
Out-of-Core Proximity Computation for Particle-based Fluid Simulations

Duksu Kim 1 Myung-Bae Son 1 Young-Jun Kim 2 Jeong-Mo Hong 3 Sung-eui Yoon 1

Dept. of CS, KAIST, Technical Report CS-TR-2014-385
1 KAIST (Korea Advanced Institute of Science and Technology)

2 Ewha Womans University, Seoul, Korea 3 Dongguk University, Seoul, Korea

Abstract

To meet the demand of higher realism, a high number of
particles are used for particle-based fluid simulations, result-
ing in various out-of-core issues. In this paper, we present
an out-of-core proximity computation, especially, ǫ-nearest
neighbor (ǫ-NN) search, commonly used for particle-based
fluid simulations, to handle such big data sets consisting of
tens of millions of particles. We use a uniform grid and
perform ǫ-NN in the granularity of sub-grids, called blocks.
Specifically, we identify a maximal block that a GPU can
process efficiently in an in-core mode based on a workload
tree. As a main technical component, we compute the mem-
ory footprint required for processing blocks based on our
expectation model of the number of neighbors of particles.
Our method can naturally utilize heterogeneous computing
resources such as CPUs and GPUs, and has been applied
to large-scale fluid simulations based on smoothed particle
hydrodynamics. We demonstrate that our method handles
up to 65 M particles and processes 21 M ǫ-NN queries per
second by using two CPUs and two GPU, each of which has
only 3 GB video memory. This high performance for large-
scale data given a limited video memory space is achieved
mainly thanks to the high accuracy of our memory estima-
tion method and efficiency of our out-of-core ǫ-NN system.

1 Introduction

Thanks to ever growing demands for higher realism and the
advances of particle-based fluid simulation techniques, large
scale simulations are getting increasingly popular across dif-
ferent graphics applications including movie special effects
and computer games. This trend poses numerous technical
challenges related to an excessive amount of computations
and memory requirements.

In this paper we are mainly interested in handling near-
est neighbor search used for particle-based fluid simulations.
Nearest neighbor search is performed for each particle in
the simulation and dominates the overall computation cost
of the simulation in practice [Solenthaler and Gross 2011].
Most particle-based fluid simulations use ǫ-Nearest Neigh-
bor, ǫ-NN, for a query particle, which identifies all the par-
ticles that are located within a search sphere, whose center
is at the query particle and radius is set to ǫ.

To achieve a higher performance for large-scale particle-
based fluid simulations, many parallel techniques have been
proposed [Goswami et al. 2010; Ihmsen et al. 2011]. These
approaches utilize many cores of GPU and achieve much
higher performance over using a CPU thread (e.g., about
20× to 40× higher performance according to our own test
and the work of Harada et al. [2007]). Unfortunately, it has
not been actively studied to handle massive-scale ǫ-NNs for
data sets that do not fit in the video memory of GPU for
particle-based fluid simulations. For example, we can handle
about up to 5 M particles per 1 GB video memory in the
GPU side for the simulation [Harada et al. 2007], and most
commodity-level GPUs have one to three GBs of the video
memory. As a result, large-scale particle-based fluid simu-

Figure 1: These figures show a particle-based fluid simula-
tion frame of our two sources benchmark consisting of up to
65 M particles. The right image zooms in simulated particles
within a box shown in the left image. Our ǫ-NN method takes
3.1 s on average per frame by using two hexa-core CPUs and
two Geforce GTX 780.

lations consisting of more than 10 M or more particles have
to be processed in a much less performance in the CPU side
that can have much larger memory space than GPU. This
is mainly because prior GPU-based parallel techniques were
neither designed to out-of-core cases nor directly applicable
to such cases.

Contributions. In this paper we propose an out-of-core
technique utilizing heterogeneous computing resources for
processing ǫ-NNs used in particle-based fluid simulation con-
sisting of tens of millions of particles. In particular, we
handle the out-of-core problem where the video memory of
GPUs cannot hold all the necessary data of ǫ-NN, while main
memory of CPU is large enough to hold such data. As an
acceleration data structure for ǫ-NN, we use a uniform grid
that is commonly used for particle-based fluid simulations.

Given this context, we use the granularity of a block con-
taining a sub-grid of the uniform grid as a main work unit,
to streamline various computation and memory transfer be-
tween CPU and GPU. Once GPU receives a block from CPU,
the GPU performs ǫ-NNs with the particles contained in the
block (Sec. 3.1). Our main problem is then reduced to iden-
tify a maximal work unit that can fit into the video memory.
To estimate the memory requirement of processing a block,
we present a novel, memory estimation method based on the
expected number of neighbors for a query particle (Sec. 4).
To efficiently compute a maximal block for each GPU, we
also propose a simple, hierarchical work distribution method
(Sec. 3.2).

To demonstrate the benefits of our method, we have tested
our method with three large-scale particle-based fluid simu-
lation benchmarks consisting of up to 65 M particles. These
benchmarks require up to 21 GB memory space for pro-
cessing ǫ-NNs. Our out-of-core method for ǫ-NNs can pro-
cess these benchmarks with two GPUs, each of which has

only 3 GB video memory. Overall, our method can perform
21 M ǫ-NNs per second in this configuration consisting of
two GPUs and two CPUs. We have also implemented an
alternative, GPU-based out-of-core approach based on an
Nvidia’s mapped memory method [NVIDIA 2013]. Com-
pared to this alternative, our method shows up to 22 × per-
formance improvement. These results are mainly thanks to
the efficiency of our out-of-core method and the high accu-
racy of our memory estimation model that shows up to 0.97
linear correlation with respect to the observed number of
neighbors. Also, compared to our base method, an in-core
CPU version using only those two hexa-core CPUs and the
large main memory space holding all the data, our method
achieves 5.7 × improvement using the additional two GPUs.

2 Related Work
In this section we review prior neighbor search techniques
and their applications to particle-based fluid simulations.

2.1 Particle-based Fluid Simulation

In the Lagrangian context, fluid is discretized by particles.
Smoothed Particle Hydrodynamics (SPH) is a well-known
particle-based solver, and a series of extensions for SPH has
been proposed to improve the simulation quality and perfor-
mance [Müller et al. 2003; Becker and Teschner 2007; Solen-
thaler and Pajarola 2009; Ihmsen et al. 2013].

For particle-based solvers, the physical and visual quality
of the simulation strongly depends on the number of parti-
cles. Generally, many particles are needed to catch small-
scale details like splashes, spray, and surface waves in large-
scale scenes. To meet the increasing demands of high quality
simulations, the number of required particles continues to in-
crease. There have been techniques to reduce the number of
particles [Solenthaler and Gross 2011], but the number can
be still high, requiring to run the simulation in an out-of-core
manner, especially when many details need to be presented
in simulations.

In particle-based methods, the simulation is performed
based on the neighborhood relationship among particles.
Neighbor search is commonly performed for each particle
and thus dominates the overall simulation time [Solenthaler
and Gross 2011]. In our SPH simulation based on the
method of Becker and Teschner [Becker and Teschner 2007],
we found that neighbor search can take up to 90% of the
overall simulation time, when we use a single CPU core.

2.2 Near Neighbor Search (NNS)

NNS is one of the widely used proximity queries and finds
points closely placed to given a query point in a metric
space [Samet 2006]. There are two variations of NNS: k-
Nearest Neighbor (k-NN) search that finds top k nearest
neighbors to a query point, and ǫ-NN.

NNS has been widely employed in various applications
such as similarity searches for image retrieval [Heo et al.
2012], robotics [Pan et al. 2010], and particle-based simu-
lations [Ihmsen et al. 2011]. Because of its high computa-
tion cost, NNS has been accelerated in various ways based
on finding approximated results [Li et al. 2012] and reduc-
ing high dimensional space [Heo et al. 2012]. Spatial parti-
tioning is also a commonly used method (e.g., kd-trees and
grids) that narrows down the search space [Lin and Manocha
2003]. In our method, we use a uniform grid as an acceler-
ation data structure that is usually employed for ǫ-NNs in
particle-based fluid simulations.

2.3 Parallel NNS

Recently, parallel computing resources have been actively
used to improve the performance of NNS queries. Many

prior parallel methods are designed for k-NN used for pho-
ton mapping [Purcell et al. 2003; Zhou et al. 2008], 3D regis-
tration [Qiu et al. 2009], etc. Unfortunately, these methods
are neither directly applicable nor effective to our problem,
since our application uses ǫ-NN, and using algorithms de-
signed for k-NN shows inferior performance over techniques
specialized for ǫ-NN.

Parallel algorithms for ǫ-NN have been actively studied
in the particle-based fluid simulation field. By utilizing the
inherent parallel nature of many ǫ-NNs, efficient GPU-based
SPH implementations have been proposed [Harada et al.
2007; Goswami et al. 2010]. These methods distribute par-
ticles to threads and each thread finds the neighbors of the
given particle. While these approaches are simple, they are
not designed for out-of-core cases, and Harada et al. [2007]
reported that about 5 M is the maximum number of par-
ticles that the GPU-based method can handle with 1 GB
video memory. Ihmsen et al. [2011] used multi-core CPUs in
the whole process of SPH. They showed that a CPU-based
parallel approach can handle a larger number, 12 M, of par-
ticles, thanks to the large memory space, 128 GB, in the
CPU side.

In this paper we propose an efficient, parallel ǫ-NN algo-
rithm that can handle a large number of particles as much as
CPU memory allows, while utilizing GPU’s high computing
power in an out-of-core manner.

2.4 Out-of-Core GPU Algorithms

The limited memory space in the GPU size raises various
challenges for handling a large data set in GPU. The out-
of-core issue has been well studied for rendering [Yoon et al.
2008]. Nonetheless, it has not been actively studied for dif-
ferent parts of particle-based fluid simulation.

Abstracting distributed memory space of CPU and GPU
into a logical memory is a general approach for handling
massive data with GPU. Nvidia’s CUDA supports a mem-
ory space mapping method that maps pinned-memory space
into the address space of GPU [NVIDIA 2013]. While it is
convenient to use, it can be inefficient, unless minimizing ex-
pensive I/O operations effectively. We compare this mapped
memory based out-of-core approach with ours in Sec. 5.

Different out-of-core techniques have been proposed for
k-NN used in ray tracing and photon mapping. In partic-
ular, Budge et al. [2009] designed an out-of-core data man-
agement system for path tracing with kd-trees constructed
over polygonal meshes. This approach adopted a pre-defined
task assignment policy to distribute different jobs to CPU or
GPU. Recently, Kim et al. [2013b] used separate, decoupled
data representations designed for meshes to fit large-scale
data in the video memory. Unfortunately, it is unclear how
these techniques designed for k-NNs can be applied to our
problem using ǫ-NN and particles. Furthermore, an out-of-
core GPU approach tailed to ǫ-NN used for particle-based
fluid simulation has not been proposed yet, to the best of
our knowledge.

3 Out-of-Core, Parallel ǫ-NN
In this section we give a system overview of our method,
followed by our hierarchical work distribution method. We
target mainly for handling large-scale ǫ-NN used for particle-
based fluid simulation both in out-of-core and parallel man-
ners.

Theoretically, achieving the optimal performance in this
context is non-trivial and thus has been studied only for par-
ticular problems such as sorting and FFTs [Blelloch et al.
2010] on the shared memory model with the same paral-
lel cores. As a result, we propose a hierarchical approach,
tailored to our particular problem, that simultaneously com-

Main memory aa

GPU

CPU
Boundary cells

Block handler

Result

collector

Boundary

handler

Work

distributor

R
es

u
lt

s

Results

B
lo

ck

(in
n

er cells)

Result section
Video memory

Aux. space Input section

Figure 2: This figure shows an overall framework for pro-
cessing ǫ-NNs in an out-of-core manner using heterogeneous
computing resources.

putes a job unit that can fit into the video memory of a GPU,
while utilizing heterogeneous parallel computing resources.

3.1 System Overview

The main goal of our system is to efficiently find and store
the neighborhood information for a massive amount of par-
ticles that cannot be handled at once by a GPU. We assume
that the CPU memory is large enough to hold all those in-
formation. This assumption is valid for tens or hundreds of
millions of particles, since current PCs can have hundreds of
gigabytes up to 4 TB memory.

For particle-based fluid simulations, a uniform grid is com-
monly used for accelerating ǫ-NN and we also use a uniform
grid, while determining cell indexes with Z-curve to exploit
spatial locality [Ihmsen et al. 2011]. To construct a uniform
grid, we split the simulation space uniformly with a given
grid resolution and each divided space is called a cell. The
grid resolution, i.e., the dimension of each cell, is usually set
to the search radius ǫ or 2ǫ. In either case, neighboring par-
ticles for a query particle with the ǫ-NN are located in the
cell of the query particle or its adjacent cells.

Fig. 2 shows an overview of our system, which consists
of CPU and GPU. Initially we construct the uniform grid
with the multi-core CPU and then perform ǫ-NN by using
the grid in GPU. To perform an ǫ-NN for a query particle,
we need to access the cell containing the query particle and
its adjacent cells. As a result, we need to send those cells
and their particles from CPU to GPU to perform the ǫ-NN.
We use the term processing cells to denote the process of
performing ǫ-NN for particles in the cells.

There are three components in the CPU side: work dis-
tributor, boundary handler, and result collector. We use the
work distributor to identify an appropriate amount of data
including cells and their particles that can fit into the video
memory and to distribute them to the GPU. To efficiently
identify such data, we use a workload tree, whose node indi-
cates how many particles are located in the sub-tree rooted
at the node and how much memory space is needed to per-
form ǫ-NN for those particles in the sub-tree (Sec. 3.2).

We use the term of a block to denote a sub-grid defined by
a node of the workload tree. The work distributor allocates
work as the form of blocks to GPU dynamically based on
the workload tree. There are two types of cells in a block;
the cells at the boundary of a block are denoted as bound-
ary cells and other cells are inner cells. Boundary cells are
chosen to be processed in the CPU-side boundary handler,
since handling these cells require a larger working set over
handling inner cells. Once the boundary handler finishes to
process the boundary cells, it then sends the results of ǫ-NN
to the result collector.

The GPU side has a single component, block handler, that
processes inner cells contained in a given block. The block
handler in the GPU side maintains a work queue to receive

blocks from the work distributor. When a work queue is not
full, the work distributor can push a block to the work queue.
When GPU is idle, the block handler dequeues a block from
the work queue and loads required data from main memory
into the video memory and processes the block. Once the
GPU finishes to process the block, it pushes the results back
to the result collector (Sec. 3.3). Finally, the result collector
takes the results, stores them in main memory, and returns
them to the particle-based fluid simulator.

3.2 Hierarchical Work Distribution

We process a block containing a cubic sub-grid and its con-
tained particles as the main work unit for CPUs and GPUs,
to exploit spatial locality and thus to achieve a high uti-
lization efficiency. The smallest block contains only a single
cell (e.g., 13 cube) and a block size can increase exponen-
tially (e.g., 23 and 43). Among possible block sizes, we use a
workload tree to identify a proper block size that fits to the
video memory of the target GPU and to efficiently process
the block.

It is very important to accurately estimate the required
amount of memory space for processing a block, in order
to efficiently perform out-of-core computation. Processing
a block requires to access particles and to write indices of
their identified neighbor particles to GPU. Therefore, the
required memory size, s(B), for processing a block, B, can
be determined mainly by the number of particles, nB , stored
in the block and the number of neighbors for each particle,
npi , as the following:

s(B) = nBsp + sn
∑
pi∈B

npi , (1)

where sp and sn are the data sizes of storing a particle and
a neighbor particle, respectively. i indicates the i-th particle
stored in the block B. Typically, sn is 8 bytes required for
encoding an index of a particle and the distance between the
query and its neighbor particle that is used for computing
forces in the simulation part, while sp is much larger since
we need to encode the particles’ positions, etc.

Evaluating the required size of processing a block is
straightforward except the number of neighbors, npi . Unfor-
tunately, we cannot know the exact number of neighbors un-
til we actually perform the query, a common chicken-and-egg
problem. One can pre-define a maximum number of neigh-
bors (e.g., 500) for a simulation and reserve the maximum
space, but can significantly degrade the memory utilization
for the out-of-core computation due to the overestimated al-
location. Another alternative is to use a general vector-like
data structure that adaptively grows according to identified
neighbors. Along this direction, efficient GPU implemen-
tations are available for this kind of data structure [Yang
et al. 2010]. Nonetheless, these data structures are not de-
signed for the out-of-core case and thus fail, when all the
sizes of these vectors grow even bigger than the available
video memory size.

Instead of these approaches, we estimate the number of
neighbors as the expected number of neighbors, and reserve
the memory space based on the estimation result. Specifi-
cally, we compute the expected number of neighbors based
on the distribution of particles in the simulation space; its
details are given in Sec. 4. Thanks to this estimation process,
we can efficiently perform ǫ-NN with GPU in an out-of-core
manner.

Once we know the required memory space for processing a
block, the next task is to compute a maximal block that fits
into the target GPU. To efficiently construct such a maximal
block, we use the workload tree, which is an octree built on

A B

C D …

…

Front nodes

Workload tree A B

C

D

Figure 3: The left figure shows a uniform grid with a
few sub-grids; boundaries of these sub-grids, i.e., blocks, are
shown in orange lines. The right figure shows an example of
the workload tree with these blocks.

top of the grid (Fig. 3). Each node of the workload tree
represents a block, and also contains the number of particles
included in the block and the expected number of neighbors
of those particles. Its child nodes are computed by dividing
the sub-grid of the parent node in all the dimensions. As a
result, each leaf node of the tree represents a cell, while the
root includes the whole uniform grid.

Work distribution. The distributor running on a CPU
thread maintains a front node queue containing blocks that
will be processed by GPUs. Initially the front node queue
contains the root node of the workload tree. When a GPU
is available, the work distributor takes the front node and
checks whether the GPU has enough memory space for pro-
cessing the block contained in the node. If not, the distrib-
utor enqueues its eight child nodes to the queue. Otherwise,
we assign the block to the GPU. Based on this simple, hier-
archical process, we efficiently identify and process a max-
imal block for the GPU. An example of front nodes in the
workload tree is shown in Fig. 3.

Note that in this process we may not fill the video memory
of the GPU with a single maximal block. One may concern
that this approach may have many GPU kernel launches
and their overhead may be high. As an alternative to our
current approach, we have also tried to add more blocks
to almost fill the video memory, but this alternative results
in more complex implementations with a negligible perfor-
mance improvement. This is mainly because multiple GPU
kernel launches have relatively small overheads (e.g., a few
ms) compared to the most common processing time (100 ms
on average for a 323 sub-grid) of a block in our tested bench-
marks. As a result, we have chosen our current, simple ap-
proach.

3.3 Processing a Block in GPU

When a block is given to a GPU, we configure its available
memory space into work and auxiliary spaces. The work
space is decomposed into input and result sections (Fig. 2),
and the input section is reserved for holding input data such
as particles positions and other required data for processing
the given block. The result section is reserved for collecting
results of ǫ-NNs. The size of the result section is computed
according to the expected number of neighbors of query par-
ticles stored in the block, and then each query particle re-
ceives the estimated, fixed amount memory space.

Once we reserve the memory space in the GPU side, we
copy the required input data from main memory to the work
space of the GPU, and then generate GPU threads, each of
which processes an ǫ-NN for a query particle in the block.
As a GPU thread identifies neighbors for the query particle,
it stores them in its pre-defined, corresponding space in the
result section. Since we have already reserved memory space

for maintaining results of each query particle, each GPU
thread writes their results to the result section without any
locking operations.

Nonetheless, we may need further memory spaces than the
pre-defined memory space in the result section, due to inac-
curacy of our estimation process. In this case, we write such
results into the auxiliary space. Multiple GPU threads can
access the auxiliary space simultaneously and thus we need
to perform synchronization. Fortunately, we have found that
this happens rarely (i.e., 3% of all identified neighbors on av-
erage), thanks to the high accuracy of our estimation model.
Even when the auxiliary space becomes full, we can also use
an additional space in main memory in the CPU side. This
operation accessing main memory from the GPU side is very
expensive, and never happened in our method, when we al-
locate 250 MB for the auxiliary space with our tested bench-
marks. In Sec. 4.2 we explain how we set the size, 250 MB, of
auxiliary to avoid such expensive overflows of the auxiliary
space. Our approach handling these overflows can be seen
as designing an effective out-of-core vector data structure,
whose initial size is determined by our memory estimation
model, while reducing the expensive synchronizations.

After finishing to process the given block in the GPU side,
we notify the results collector in the CPU side and transfer
results to main memory.

3.4 Boundary Cells Handling

When a block B is given to a GPU, we send particles con-
tained only in the block B. As a result, to find neighbors
of particles in the boundary cells, we need information of
particles in their adjacent cells, some of which are stored in
adjacent blocks. We could send those adjacent cells/blocks
together with the block B, but we have found that this ap-
proach requires a higher memory footprint and lowers down
the locality.

Instead, we let CPU cores that are mostly idle to process
those boundary cells. CPU can efficiently process the bound-
ary cells, since main memory already has a well-organized
cache hierarchy that can efficiently handle random memory
accesses in the CPU side. Note that the number of bound-
ary cells are much the smaller than that of inner cells, be-
cause boundary and inner cells exist in 2D and 3D spaces
of the uniform grid, respectively. As a result, we let a high-
performance GPU to process those many inner cells, while
allocating CPU to process a lower number of boundary cells
that cause frequent cache misses. Nonetheless, one could use
either one of CPU or GPU for handling boundary and even
inner cells for achieving the optimal performance. We, how-
ever, have not explored this optimal scheduling problem of
heterogeneous computing resources [Kim et al. 2013a], and
left it as a future work.

When the work distributor decides a block for processing,
it identifies the boundary cells of the block and passes them
to the boundary handler in the CPU side. The boundary
handler processes those cells by using CPU threads and then
sends results back to the result collector.

4 Expected Number of Neighbors
We have described so far that it is critical to compute and
reserve an appropriate amount of memory space for process-
ing blocks in an out-of-core manner. The main unknown
factor for computing the required memory space (Eq. 1) for
processing blocks is to compute the number of neighbors,
npi , of a particle. Computing them in an exact way is the
chicken-and-egg problem and instead we estimate it by com-
puting the expected number of neighbors based on the par-
ticle distribution in the simulation space, while considering
the relationship between the search radius and cell size.

4.1 Problem Formulation

ǫ-NN for a particle, p, is to find neighbor particles, which
are located within a search sphere, S(p, ǫ), whose center is
at p and radius is ǫ. In general, particle distributions over
the uniform grid covering the simulation space is not uni-
form. In many cells, however, particle distributions tend
to show local uniformity around each cell in particle-based
fluid simulations. This is mainly because designing high-
quality SPH techniques is related to reduce the density vari-
ation over time [Solenthaler and Pajarola 2009; Becker and
Teschner 2007] and therefore particles tend to have a sim-
ilar movement with nearby particles, while maintaining a
specific distance with them. Based on this observation, we
assume a local uniform distribution, i.e., particles are uni-
formly distributed in each cell.

Assuming the local uniform distribution, the number of
neighbors is then proportional to the overlap volume be-
tween the search sphere S(p, ǫ) and cells weighted by their
associated particles. Specifically, the expected number of
neighbors, E(px,y,z), for a particle p located at (x, y, z) is
defined as the following:

E(px,y,z) =
∑
i

n(Ci) ∗
Overlap(S(px,y,z, ǫ), Ci)

V (Ci)
, (2)

where Ci indicates the cell of px,y,z and its adjacent cells
that have any overlap, Overlap(S(px,y,z, ǫ), Ci), between the
search sphere and the bounding box of the cell Ci. n(Ci) is
the number of particles contained in the cell Ci, and V (Ci)
represents the volume of the cell.

This equation requires us to compute
Overlap(S(px,y,z, ǫ), Ci) for each query particle in a
cell, and thus causes a high computational overhead overall,
since many particles can exist in each cell (e.g., 10 to 30
on average). Instead, we compute the average, expected
number of neighbors for particles of a cell, Cq, and use the
value, E(Cq), for all the particles, as their expected number
of neighbors. The average, expected number of neighbors of
particles E(Cq) in a cell Cq is then defined as:

E(Cq) =
1

V (Cq)
∗

∫ l

0

∫ l

0

∫ l

0

E(px,y,z) dxdydz

=
1

V (Cq)
∗

∑
i

n(Ci) ∗
D(Cq, Ci)

V (Ci)
,

(3)

where l is the length of a cell along each dimen-
sion, px,y,z is a particle p positioned at (x, y, z) on
a local coordinate space in Cq, and D(Cq, Ci) =∫ l

0

∫ l

0

∫ l

0
Overlap(S(px,y,z, ǫ), Ci)dxdydz.

Given the uniform grid with l and ǫ values, which are not
frequently changed by users, D(Cq, Ci) can be pre-computed
depending on the relative configurations between Cq and Ci.
As a result, we pre-compute these values in an offline manner
(taking about 30 seconds), especially by using the Monte
Carlo method, which achieves high accuracy as we generate
many samples (e.g., 1 M).

At runtime, we evaluate E(Cq) of Eq. 3 by considering
n(Ci) and looking up pre-computed D(Cq, Ci) values, which
is stored at a less than 1 KB sized look-up table. Over-
all, this runtime evaluation is done in a constant time. All
the expectation computation combined with traversing the
workload tree takes less than 10% of the overall computa-
tion performed at each frame on average with our tested
benchmarks.

Observed #

Expected #

0

5

10

15

20

25

30

35

0 100 200 300 400

Frame #

Observed # Expected #

Figure 4: The left plot shows a high correlations, 0.97, be-
tween the expected and observed numbers of neighbors in the
dam breaking benchmark. The right graph shows the expected
and actual numbers of neighbors averaged for all the particles
at each simulation frame.

4.2 Validation

We have measured the accuracy of our expectation model
with our tested benchmarks. We set l = 2ǫ for comput-
ing the uniform grid, and compare the expected number of
neighbors E(Cq) with the actual number of neighbors that
are computed after finishing ǫ-NN for each particle.

The left figure of Fig. 4 shows the scatter plot between the
expected and observed results. As can be seen, our expecta-
tion model shows a high correlation (i.e. 0.97) between the
observed and expected number of neighbors. We achieve
such a high accuracy by considering the number of parti-
cles in cells, while assuming the local uniform distribution
of particles. The right figure of Fig. 4 shows expected and
observed numbers of neighbors averaged for all particles as a
function of simulation frames. One interesting point is that
we can observe the periodic overestimation of our method.
In those periodic frames, the dam breaking benchmark un-
dergoes strong compressions, resulting in higher pressures on
deeper particles. This causes a subtle density variation along
the depth and generates a case where our local uniform dis-
tribution does not apply well. Nonetheless, the overall trend
of the right figure further verifies the high accuracy of our
estimation method.

Additionally, we have measured the mean square error
(MSE) between the estimated and observed ones. The MSE
is computed as 3.8, indicating that our estimated number of
neighbors can be higher or lower by 3.8 on average to the
actual number of neighbors. This information is useful for es-
timating the minimum required space for the auxiliary space
too. At the worse case where we underestimate 3.8 neigh-
bors for each query particle in a block, we need to access the
auxiliary space to accommodate such underestimation. For
the most common block size (323 sub-grids) and the maxi-
mum (26.1) of the average numbers of neighbors across cells
in our tested benchmarks, our auxiliary space that allocates
8 bytes for recording the neighbor ID and the distance be-
tween two particles requires 24.78 MB at least. Based on this
we have assigned 250 MB, an ample space that can also ac-
commodate overflows generated from 643 sub-grids, for the
auxiliary space.

5 Results and Analysis

We have implemented and tested our out-of-core parallel ǫ-
NN method for particle-based fluid simulation in a machine
consisting of a GPU (Nvidia Geforce GTX 780) and two
Intel Xeon hexa-core CPUs (2.93GHz) with 192 GB main
memory. Unless mentioned otherwise, we use this machine

Figure 5: This figure shows two sequences of the dam break-
ing benchmark consisting of 15.8 M particles.

configuration consisting of two CPUs and one GPU for var-
ious tests. The tested Nvidia Geforce GTX 780 has 3 GB
video memory, and we use about 2.8 GB of those 3 GB GPU
memory for all the tests, since some of GPU memory (e.g.,
200 MB) is reserved by GPU drivers for display and running
CUDA kernels (e.g., thread local memory).

We have implemented a CPU version of our parallel al-
gorithm based on a prior CPU-based method [Ihmsen et al.
2011] and use 12 threads for the boundary handler in the
CPU side. We have also implemented a locality-aware
GPU ǫ-NN similarly based on a prior in-core GPU algo-
rithm [Goswami et al. 2010]. To implement the auxiliary
space in GPU, we treat the auxiliary space as a memory
pool for the vector data structure, and a GPU thread gets
a slot from the pool by using atomic operations [Yang et al.
2010]. Our simulation method [Becker and Teschner 2007]
has been implemented on multi-core CPUs based on Ihmsen
et al. [2011]. We first perform ǫ-NNs and pass their results
to the simulation solver, which moves particles based on the
computed neighbor search results.

Compared methods. To measure the overhead and ben-
efits of our out-of-core approach, we have implemented an
in-core GPU algorithm, IC-GPU, by removing all out-of-
core features from our method. Also, the in-core GPU algo-
rithm stores all results in a vector data structure designed for
GPU [Yang et al. 2010], instead of reserving a specific space
for each particle. As a result, it uses all available GPU mem-
ory as a memory pool like the auxiliary space used in our
method.

We have also implemented an out-of-core ǫ-NN method
using Nvidia’s mapped memory method, Map-GPU, to see
the efficiency of our method. In Map-GPU, a sufficiently
large space (e.g., 50 GB) is reserved in main memory and
is then mapped into the GPU memory address space for
writing and accessing ǫ-NN search results.

Benchmarks. We have tested different methods against
three different benchmarks (Table 1). The first benchmark,
Dam, is a well-known dam breaking benchmark that has a
fixed number of particles, 15.8 M particles, throughout the
simulation (Fig. 5). The other two benchmarks, four and two
sources benchmarks, have four or two sources emitting par-
ticles up to 32.7 M and 65.6 M particles, respectively (Fig. 6
and Fig. 1). These benchmarks are available at our project
webpage, which is hidden for the anonymous submission. In
these benchmarks, we use grid resolutions of 1283 and 2563

and set ǫ to be the half of the used cell size. In these settings,
the average number of neighbors for each particle in three
different benchmarks ranges 11 to 26, while their maximum
reaches up to 489 neighbor particles.

Figure 6: This figure shows two sequences of the four source
benchmark consisting of 32.7 M particles.

Dam Four src. Two src.
(Fig. 5) (Fig. 6) (Fig. 1)

Max. # of pts. 15.8 M 32.7 M 65.6 M
Grid res. 1283 1283 2563

Max. data size 7.8 GB 21.1 GB 17.9 GB
Avg. npi 15.4 26.1 11.0
Max. npi 184 489 327

Avg. σ(npi) 9.6 26.9 10.8

Table 1: This table shows different statistics of each bench-
mark. We show the average and maximum numbers of neigh-
bors computed for each simulation frame, with the standard
deviation. It also shows the maximum data size required for
processing ǫ-NNs for each benchmark.

These three benchmarks require 8 GB to 21 GB mem-
ory space to contain all the required data given the con-
figuration. The space is used for holding particle positions,
grid structures, and recording neighbors identified for ǫ-NNs.
The four sources benchmark has the biggest memory require-
ment up to 21 GB, although the two sources benchmark has
more particles. This is because the four sources benchmark
has a less grid resolution and thus has about 2.3× more
neighbors than the two sources one.

5.1 Results

Fig. 7 shows the performance of different methods on each
benchmark. For the four and two sources benchmarks, we
draw the graph as a function of the number of particles, to
see the overhead and benefits of our out-of-core approach
over the in-core method.

As long as all the data fits into the video memory of a
GPU, we can use the in-core method to perform all ǫ-NN
query within the GPU. In this case, the in-core GPU method
IC-GPU shows a higher (i.e., 60% on average) performance
than our out-of-core method. This is mainly because our
out-of-core method performs unnecessary out-of-core oper-
ations such as generating and traversing the workload tree
by estimating the number of neighbors even for the in-core
case. This overhead, however, is a small price to pay for
handling the out-of-core case.

At a specific point (e.g., 12 M particles for the four sources
benchmark), the in-core method fails to perform ǫ-NNs,
since the required memory space is larger than available
memory in the GPU. On the other hand, our method identi-
fies maximal blocks that fit into the video memory based on
the workload tree and processes them in an in-core mode. As
a result, our method continues to process out-of-core data
with a graceful performance degradation, while the in-core
approach fails.

0.1

1

10

100

0 50 100 150 200 250 300 350 400 450

se
co

n
d

s
(l

o
g

 s
ca

le
)

Frame #

Ours IC-GPU Map-GPU

0.01

0.1

1

10

100

0.5 5.2 9.8 14.4 19.0 23.5 28.1 32.7 32.7 32.7

se
co

n
d
s

(l
o
g
 s

ca
le

)

of M pts.

0.01

0.1

1

10

100

0.6 11.6 22.4 33.2 44.1 54.9 65.6 65.6 65.6 65.6

se
co

n
d
s

(l
o
g
 s

ca
le

)

of M pts.

Dam breaking (15.8 M pts)

Four src. (up to 32.7 M pts)

Two src. (up to 65.6M pts)

Figure 7: These graphs show the processing time in the
log scale for ǫ-NNs based on different in-core and out-of-core
methods including ours.

We have also compared our method with Map-GPU to
see the efficiency of our out-of-core approach (Fig. 7). Our
method achieves higher performances: 22 × for the Dam,
14 × for the four sources, and 5 × for the two sources bench-
mark over Map-GPU on average. Detailed implementation
for the mapped memory feature used for Map-GPU in the
GPU driver is not provided, but L2 cache in the GPU side
is used for the mapped memory. On the other hand, we
specifically use the global memory in GPU for caching data
(i.e., particles and cells) and reserving the memory space
with our memory estimation model. Thanks to them, our
method achieves such high performance improvements over
Map-GPU.

5.2 Benefits of Our Memory Estimation Model

To measure benefits caused by our expected number of
neighbors for query particles, we have tested our method
without using the estimation model. Instead we set a fixed
space for recording results of ǫ-NNs; when we have the over-
flow, we also use the auxiliary space in the video memory and
then use space in main memory, as used for our method. We
use values, i.e., 16, 32, and 64, around the average number
of neighbors observed in our tested benchmarks. Overall,
our system equipped with our estimation method achieves
much higher performance, 6 × to 13 × over the tested fixed
neighbors.

For a small fixed space (e.g., 16), we found that some of
the identified neighbors have to be recorded in main memory
through expensive PCI-Express communication, and thus it
drops down the performance significantly. For a large space

0

5

10

15

20

Dam Four src. Two src.

S
e
c
o
m

d
s

2CPU 2CPU+1GPU 2CPU+2GPU

Figure 8: This figure shows the average time for performing
ǫ-NNs per frame (seconds) across the three benchmarks by
using a combination of two hexa-core CPUs (2CPU) and
one or two GPUs, denoted as 1GPU or 2GPU, respectively,

(e.g., 64), the transaction to main memory is much reduced
compared to the case with 16 fixed neighbors, but still many
transactions occur; about 3% of the identified neighbors are
recorded in main memory, while wasting other spaces. On
the other hand, our memory estimation method results in
a high space utilization, i.e., more than 90% of allocated
spaces are used, while avoiding expensive main memory ac-
cess during processing a block. These results demonstrate
the efficiency and robustness of our approach.

5.3 Analysis

One could simply use the CPU with a large main mem-
ory space to handle our tested benchmarks. We have also
measured performance of ǫ-NN queries by using only two
hexa-core CPUs. Our method utilizing a single GPU and
CPUs achieves 4.5 times on average and up to 5.4 times
performance improvement by using the CPUs only (Fig. 8).
While the GPU has a limited video memory, it can achieve
high performance because of many parallel units, once GPU
is assigned to handle in-core data.

Our method can use additional GPUs. We have added
one more GPU, Geforce GTX 780, to our test machine, and
let our workload tree to assign blocks to idle GPUs among
two of them. Our method in this setting achieves up to 6.8 ×

(5.7 × on average) improvement over our method running
only with two CPUs. While our method is not optimized
for utilizing multiple GPUs and thus we do not achieve high
scalability, we believe that we open up a direction for im-
proving the large-scale particle based fluid simulations by
using heterogeneous computing resources.

Our current SPH solver runs only in the CPU side. In
terms of the whole simulation including the SPH solver and
ǫ-NNs, we achieve 3.2 times higher performance by using
the additional single GPU only for the ǫ-NN part over using
only two CPUs for both parts in the dam breaking bench-
mark. Also, the computation time ratio between ǫ-NNs and
the simulation solver becomes about 1:1.1 by using the ad-
ditional single GPU for ǫ-NNs from about 1:5.8 achieved
using only the two CPUs for both simulation and neighbor
search. We have not implemented our SPH solver for GPU in
this paper, but can be easily parallelized in an in-core GPU
mode, since our method decomposes the work in blocks that
fit into the video memory of GPU.

6 Conclusion

We have presented an out-of-core technique for ǫ-NN com-
puting used in large-scale particle-based fluid simulation
consisting of tens of millions of particles. Our method pro-
cesses ǫ-NNs based on blocks (i.e., sub-grids) of the uni-
form grid associated with particles that can fit into the video
memory of GPU. Specifically, we have proposed a novel esti-

mation model for the number of neighbors for particles and
used the model for estimating the memory footprint required
for processing a block based on the workload tree. We have
applied our method to three different large-scale particle-
based fluid simulations whose memory requirement is much
bigger than the video memory of GPUs. Overall our method
has shown higher performances over other out-of-core tech-
niques.

Limitations and future work. Our memory estimation
method has a high accuracy and did not cause overflows from
the auxiliary space in our tested benchmarks. There is, how-
ever, no guarantee to avoid such overflows in general. Our
workload tree is mainly designed for handling out-of-core
particle data, but can be used well even for utilizing CPUs
and GPUs. We have also tested our method by adding one
more GPU to our currently tested machine configuration,
but have observed about 30% improvement. Along this di-
rection, we would like to extend it further for achieving the
optimal performance and higher scalability even for paral-
lelization efficiency based on optimization-based scheduling
methods [Kim et al. 2013a]. Our current technique adopted a
modular approach by decoupling ǫ-NN and simulation parts.
As a result, when we have a better module on these two
parts, we can achieve higher performance easily, by simply
replacing one of existing modules with a better one. How-
ever, our current approach assumed that the simulation ac-
cesses the simulation grid block by block, which is common
practice for accessing them. As a future work, we would
like to extend our modular approach to allow random access
from the simulation part. Finally, many issues have arisen
for rendering and polygonization parts in terms of handling
out-of-core data, and addressing them is one of near future
research directions.

References
Becker, M., and Teschner, M. 2007. Weakly compress-

ible sph for free surface flows. In Proc. of ACM SIG-
GRAPH/EG Symp. on Computer Animation, 209–217.

Blelloch, G. E., Gibbons, P. B., and Simhadri, H. V.
2010. Low depth cache-oblivious algorithms. In ACM
Symposium on Parallelism in Algorithms and Architec-
tures, 189–199.

Budge, B., Bernardin, T., Stuart, J. A., Sengupta,
S., Joy, K. I., and Owens, J. D. 2009. Out-of-core
data management for path tracing on hybrid resources.
Comput. Graph. Forum (EG) 28, 2, 385–396.

Goswami, P., Schlegel, P., Solenthaler, B., and Pa-
jarola, R. 2010. Interactive sph simulation and ren-
dering on the gpu. In Proc. of ACM SIGGRAPH/EG
Symposium on Computer Animation, 55–64.

Harada, T., Koshizuka, S., and Kawaguchi, Y. 2007.
Smoothed particle hydrodynamics on gpus. In Proc. of
Computer Graphics International , 63–70.

Heo, J.-P., Lee, Y., He, J., Chang, S.-F., and Yoon,
S.-E. 2012. Spherical hashing. In CVPR.

Ihmsen, M., Akinci, N., Becker, M., and Teschner, M.
2011. A parallel sph implementation on multi-core cpus.
Computer Graphics Forum 30, 1, 99–112.

Ihmsen, M., Cornelis, J., Solenthaler, B., Horvath,
C., and Teschner, M. 2013. Implicit incompressible
sph. Visualization and Computer Graphics, IEEE Trans-
actions on.

Kim, D., Lee, J., Lee, J., Shin, I., Kim, J., and Yoon,
S.-E. 2013. Scheduling in heterogeneous computing en-
vironments for proximity queries. IEEE Transactions on
Visualization and Computer Graphics 19, 9, 1513–1525.

Kim, T.-J., Sun, X., and Yoon, S.-E. 2013. T-ReX:
Interactive global illumination of massive models on het-
erogeneous computing resources. IEEE Transactions on
Visualization and Computer Graphics.

Li, S., Simons, L., Pakaravoor, J. B., Abbasinejad, F.,
Owens, J. D., and Amenta, N. 2012. kann on the gpu
with shifted sorting. In Proc. of ACM SIGGRAPH/EG
Conf. on High-Performance Graphics, 39–47.

Lin, M., and Manocha, D. 2003. Collision and proximity
queries. Handbook of Discrete and Computational Geom-
etry .

Müller, M., Charypar, D., and Gross, M. 2003.
Particle-based fluid simulation for interactive applica-
tions. In Proc. of ACM SIGGRAPH/EG Symposium on
Computer animation, 154–159.

NVIDIA, 2013. CUDA programming guide 5.0.

Pan, J., Lauterbach, C., and Manocha, D. 2010. g-
planner: Real-time motion planning and global navigation
using gpus. In AAAI.

Purcell, T. J., Donner, C., Cammarano, M., Jensen,
H. W., and Hanrahan, P. 2003. Photon mapping on
programmable graphics hardware. In Proc. of the ACM
SIGGRAPH/EG conf. on Graphics hardware, 41–50.

Qiu, D., May, S., and Nüchter, A. 2009. Gpu-
accelerated nearest neighbor search for 3d registration. In
Computer Vision Systems. Springer, 194–203.

Samet, H. 2006. Foundations of MultiDimensional and
Metric Data Structures. Morgan Kaufmann.

Solenthaler, B., and Gross, M. 2011. Two-scale particle
simulation. ACM Transactions on Graphics (TOG) 30, 4,
81.

Solenthaler, B., and Pajarola, R. 2009. Predictive-
corrective incompressible sph. ACM Transactions on
Graphics (TOG) 28, 3, 40.

Yang, J. C., Hensley, J., Grün, H., and Thibieroz, N.
2010. Real-time concurrent linked list construction on the
gpu. Computer Graphics Forum 29, 4, 1297–1304.

Yoon, S.-E., Gobbetti, E., Kasik, D., and Manocha,
D. 2008. Real-Time Massive Model Rendering. Morgan
& Claypool Publisher.

Zhou, K., Hou, Q., Wang, R., and Guo, B. 2008. Real-
time kd-tree construction on graphics hardware. In SIG-
GRAPH Asia, ACM, 1–11.

	Introduction
	Related Work
	Particle-based Fluid Simulation
	Near Neighbor Search (NNS)
	Parallel NNS
	Out-of-Core GPU Algorithms

	Out-of-Core, Parallel -NN
	System Overview
	Hierarchical Work Distribution
	Processing a Block in GPU
	Boundary Cells Handling

	Expected Number of Neighbors
	Problem Formulation
	Validation

	Results and Analysis
	Results
	Benefits of Our Memory Estimation Model
	Analysis

	Conclusion

