of the trajectory in the 2D
space. One is on the left-hand side (θ + π

2 ) and the other
one is right-hand side (θ − π

2 ) of the trajectory. We call
these perpendicular lines as search vectors, ~s; the left and
right search vectors are denoted by ~sL and ~sR, respectively.
Search vectors can be easily extended to a 3D workspace
by generating a number of search vectors that are laid on a
perpendicular disk to the trajectory. Nonetheless, we focus
on handling the 2D simple car model in this paper.

We detect obstacles on the discretized map along the
search vector starting from each collocation point using the
Bresenham’s algorithm. Like ray-tracing technique, ~s walks
the map and stops when it meets an obstacle boundary.
Also, we use a search threshold, εs, for terminating the map
traversal, when the obstacle boundary is located too far away.
In other words, if any obstacles are not detected within a εs,
the map traversal and detection is stopped. The left image of
Fig. 4 shows an example of the detected obstacle boundary
by BOD, given the input, global map shown in the right
image.
Objective Function of Obstacle Avoidance. The way
of measuring the distance to the obstacles is one of key
components for effectively performing obstacle avoidance.
In our work, we suggest a new distance function that does

not require any projection to to the perpendicular line.
Note that if we use the signed distance field used in

prior works [12], [14], [27], it does not provide the per-
pendicular distance to the trajectory for each collocation
point, losing the orthogonality for minimizing the discomfort.
Quantitatively, using our BOD approach shows meaningful
improvements, i.e., up to 19.64% in terms of the accumulated
forces over the signed distance field in our tested cases.

Our BOD computes distances along two search vectors,~sL

and ~sR, and these two distances are denoted as dL and dR for
the left and right sides; see Fig. 3. Depending on a position
of each collocation point, it can be inside or outside of the
obstacle; e.g., Pin and Pout in Fig. 3 are inside and outside
an obstacle, respectively.

Intuitively speaking, when the point is within the obstacle,
the trajectory should be pushed toward the shorter distance
between dL(x) and dR(x). On the other hand, when the point
is outside of obstacles, the trajectory can be pushed towards
the larger distance.

While the intuition is simple, the gradient direction can
be discontinuity, especially when the shorter distance is
exchanged, e.g., from the left side to the right side, resulting
in inability to converge. Instead of taking this naı̈ve approach,
we propose a new distance function that can consider both
distances dL and dR, while maintaining continuity:

d(x) =

{
(dL(x)+ εd)(dR(x)+ εd) i f x ∈ Xobs

−(dL(x)− εd)(dR(x)− εd) i f x ∈ X f ree
,

where εd is an acceptable distance to the obstacles.
Suppose that oL and oR are detected collisions along ~sL or

~sR, respectively. Then, the gradients of the distance function
d(x) are then computed as the following:

I f x ∈ Xobs

∇d(x) = ∂d(x)
∂x = ∂ (dL(x)+εd)(dR(x)+εd)

∂x ,
I f x ∈ X f ree

∇d(x) = ∂d(x)
∂x =− ∂ (dL(x)−εd)(dR(x)−εd)

∂x if ∃oL ∧ ∃oR.

When ∃oL ∧ @oR, dL(x) keeps itself as a variable, yet dR
becomes a constant not being affected by changing of x,
leading the term of (dR(x)− εd) to be constant; similar
changes to other special cases like only ∃oR.

Note that the proposed distance function forms a poly-
nomial equation at each collocation points. As a result,
it is continuous, facilitating the convergence within our
opitmization framework.

Based on the distance function, we now need to use it
for our optimization objective in addition to our discomfort
function. Fortunately, obstacle avoidance with the distance
function is well established and we adopt an obstacle objec-
tive function, O(x), similar to the one used in CHOMP [12]:

O(x) =

{
d(x)2 i f d(x)≥ 0,
0 otherwise.

∇O(x) =
∂O(x)

∂x
=

{
2d(x) ∂d(x)

∂x i f d(x)≥ 0,
0 otherwise.
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Fig. 5. The left image shows how the initial trajectory is refined as the
number of iteration increases. The right graph shows the discomfort value
as a function of the iteration.

Note that since our method directly considers the perpen-
dicular distance to the trajectory, no projection procedure,
performed in [12], is required. As a result, our method can
achieve up to 45% less discomfort than the that computed
by a signed distance field with the projection operation in
practice.

C. Kinodynamic Comfort Planner

Summing up the aforementioned approaches and objective
functions, we have the following, final transcribed NLP
problem:

minimize
tk,xk,uk∀k

λt f t f +
N−1

∑
k=0

(tk+1− tk)
2

(λc(Ck +Ck+1)+λo(Ok +Ok+1)),

subject to:

a2
k +κ

2
k v4

k < Cmax ∀k,
h(t0,x0,u0, tN ,xN ,uN ) = 0,

xk+1− xk−
(tk+1− tk)

2
( fk+1 + fk) = 0, k = 0...N−1.

where λt f , λc, and λo are weights of the travel time, our
comfort objective, and obstacle avoidance objective, respec-
tively. A terminal objective λt f t f is added to consider the
travel time, with other factors.

Fig. 5 shows how the discomfort value behaves as we
have more iterations. The red trajectory of Fig. 5 shows the
trajectory computed right after the first iteration. It has a
low discomfort, but collides with the obstacles. Our planner
pushes the trajectory to the magenta one outside of the
obstacles using BOD at the expense of higher discomfort.
Finally, it converges to the blue trajectory that has low
discomfort without having any collisions.

V. EXPERIMENTS

Our experiments are performed on an Intel i7 3.4GHz CPU
with 16GB main memory. We use Interior Point OPTimizer
(IPOPT v3.12.8) [28] package as our NLP solver. Although
we mainly test the car-like robot (Sec. IV), many other mo-
bile robots, e.g., omni-directional mobile robot or quadrotor,
can be used thanks to the generality of our method.

Forces on a carried object are measured by the V-REP
robot simulator [29] with the Bullet physics engine [30].

TABLE II
EXPERIMENTAL RESULTS; ARC-LENGTH, LEN., OF THE TRAJECTORY,

ACCUMULATED AND MAX FORCES (ΣFORCE AND MAX F.).

Scene1
Objective t f ΣDiscomfort Len. |v|2 Σforce(σ2) Max. f.
C(ours) 17.43 5.12 27.20 47.10 8.70(0.039) 1.00
V= |v|2 27.79 11.84 27.41 27.46 7.46(0.267) 3.25

Vf = F. |v|2 17.43 39.81 29.80 51.80 12.30(1.300) 7.36
T = t f 15.68 59.40 30.29 59.29 13.56(2.219) 8.52

Scene2
Objective t f ΣDiscomfort Len. |v|2 Σforce(σ2) Max. f.
C(ours) 12.31 4.08 14.41 18.60 6.54(0.046) 0.98
V= |v|2 14.68 10.15 14.32 14.16 4.62(0.534) 4.33

Vf = F. |v|2 12.31 14.37 14.32 16.89 5.50(1.75) 5.46
T = t f 7.40 73.76 14.35 28.38 8.49(4.116) 10.11

Scene3
Objective t f ΣDiscomfort Len. |v|2 Σforce(σ2) Max. f.
C(ours) 10.29 3.30 11.08 14.15 5.33(0.047) 0.92
V= |v|2 12.36 13.31 12.11 12.07 7.63(0.534) 4.32

Vf = F. |v|2 10.29 55.67 13.48 19.44 18.24(1.743) 5.76
T = t f 6.64 58.42 12.18 22.97 14.45(3.01) 8.50

Experimental Setting. We use the same parameter values
except unique parameters to each tested method for fair
comparison. Static parameters are N = 100, convergence
tolerance = 10−4, resolution for grid map of BOD = 500×
500, max iteration = 300, εs=1.2×robot width and λo = 100.

We set the start and goal velocity as zero, v0 = vN = 0
for our experiment, but these can be initialized to arbitrary
numbers including negative ones indicating the backward
motions. The mass of a carried object is set to 1 kg. The
maximum comfort threshold Cmax is dependent on the carried
object. In our experiment, we assume it to be (0.13g)2, which
is approximately 1.63m2/s4. According to the Hoberock’s
work [31], “steady non-emergency accelerations in the range
0.11 g to 0.15 g fall in the ‘acceptable’ range for most
studies.”, the comfort of passenger is set to squared 0.13g;
g is the gravitational acceleration.

We also apply BOD to all the tested methods for obstacle
avoidance in our experiment and set parameters related to
obstacle avoidance identically for fair comparison.

A. Comparisons with Other Objectives

To demonstrate benefits and characteristics of our dis-
comfort objective, we compare it with other widely used
objectives. We use three different scenes shown in Fig. 6.
Scene1 represents a large environment with scattered obsta-
cles like buildings on downtown. Scene2 shows a cornering
scenario where the comfort matters relatively more. The last
scene is a cluttered environment like indoor office. Results on
these scenes shows that our planner can be used as global
comfort planner in various scenes, even though trajectory
optimization is basically local planner. The final trajectory
generated by our method is also depicted in Fig. 6.

To see their characteristics, we measure six different prop-
erties including our discomfort value, the squared velocity,
|v|2, commonly used in many prior trajectory optimization
methods including CHOMP [12]. The reason why many prior



(a) Scene1 (b) Scene2 (c) Scene3

Fig. 6. Three test scenes and trajectories of our method. Green arrow is start direction and red arrow is goal direction. All the trajectories are generated
with N=100, but for convenient to see, we depicted only 20 of them. (a) 25m×25m (b) 10m×10m (c) 15m×10m
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(a) Scene1 force
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(b) Scene2 force
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(c) Scene3 force

Fig. 7. Force profiles of scenes normalized in a unit time interval. The maximum forces of our methods (orange) are always below the acceptable limit,
≈ 1.27m/s2, Sec. V-A. The maximum value of travel times (t f ) for each scene is (a) 28.5s (b) 15s (c) 13s.

methods consider |v|2 is that when the travel time is fixed,
minimizing |v|2 flattens the path, making the path shorter
and smoother. Statistics of the results are given in Table II.
Other measures in the column header indicate total travel
time (t f ) from the start state to the goal state, arc-length
of the trajectory (Len), total summation of forces (Σforce)
and maximum force (Max f.) received along the trajectory.
Additionally, we report the variance of the forces measured
at each collocation point over the trajectory in parenthesis
next to the Σforce value.

We also test three other target objectives in addition to
our discomfort objective, C (ours), within our optimization
framework. Other tested objectives include the travel time,
T, and the squared velocity, |v|2, denoted by V. Minimizing
V = |v|2 causes not only flattening the path but also in-
creasing the travel time, because the velocity is proportional
to the path length and inversely proportional to the time.
Additionally, we consider |v|2 with a constrained travel time,
denoted as Vf = F. |v|2. For Vf, we fix the travel time with
that of ours for the fair comparison with our method.

For our method, the weights for considering both the travel
time and discomfort are set to 0.5. For the objective of
V, weights for the travel time and |v|2 are also 0.5 and
0.5 for the fair testing; same to other objectives. For the
objective T, the weight for the travel time is 1.0. For all the

different objectives, we use the same weight for the obstacle
avoidance.

Table II shows experimental results with different objec-
tive functions across three tested scenes, and Fig. 7 shows
profiles of forces according to time. There are two main
observations that we would like to highlight. First of all,
our method has the lowest discomfort across all the three
scenes. The discomfort of our method is lower by up to 91%,
94%, 94% in each tested Scene 1 to 3 over using objective
functions of V, Vf ixed and T, respectively.

One may consider that having low discomfort values for
our trajectories is a natural consequence, since our work
mainly aims to minimize the discomfort value. To address
this concern, we also measure the variance of forces received
during following differet trajectory, as an intutive character-
istic of discomfort of trajectories. While our method does not
directly optimize against this measure, ours is significantly
lower, 1:5.85 to 1:88.478, over those of trajectories computed
by other objective functions.

Another interesting observation is about the forces. Our
method shows reasonably low values of Σforce, and shows
the lowest for Scene 3. For example, Σforce of our method
in Scene1 is 16.6% higher than that of using the objective
V. However, the travel time of V takes one-half times more
than that of ours. This indicates that using |v|2 achieves the
low force by moving the robot slowly. Fig. 7 shows force



profiles on trajectories.
In Scene 2, Σforce of our method is higher than Vf ixed ,

even if the travel time is same. One may conjecture that
Vf ixed generates a more comfortable trajectory than ours.
However, note that the steady acceleration should be below
0.13g(≈1.27m/s2) to be comfort, as mentioned earlier. While
this constraint is satisfied by our method with Cmax, the
max force of Vf ixed is about two times higher than the
acceptable acceleration threshold. Moreover, the max force
of T is higher than 1g(≈ 9.8m/s2). In other words, our
method generates the most comfortable trajectories in the
guideline of the Hoberock’s work [31].

Travel time vs. Comfort. Depending on types of robots
or carried objects, the importance of the travel time and
discomfort can vary. Also, one can easily expect that as
we reduce the travel time, we can get a more discomfort
trajectory. In other words, depending on situations, we can
utilize the trade-off between the travel time and discomfort
within our optimization framework, because the weight of
each component of our objective function is a user-definable.

VI. CONCLUSION

In this paper, we define a comfort objective and apply it to
the trajectory optimization using direct collocation method
for generating comfortable trajectory. We also propose a
novel obstacle avoidance method called Bidirectional Ob-
stacle Detection (BOD) which efficiently detects obstacles
in the direction perpendicular to the trajectory. We have also
observed that BOD successfully minimizes the effect on the
trajectory i.e., change of velocity and acceleration, caused
by obstacle avoidance during the optimization.

The experimental results show that the proposed method
achieves not only the least discomfort but also the least
maximum forces while tracking the generated trajectory. In
some cases, the total forces applied to the object using other
objectives outperform ours, however, they fail to minimize
the travel time or received maximum force at the same time.
Ours, however, is capable of achieving considerably low
discomfort and travel time, which is more importance factor
in practice.

In our future work, applying the state of the art NLP solver
or considering dynamic environment can be included.
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[28] Andreas Wächter and Lorenz T Biegler, “On the implementation of
an interior-point filter line-search algorithm for large-scale nonlinear
programming”, Mathematical programming, vol. 106, no. 1, 2006.

[29] Eric Rohmer, Surya PN Singh, and Marc Freese, “V-rep: A versatile
and scalable robot simulation framework”, in IROS. IEEE, 2013.

[30] Bullet Physics Library.
[31] Lawrence L Hoberock, “A survey of longitudinal acceleration comfort

studies in ground transportation vehicles”, Journal of Dynamic
Systems, Measurement, and Control, vol. 99, no. 2, 1977.


