
High Performance Graphics (2014), pp. 1–9
Jonathan Ragan-Kelley and Ingo Wald (Editors)

Out-of-Core Proximity Computation for Particle-based Fluid

Simulations

Duksu Kim 1 Myung-Bae Son 1 Young J. Kim 2 Jeong-Mo Hong 3 Sung-eui Yoon 1

1 KAIST (Korea Advanced Institute of Science and Technology) 2 Ewha Womans University, Korea 3 Dongguk University, Korea
Project web page: http://sglab.kaist.ac.kr/OOCNNS/

Abstract

To meet the demand of higher realism, a high number of particles are used for particle-based fluid simulations,

resulting in various out-of-core issues. In this paper, we present an out-of-core proximity computation, especially,

ε-Nearest Neighbor (ε-NN) search, commonly used for particle-based fluid simulations, to handle such big data

sets consisting of tens of millions of particles. Specifically, we identify a maximal work set that a GPU can process

efficiently in an in-core mode. As a main technical component, we compute a memory footprint for processing a

given work set based on our expectation model of the number of neighbors of particles. Our method can naturally

utilize heterogeneous computing resources such as CPUs and GPUs, and has been applied to large-scale fluid

simulations based on smoothed particle hydrodynamics. We have demonstrated that our method handles up to

65 M particles and processes up to 15 M ε-NN queries per second by using two CPUs and a GPU, which has

only 3 GB video memory. This result is up to 51× higher performance than a single CPU-core version for the out-

of-core case. This high performance for large-scale data given a limited video memory space is achieved mainly

thanks to the high accuracy of our memory estimation method.

1. Introduction

Thanks to ever growing demands for higher realism and the
advances of particle-based fluid simulation techniques, large
scale simulations are getting increasingly popular across dif-
ferent graphics applications including movie special effects
and computer games. This trend poses numerous technical
challenges related to an excessive amount of computations
and memory requirements.

In this paper we are mainly interested in handling nearest
neighbor search used for particle-based fluid simulations.
Nearest neighbor search is performed for each particle in the
simulation and is a performance bottleneck of the simula-
tion in practice. In our SPH simulation based on the method
of Becker and Teschner [BT07], we found that neighbor
search can take more than 50% of the overall simulation
time, when we use a single CPU core. Most particle-based
fluid simulations use ε-Nearest Neighbor, ε-NN, for a query
particle, which identifies all the particles that are located
within a search sphere, whose center is at the query particle
and radius is set to ε. To handle such a high computational
cost of ε-NN, many parallel techniques based on multi-core
CPUs [IABT11] or GPUs [HKK07,GSSP10] have been pro-
posed. Thanks to these recent works, we can achieve high

performance improvement (e.g., 20× to 40×) by using a
GPU for processing ε-NN queries over a single CPU-core
based serial method.

Unfortunately, it has not been actively studied to handle
massive-scale ε-NNs for data sets that do not fit in the GPU
memory (video memory) for particle-based fluid simula-
tions. For example, Harada et al. [HKK07] reported that
GPU can handle about 5 M particles per 1 GB video mem-
ory and most commodity-level GPUs have from one to three
GBs of the video memory. As a result, large-scale particle-
based fluid simulations consisting of more than 10 M or
more particles have to be processed in a much less perfor-
mance in the CPU side that can have much larger memory
space than GPU. This is mainly because prior GPU-based
parallel techniques were neither designed for the out-of-core
case nor directly applicable to such cases.

Contributions. We propose an out-of-core technique uti-
lizing heterogeneous computing resources for processing ε-
NNs used in a large-scale particle-based fluid simulation
consisting of tens of millions of particles. In particular, we
handle the out-of-core problem where the video memory of
GPUs cannot hold all the necessary data of ε-NN, while
main memory of CPU is large enough to hold such data.

submitted to High Performance Graphics (2014)



2 D. Kim, M. Son, Y. Kim, J. Hong, S. Yoon / Out-of-Core Proximity Computation for Particle-based Fluid Simulations

(a) Dam breaking (15.8 M) (b) Four sources (32.7 M) (c) Two sources (65.6 M)

Figure 1: These figures show three different benchmarks. By using two hexa-core CPUs and a GPU, our ε-NN method takes

1.1 s for the Dam., 2.4 s for the four sources, and 3.6 s for two sources benchmarks on average, respectively.

We use a uniform grid, a commonly employed acceleration
data structure for particle-based simulations. Given this con-
text, we use the granularity of a block containing a sub-grid
of the uniform grid as a main work unit, to streamline various
computation and memory transfers between CPU and GPU.
Once GPU receives a block from CPU, the GPU performs ε-
NNs with the particles contained in the block (Sec. 3.1). Our
main problem is then reduced to identifying a maximal work
unit that can fit into the video memory. To estimate the mem-
ory requirement of processing a block, we present a novel,
memory estimation method based on the expected number
of neighbors for a query particle (Sec. 4). To efficiently com-
pute a maximal block for each GPU, we also propose a sim-
ple, hierarchical work distribution method (Sec. 3.2).

To demonstrate the benefits of our method, we have tested
our method with three large-scale particle-based fluid simu-
lation benchmarks consisting of up to 65 M particles (Fig. 1).
These benchmarks require up to 16 GB memory space for
processing ε-NNs. Our out-of-core method for ε-NNs can
process these benchmarks with a GPU that has only 3 GB
video memory. Overall, our method can perform up to 15 M
ε-NNs per second. We have also implemented an alterna-
tive, GPU-based out-of-core approach based on an Nvidia’s
mapped memory method [NVI13]. Compared to this alter-
native, our method shows up to 26 × performance improve-
ment. These results are mainly thanks to the efficiency of
our out-of-core method and the high accuracy of our mem-
ory estimation model that shows up to 0.97 linear correla-
tion with respect to the observed number of neighbors. Also,
compared to our base method, an in-core CPU version using
only those two hexa-core CPUs and the large main memory
space holding all the data, our method achieves up to 6.3 ×

improvement using an additional GPU. This result is 51×
higher performance compared to using a single CPU core.

2. Related Work

In this section we review prior neighbor search techniques
and their applications to particle-based fluid simulations.

2.1. Particle-based Fluid Simulation

In the Lagrangian context, fluid is discretized by particles.
Smoothed Particle Hydrodynamics (SPH) is a well-known

particle-based solver, and a series of extensions for SPH has
been proposed to improve the simulation quality and perfor-
mance [MCG03, BT07, SP09, ICS∗13, CIPT14, IOS∗14].

For particle-based solvers, the physical and visual quality of
the simulation strongly depends on the number of particles.
Generally, many particles are needed to catch small-scale de-
tails like splashes, spray, and surface waves in large-scale
scenes. To meet the increasing demands of high quality sim-
ulations, the number of required particles continues to in-
crease. There have been techniques to reduce the number of
particles [APKG07,SG11,HS13], but the number can be still
high, requiring to run the simulation in an out-of-core man-
ner, to present many details.

2.2. Near Neighbor Search (NNS) and Parallel NNS

NNS is one of the widely used proximity queries and finds
points closely placed to a given query point in a metric
space [Sam06]. There are two variations of NNS: k-Nearest
Neighbor (k-NN) search that finds top k nearest neighbors to
a query point, and ε-NN.

Recently, parallel computing resources have been ac-
tively used to improve the performance of NNS queries.
Many prior parallel methods are designed for k-NN used
for photon mapping [PDC∗03, ZHWG08], 3D registra-
tion [QMN09], etc. Unfortunately, these methods are neither
directly applicable nor effective to our problem, since our
application uses ε-NN.

Parallel algorithms for ε-NN have been actively studied in
the particle-based fluid simulation field. By utilizing the in-
herent parallel nature of many ε-NNs, efficient GPU-based
SPH implementations have been proposed [GSSP10]. These
methods distribute particles to threads and each thread finds
the neighbors of the given particle. While these approaches
are simple, they are not designed for out-of-core cases and
the number of particles is limited to the video memory size,
e.g., about 5 M for 1 GB video memory [HKK07].

Ihmsen et al. [IABT11] used multi-core CPUs in the whole
process of SPH. They showed that a CPU-based parallel ap-
proach can handle a larger number of particle (e.g. 12 M)
thanks to the large memory space (e.g., 128 GB) in the CPU
side. Different with those methods, our method utilize both

submitted to High Performance Graphics (2014)



D. Kim, M. Son, Y. Kim, J. Hong, S. Yoon / Out-of-Core Proximity Computation for Particle-based Fluid Simulations 3

multi-core CPUs and GPUs. To handle a large number of
particles with GPU, a multi-GPU approach was also pro-
posed [DCVB∗13]. This approach partitioned the simula-
tion space into multiple GPUs and adopted a MPI based dis-
tributed computing among those GPUs. For example, they
used four GPUs (GTX480 with 1.5 GB) to simulate 40 M
particles. On the other hand, we can handle a large number
particles even with a single GPU in an out-of-core manner
as long as main memory in CPU can hold all the data. Fur-
thermore, our method runs much faster than the MPI-based
distributed computing approach, more suitable for graphics
simulations.

2.3. Out-of-Core GPU Algorithms

The limited video memory space raises various challenges
for handling a large data set in GPU. The out-of-core issue
has been well studied for rendering [YGKM08]. Nonethe-
less, it has not been actively studied for different parts of
particle-based fluid simulations.

Abstracting distributed memory space of CPU and GPU into
a logical memory is a general approach for handling mas-
sive data with GPU. Nvidia’s CUDA supports a memory
space mapping method that maps pinned-memory space into
the address space of GPU [NVI13]. While it is convenient
to use, it can be inefficient, unless minimizing expensive
I/O operations effectively. We compare this mapped mem-
ory based out-of-core approach with ours in Sec. 5.

Different out-of-core techniques have been proposed for k-
NN used in ray tracing and photon mapping. In particular,
Budge et al. [BBS∗09] designed an out-of-core data man-
agement system for path tracing with kd-trees constructed
over polygonal meshes. This approach adopted a pre-defined
task assignment policy to distribute different jobs to CPU or
GPU. Recently, Kim et al. [KSY14] used separate, decou-
pled data representations designed for meshes to fit large-
scale data in the video memory. Unfortunately, it is unclear
how these techniques designed for k-NNs can be applied to
our problem using ε-NN and particles.

3. Out-of-Core, Parallel ε-NN

We target mainly for handling large-scale ε-NN used for
particle-based fluid simulation both in out-of-core and par-
allel manners. Theoretically, achieving the optimal perfor-
mance in this context is non-trivial and thus has been
studied only for particular problems such as sorting and
FFTs [BGS10] on the shared memory model with the same
parallel cores. Instead, we propose a simple, hierarchical ap-
proach, tailored to our particular problem, that simultane-
ously computes a job unit that can fit into the video memory
of a GPU, while utilizing heterogeneous parallel computing
resources.

Figure 2: This figure shows an overall framework for pro-

cessing ε-NNs in an out-of-core manner using heterogeneous

computing resources.

3.1. System Overview

The main goal of our system is to efficiently find and store
the neighborhood information for a massive amount of par-
ticles that cannot be handled at once by a GPU. We assume
that the CPU memory is large enough to hold all those in-
formation. This assumption is valid for tens or hundreds of
millions of particles, since current PCs can have hundreds of
gigabytes up to 4 TB memory.

Fig. 2 shows an overview of our system. We use a uniform
grid that are commonly used for accelerating ε-NN, while
determining cell indexes with Z-curve to exploit spatial lo-
cality [IABT11]. The simulation space is split uniformly into
cells so that the length of each cell is equal to ε or 2ε. Then,
neighboring particles for a query particle with the ε-NN are
located in the cell enclosing the query particle or its adjacent
cells. Initially, the uniform grid is stored in main memory. As
a result, we need to send those cells and their particles from
CPU to GPU to perform the ε-NN in the GPU side. We use
the term processing cells to denote the process of performing
ε-NN for particles in the cells.

In the CPU side, work distributor divides the uniform grid
into sub-grids dynamically and assigns them to available
computing resources based on our hierarchical work dis-
tribution method (Sec. 3.2). To process data in a cache-
coherent mammer, we divide the uniform grid in the form
of a cubic sub-grid. A block represents a sub-grid and the
term processing block denotes processing cells in the block.

The ε-NN module in CPU and ε-NN kernel in GPU receive
a block from the work distributor when they are idle. Once
ε-NN module or ε-NN kernel finishes to process the block, it
pushes the results back to the result collector. Finally, the re-

sult collector takes the results, stores them in main memory,
and returns them to the particle-based fluid simulator.

3.2. Work Distribution

To fully utilize high performance GPUs in an out-of-core
manner, we divide the grid such that the size of the working
set of each block should be smaller than the size of video
memory.

Processing a block requires to access particles and to write
information of their identified neighbor particles. Therefore,

submitted to High Performance Graphics (2014)



4 D. Kim, M. Son, Y. Kim, J. Hong, S. Yoon / Out-of-Core Proximity Computation for Particle-based Fluid Simulations

the required memory size, s(B), for processing a block, B,
can be determined mainly by the number of particles, nB,
stored in the block and the number of neighbors for each
particle, npi , as the following:

s(B) = nBsp + sn ∑
pi∈B

npi , (1)

where sp and sn are the data sizes of storing a particle and
a neighbor particle, respectively. i indicates the i-th particle
stored in the block B. Typically, sn is 8 bytes required for
encoding an index of a particle and the distance between the
query and its neighbor particle that is used for computing
forces in the simulation part. sp requires 12 bytes to encode
the particles position. In addition we need a minor space to
store sub-grid data, etc.

Evaluating the required size of processing a block is straight-
forward except the number of neighbors, npi . Unfortunately,
we cannot know the exact number of neighbors until we ac-
tually perform the query, a common chicken-and-egg prob-
lem. A naive approach is a two-pass algorithm: it measures
the required memory space without writing result at the first
pass and re-processes the queries while storing the result in
the second pass. Although we can exactly measure npi , but
this approach has redundant operations. Another alternative
is to use a general vector-like data structure that adaptively
grows according to identified neighbors [YHGT10]. This
data structure, unfortunately, is not designed for the out-of-
core case and thus fails, when all the sizes of these vectors
grow even bigger than the available video memory size.

Instead of these approaches, we estimate the number of
neighbors as the expected number of neighbors, and reserve
the memory space based on the estimation result (Sec. 4).
When n′pi

is the expected number of neighbors for the i-th
particle, s(B) becomes as following:

s(B) = nBsp + sn ∑
pi∈B

n
′

pi
+ sAux. (2)

In the above equation, we introduce a new term, sAux, the
size of an auxiliary space, which is an additional space to
handle the error related to our estimation process, and its
size is computed depending on nB and the estimation er-
ror; its details are given in Sec. 4. For example, a block of
323 has up to about 1.3 M particles, and 18 expected neigh-
bors per particle on average across our tested benchmarks.
nBsp, sn ∑pi∈B n′pi

, and sAux then take 15.6 MB, 187 MB,
and 38.5 MB, respectively. Thanks to this memory estima-
tion process, we can efficiently find a block that fits in the
video memory and perform ε-NNs for the block in GPU
without any memory I/O thrashing.

Once we know the required memory space for processing a
block, the next task is to divide the uniform grid into blocks.
Simply, we can use a small fixed size (e.g., 83) of blocks so
that each block requires less memory space than the size of
the video memory. We found that a larger block size (e.g.,
643) shows better performance, but it is hard to find a max-

A B 

C D … 

… 

Front nodes 

Workload tree A B 

C 

D 

Figure 3: The left figure shows a uniform grid with a few

sub-grids; boundaries of these sub-grids, i.e., blocks, are

shown in orange lines. The right figure shows an example

of the workload tree with these blocks.

imal block size for each simulation in practice, since the
maximal block size that GPU can handle varies depending
on the simulation state and regions of the simulation space
(Sec. 5.3).

Hierarchical work distribution. To efficiently construct
such a maximal block, we use a workload tree, which is
an octree built on top of the grid (Fig. 3). Each node of
the workload tree represents a block, and also contains the
number of particles included in the block and the expected
number of neighbors of those particles. Its child nodes are
computed by dividing the sub-grid of the parent node in all
the dimensions. As a result, each leaf node of the tree repre-
sents a cell, while the root includes the whole uniform grid.

The work distributor running on a CPU thread finds the max-
imal blocks that the GPU video memory can hold by travers-
ing the workload tree, and give those blocks to GPU. The de-
tail work flow of our hierarchical work distribution is sum-
marized in Algorithm 1. The work distributor maintains a
front node queue containing blocks that are candidates for
maximal blocks. Initially, the front node queue contains the
root node of the workload tree. When a GPU has available
video memory space, the work distributor takes the front
node and checks whether the available space is larger than
the required memory size for processing the block in the
node. If we have enough available space in the GPU, the
work distributor assigns the block to the GPU. Otherwise,
we also check whether the block size is bigger than the max-
imum size of the GPU video memory. If the required mem-
ory size is larger than the maximum size of video memory,
we have to process its child blocks and thus the distribu-
tor enqueues its eight child nodes to the queue. If the re-
quired memory size of the block is smaller than the maximal
video memory size, we decide not to process it at the cur-
rent time, and thus push the node back to the queue, which
will be processed later when the GPU has enough space for
the block. Based on this simple, hierarchical process, we ef-
ficiently identify maximal blocks that can be processed si-
multaneously in the GPU, while utilizing the available video
memory.

Boundary handling. There are two types of cells in a sub-
grid; the cells at the boundary of a block (boundary cells)

submitted to High Performance Graphics (2014)



D. Kim, M. Son, Y. Kim, J. Hong, S. Yoon / Out-of-Core Proximity Computation for Particle-based Fluid Simulations 5

Algorithm 1 Our hierarchical work distribution algorithm

Queuenode← push the root node of the workload tree
Repeat until Queuenode is not empty
if (Gremain← the remaining size o f video memory)≥ 0 then

B← pop a node from Queuenode

if (s(B)← required memory size to process B)≤Gremain then

Give B to the GPU
else

if s(B) > (Gmax← the maximal video memory size) then

Queuenode← push the eight children of B

else

Queuenode← push B

end if

end if

end if

and other cells are inner cells (Fig. 3). Usually, the number
of boundary cells is much smaller than that of inner cells,
because boundary and inner cells exist in 2D and 3D space,
respectively. To find neighbors of boundary cells of a block
we need to access cells in its adjacency block and it requires
a larger working set over handling inner cells, resulting in
a lower locality. As a result, we let the CPU cores to pro-
cess those boundary cells, since main memory already has
all data and CPU can efficiently handle random memory ac-
cess thanks to the well-organized caches. On the other hand,
we let a high-performance GPU to focus on processing a
large number of inner cells.

3.3. Processing a Block in GPU

When a block is given to a GPU, we create a new stream to
perform the data transfer for concurrently processing other
blocks and hiding the data transfer overhead. We then con-
figure work space in the video memory. The work space
is decomposed into input, result, and auxiliary space sec-
tions (Fig. 2). Each section reserves space based on each
term of Eq. 2: nBsp for the input section, sn ∑pi∈B n′pi

for
the result section, and sAux for the auxiliary space, respec-
tively. Each query particle then receives the estimated, fixed
amount memory space, and each GPU thread processes an ε-
NN for the query particle in the block. When a GPU thread
identifies neighbors for the query particle, it stores them
in its pre-defined, corresponding space in the result section
without any synchronization.

We may need further memory spaces than the pre-defined re-
sult section, due to the inaccuracy of our estimation process.
In this overflow case, we write such results into the auxil-
iary space. Multiple GPU threads can access the auxiliary
space simultaneously and thus we need to perform synchro-
nization. Fortunately, we have found that this happens rarely
(i.e., 3% of all identified neighbors on average), thanks to the
high accuracy of our estimation model. Even when the auxil-
iary space becomes full, we can also use an additional space
in main memory in the CPU side. This operation access-

ing main memory from the GPU side is very expensive, and
never happened in our method with the tested benchmarks.
Our approach of handling these overflows can be seen as de-
signing an effective out-of-core vector data structure, whose
initial size is determined by our memory estimation model,
while reducing the expensive synchronizations.

4. Expected Number of Neighbors

We have described so far that it is critical to compute and re-
serve an appropriate amount of memory space for processing
blocks in an out-of-core manner. The main unknown factor
for computing the required memory space (Eq. 2) for pro-
cessing blocks is to compute the expected number of neigh-
bors, n′pi

, of a particle. We estimate it based on the particle
distribution in the simulation space, while considering the
relationship between the search radius and cell size.

4.1. Problem Formulation

ε-NN for a particle, p, is to find neighbor particles, which
are located within a search sphere, S(p,ε), whose center is
at p and radius is ε. In general, particle distributions over the
uniform grid covering the simulation space is not uniform.
In many cells, however, particle distributions tend to show
local uniformity around each cell in particle-based fluid sim-
ulations. This is mainly because designing high-quality SPH
techniques is related to reduce the density variation over
time [SP09, BT07] and therefore particles tend to have a
similar movement with nearby particles, while maintaining
a specific distance with them. Based on this observation, we
assume a local uniform distribution, i.e., particles are uni-
formly distributed in each cell.

Assuming the local uniform distribution, the number of
neighbors is then proportional to the overlap volume be-
tween the search sphere S(p,ε) and cells weighted by their
associated particles. Specifically, the expected number of
neighbors, E(px,y,z), for a particle p located at (x,y,z) is de-
fined as the following:

E(px,y,z) = ∑
i

n(Ci)
Overlap(S(px,y,z,ε),Ci)

V (Ci)
, (3)

where Ci indicates the cell containing px,y,z and its adjacent
cells that have any overlap between the search sphere and the
bounding box of the cell Ci. n(Ci) is the number of particles
contained in the cell Ci, and V (Ci) represents the volume of
the cell. Overlap(S(px,y,z,ε),Ci) represents the overlap vol-
ume between S(px,y,z) and Ci.

This equation requires us to compute
Overlap(S(px,y,z,ε),Ci) for each query particle in a
cell, and thus causes a high computational overhead overall,
since many particles can exist in each cell (e.g., 10 to 30
on average). Instead, we compute the average, expected
number of neighbors for particles of a cell, Cq, and use the
value, E(Cq), for all the particles, as their expected number

submitted to High Performance Graphics (2014)



6 D. Kim, M. Son, Y. Kim, J. Hong, S. Yoon / Out-of-Core Proximity Computation for Particle-based Fluid Simulations

Figure 4: This plot shows the expected and observed number

of neighbors in two configurations, l = 2ε (the left) and l =
ε (the right), for the dam breaking benchmark. The linear

(Pearson product-moment) correlation coefficients are 0.97

and 0.96, respectively.

of neighbors. The average, expected number of neighbors of
particles E(Cq) in a cell Cq is then defined as:

E(Cq) =
1

V (Cq)

∫ l

0

∫ l

0

∫ l

0
E(pu,v,w) dudvdw

=
1

V (Cq)
∑

i

n(Ci)
D(Cq,Ci)

V (Ci)
,

(4)

where D(Cq,Ci) =
∫ l

0
∫ l

0
∫ l

0 Overlap(S(pu,v,w,ε),Ci)dudvdw,
l is the length of a cell along each dimension, and pu,v,w is a
particle p positioned at (u,v,w) on a local coordinate space
in Cq. Given the uniform grid with l and ε values, which
are not frequently changed by users, D(Cq,Ci) can be pre-
computed. As a result, we pre-compute these values in an
offline manner (taking a few seconds). Specially we use the
Monte Carlo method, which achieves high accuracy as we
generate many samples (e.g., 1 M).

At runtime, we evaluate E(Cq) of Eq. 4 by considering n(Ci)
and looking up pre-computed D(Cq,Ci) values, which are
stored at a less than 1 KB sized look-up table. Overall, this
runtime evaluation is done in a constant time. All the expec-
tation computation combined with traversing the workload
tree takes from 100 to 500 ms at each frame on average with
our tested benchmarks consisting of up to 65 M particles.

4.2. Validation and Error Handling

We have measured the accuracy of our expectation model
with our tested benchmarks. Fig. 4 shows the scatter plots
between the expected number of neighbors E(Cq) and the
actual number of neighbors that are computed after finishing
ε-NN for each particle. We use two most common configu-
ration for computing the uniform grid and they have strong
linear correlation (e.g., 0.97). We achieve such a high ac-
curacy by considering the number of particles in cells, while
assuming the local uniform distribution of particles. We have
observed similar results with other tested models.

Additionally, we have measured the root mean square error
(RMSE) between the estimated and observed ones. In our
tested benchmark the RMSE is measured up to 3.7 (for four

source benchmark), and indicates that our estimated num-
ber of neighbors can be higher or lower by 3.7 on average
to the actual number of neighbors. This information is use-
ful for estimating the required space for the auxiliary space.
We need to access the auxiliary space to accommodate un-
derestimation and the underestimation error is less than 3.7
in most case. Based on this analysis, we set the size of the
auxiliary space sAux in Eq. 2 as 3.7∗ (nBsn).

5. Results and Analysis

We have implemented and tested our out-of-core parallel
ε-NN method in a machine consisting of a GPU (Nvidia
Geforce GTX 780, 3 GB) and two Intel Xeon hexa-core
CPUs (2.93GHz) with 192 GB main memory. We use
2.8 GB of 3 GB video memory for all tests, since some of
GPU memory (e.g., 200 MB) is reserved by GPU drivers for
display and running CUDA kernels (e.g., thread local mem-
ory). We have implemented ε-NN module on multi-core
CPU based on a prior method [IABT11] and use 12 threads
for the module. For ε-NN kernel in GPU, we have imple-
mented a locality-aware GPU algorithm based on a prior in-
core GPU algorithm [GSSP10]. We have implemented a vec-
tor data structure for the auxiliary space in GPU by using the
atomic operation [YHGT10].

Our simulation method [BT07] has been implemented on
multi-core CPUs based on Ihmsen et al. [IABT11]. We
first perform ε-NNs and pass their results to the simulation
solver, which moves particles based on the computed neigh-
bor search results. We set the cell length of the uniform grid
as the two time of search radius, i.e., l = 2ε, since it is one
of commonly adopted choices in practice [Hoe09]. The grid
resolutions of our benchmarks are then 1283 for dam break-
ing and four source benchmarks and 2563 for the two source
benchmark.

To compare the efficiency and robustness of our out-of-core
system, we have implemented two alternative methods:

• IC-GPU has been implemented by removing all out-of-
core features from our method. This method stores all re-
sults in a vector structure designed for GPU [YHGT10]
like the auxiliary space in our system. All available GPU
memory is used as a memory pool for the vector structure.

• Map-GPU method uses Nvidia’s mapped memory tech-
niques. A sufficiently large space (e.g., 50 GB) is reserved
in main memory and is then mapped into the GPU mem-
ory address space for writing ε-NN search results.

We have also implemented a simple workload distribution
method to measure the benefit of our hierarchical approach:

• Fixed-Block method divides the uniform grid into the
fixed size (e.g., 163) of blocks and assigns blocks to GPU,
while using multiple streams to hide the data transfer
overhead. This method is also tested by reserving a max-
imal memory space (Fixed-Block(Max)), or by reserv-

submitted to High Performance Graphics (2014)



D. Kim, M. Son, Y. Kim, J. Hong, S. Yoon / Out-of-Core Proximity Computation for Particle-based Fluid Simulations 7

Dam Four src. Two src.
(Fig. 1(a)) (Fig. 1(b)) (Fig. 1(c))

Max. # of pts. 15.8 M 32.7 M 65.6 M
Max. data size 5.7 GB 15.5 GB 13.0 GB

Avg. npi / Max. npi 15.4 / 184 26.1 / 489 11.0 / 327
Avg. σ(npi ) 9.6 26.9 10.8

Table 1: This table shows different statistics of each bench-

mark. We show the average and maximum numbers of neigh-

bors computed for each simulation frame, with the standard

deviation. The max. data size is the maximum s(B) among

all frames, where B is the whole grid.

ing the memory space based on our memory estimation
method (Fixed-Block(Exp)).

Benchmarks. We have tested different methods against
three different benchmarks (Table 1). The first benchmark,
Dam, is a well-known dam breaking benchmark that has a
fixed number of particles, 15.8 M particles, throughout the
simulation (Fig. 1(a)). The other two benchmarks, four and
two sources benchmarks, have four or two sources emitting
particles up to 32.7 M and 65.6 M particles, respectively
(Fig. 1(b) and Fig. 1(c)). These benchmarks are available
at our project webpage The average number of neighbors
for each particle in three different benchmarks ranges 11 to
26, while their maximum reaches up to 489 neighbor par-
ticles. When we attempt to process the whole uniform grid
in a single block, these three benchmarks require 6 GB to
16 GB memory space to contain all the required data given
the configuration. The space is used for holding particle po-
sitions, grid structures, and recording neighbors identified
for ε-NNs.

5.1. Results

Fig. 5 shows the performance of different methods on each
benchmark. For the four and two sources benchmarks, we
draw the graph as a function of the number of particles, to
see the overhead and benefits of our out-of-core approach
over the alternative methods.

As long as all the data fit into the video memory of a GPU,
we can use the in-core method to perform all ε-NN queries
within the GPU. Based on our memory estimation model,
our approach determines maximal blocks that fit into the
GPU video memory and thus uses the in-core ε-NN pro-
cessing algorithm with those blocks. When we have the
small number of particles (e.g., 5 M), our method shows
60% lower performance on average than IC-GPU, since our
method generates the workload tree to estimate the memory
footprint; it takes from 100 ms to 500 ms in CPU and it is
relatively a high overhead in the case with the small number
of particles. This overhead, however, is a small price to pay
for handling the out-of-core case.

At a specific point (e.g., 12 M particles for the four sources
benchmark), the required memory size exceeds the size of

0.1

1

10

100

0.6 11.6 22.4 33.2 44.1 54.9 65.6 65.6 65.6 65.6

se
co

n
d
s 

(l
o
g
 s

ca
le

) 

Millons particles 

0.1

1

10

100

0.5 5.2 9.8 14.4 19.0 23.5 28.1 32.7 32.7 32.7se
co

n
d
s 

(l
o
g
 s

ca
le

) 

Millons particles 

0.1

1

10

100

0 50 100 150 200 250 300 350 400 450

se
co

n
d

s 
(l

o
g

 s
ca

le
) 

Frame # 

Ours Map-GPU Fixed-Block(Max)

Dam breaking (15.8 M pts) 

Four src. (up to 32.7 M pts) 

Two src. (up to 65.6M pts) 

Figure 5: These graphs show the processing time in the log

scale for ε-NNs based on different out-of-core methods in-

cluding ours. The measured time includes data communica-

tion time for sending input data and copying the results to

the main memory. Starting from the dotted lines, our method

runs in an out-of-core manner.

video memory. Our method continues to process larger par-
ticles in an out-of-core manner, while IC-GPU fails to per-
form ε-NNs.

We have compared our method with Map-GPU to see the
efficiency of our out-of-core approach. Our method achieves
higher performances: 26× for the Dam, 18× for the four
sources, and 5× for the two sources benchmark over Map-

GPU on average. Detailed implementation for the mapped
memory feature used for Map-GPU in the GPU driver is
not available, but L2 cache in the GPU side is used for the
mapped memory. On the other hand, we specifically use the
global memory in GPU for caching data (i.e., particles and
cells) and reserving the memory space with our memory es-
timation model. Thanks to them, our method achieves such
high performance improvements over Map-GPU.

Fig. 5 also compares the performance of ours and Fixed-

Block(Max), which reserves a maximal memory space, i.e.,
250 neighbors, for each particle, and uses 163 blocks for all
the benchmarks. When the number of neighbors exceed the
maximum, it uses the auxiliary space in the video mem-
ory. Our method achieves 6× for the Dam., 4× for the
four sources, and 4× for two sources benchmark higher
performance over Fixed-Block(Max) on average. This result
demonstrates the benefits of our hierarchical work distribu-
tion method based on our memory estimation model.

Comparison with CPU-based ε-NN. One could simply use

submitted to High Performance Graphics (2014)



8 D. Kim, M. Son, Y. Kim, J. Hong, S. Yoon / Out-of-Core Proximity Computation for Particle-based Fluid Simulations

0

10

20

30

Dam. FourSrc TwoSrc

16 32

64 128

Ours

Figure 6: This graph compares the processing time (sec.) for

ε-NNs with various space sizes and our estimation model for

recording results within our method.

the CPU with a large main memory space to handle our
tested benchmarks. We have implemented the state-of-the-
art parallel ε-NN for particle-based simulation [IABT11]
and compared the performance with ours. Compared with
using a single CPU-core, the parallel CPU algorithm using
12 cores shows 8.4× higher performance on average. With
an additional GPU, our method achieved 5.4× on average
and up to 6.3× performance improvement over the paral-
lel CPU algorithm. This is 46× on average and up to 51×
higher performance compared with using a single CPU core.
Please note that the performance improvement we report in
the paper is computed by including the data transfer over-
head between CPU and GPU.

5.2. Benefits of Our Memory Estimation Model

To measure benefits from our estimation model, we have
tested our method without using the estimation model. In-
stead we set a fixed space for recording results of ε-NNs;
when we have the overflow, we also use the auxiliary space
in the video memory and then use space in main memory,
as used for our method. Fig. 6 shows the average processing
time with various fixed space sizes within our method and
our method with the estimation model in the benchmarks.
Overall, our system equipped with our estimation method
achieves much higher performance, 1.4 × to 14.2 × over
the tested fixed neighbors.

For a small fixed space (e.g., 16 or 32), we found that
some of the identified neighbors have to be recorded in
main memory through expensive PCI-Express communica-
tion, and thus it can drop down the performance signifi-
cantly, especially for the four sources benchmark. For a large
space (e.g., 64 or 128) the transaction to main memory hap-
pens rarely, but we observe low GPU utilizations, especially
in the two sources benchmark, since we cannot send many
particles to GPU. On the other hand, our memory estima-
tion method results in a high space utilization, i.e., more than
90% of allocated spaces are used, while achieving high GPU
utilizations. These results demonstrate the effectiveness and
robustness of our approach.

5.3. Benefits of Hierarchical Workload Distribution

To measure benefits brought by our hierarchical work distri-
bution approach, we have tested the performance of Fixed-

Block(Exp) that reserves spaces according to our memory es-
timation method, not to the maximum number of neighbors
(e.g., 250). We have tested 163, 323, and 643 as the fixed
block size and found that a larger block size shows a better
performance, as long as these blocks can fit into the video
memory. For example, 323 and 643 block sizes show 1.5 and
1.8 × higher performance compared with using 163 blocks
in the four source benchmarks, respectively. When we mea-
sure the GPU processing time only, 323 and 643 block sizes
take 22% and 30% less times than using 163 blocks on av-
erage. This is mainly because a large block can better utilize
the massive parallel nature of GPU architecture.

The maximal block size, unfortunately, varies depending on
the benchmarks. For achieving the best performance in each
benchmark, we have to manually set 323 for Dam. and two
sources, and 643 for two source benchmarks. On the other
hand, our hierarchical work distribution with our memory
estimation method finds the optimal block size dynamically
without those manual tunning. Furthermore, our hierarchi-
cal workload distribution method achieved 33% higher per-
formance on average across all the tested benchmarks com-
pared with Fixed-Block(Exp), which reserves memory with
our memory estimation method, but uses the manually cho-
sen, best block size for each benchmark.

6. Conclusion and Discussion

We have presented an out-of-core technique for ε-NN com-
puting used in large-scale particle-based fluid simulation
consisting of tens of millions of particles. Our method pro-
cesses ε-NNs based on blocks (i.e., sub-grids) of the uni-
form grid associated with particles that can fit into the video
memory. Specifically, we have proposed a novel estimation
model for the number of neighbors for particles and used the
model for estimating the memory footprint required for pro-
cessing a block based on the workload tree. We have applied
our method to three different large-scale particle-based fluid
simulations whose memory requirement is much bigger than
the video memory of GPUs. Overall our method has shown
higher performances over other out-of-core techniques.

Implicit and incompressible SPHs. In this paper, we have
used an explicit method for the particle-based simulation,
i.e., WCSPH [BT07]. In implicit methods like PCISPH and
IISPH [SP09, ICS∗13], the relative computational overhead
of the neighbor search step can be reduced, since implicit
methods can tolerate larger time steps. Nonetheless, ε-NN is
still a basic operation even in these implicit methods, and the
neighbor search step is also recommended to be used in the
convergence iterations for more accurate simulations. As a
result, the proposed approach can improve the performance
of these implicit methods. We leave to verify this as one of
future directions.

submitted to High Performance Graphics (2014)



D. Kim, M. Son, Y. Kim, J. Hong, S. Yoon / Out-of-Core Proximity Computation for Particle-based Fluid Simulations 9

Limitations and future work. Our memory estimation
method has a high accuracy and did not cause overflows
from the auxiliary space in our tested benchmarks. There
is, however, no guarantee to prevent such overflows in gen-
eral. We have tested our method by adding one more GPU
to our currently tested machine configuration, but have ob-
served about 30% improvement. Along this direction, we
would like to extend it further for achieving the optimal
performance and higher scalability even for parallelization
efficiency based on optimization-based scheduling meth-
ods [KLL∗13]. Our current technique adopted a modular ap-
proach by decoupling ε-NN and simulation parts. As a re-
sult, when we have a better module on these two parts, we
can achieve higher performance easily, by simply replacing
one of existing modules with a better one. However, our cur-
rent approach assumed that the simulation accesses the sim-
ulation grid block by block, which is common practice for
accessing them. As a future work, we would like to extend
our modular approach to allow random access from the sim-
ulation part. Finally, we have not shown other applications
of our method in this paper, but our work can be applied to
other applications such as photon mapping [KSY14]) using
a volumetric grid.

Acknowledgements

This work was supported in part by MCST/KOC-
CA/CT/R&D 2011, NRF-2013R1A1A2058052, DA-
PA/ADD (UD110006MD), MEST/NRF (2013-067321),
and IT R&D program of MOTIE/KEIT [10044970]. Young
J. Kim was supported in part by NRF in Korea (No.
2012R1A2A2A01046246, No. 2012R1A2A2A06047007).
Prof. Yoon is a corresponding author.

References

[APKG07] ADAMS B., PAULY M., KEISER R., GUIBAS L. J.:
Adaptively sampled particle fluids. In ACM Transactions on
Graphics (2007), vol. 26, p. 48. 2

[BBS∗09] BUDGE B., BERNARDIN T., STUART J. A., SEN-
GUPTA S., JOY K. I., OWENS J. D.: Out-of-core data man-
agement for path tracing on hybrid resources. Comput. Graph.
Forum (EG) 28, 2 (2009), 385–396. 3

[BGS10] BLELLOCH G. E., GIBBONS P. B., SIMHADRI H. V.:
Low depth cache-oblivious algorithms. In ACM Symp. on Paral-
lelism in Algorithms and Architectures (2010), pp. 189–199. 3

[BT07] BECKER M., TESCHNER M.: Weakly compressible SPH
for free surface flows. In Proc. of ACM SIGGRAPH/EG Symp.
on Computer Animation (2007), pp. 209–217. 1, 2, 5, 6, 8

[CIPT14] CORNELIS J., IHMSEN M., PEER A., TESCHNER M.:
IISPH-FLIP for incompressible fluids. Computer Graphics Fo-
rum (Proc. Eurographics) (2014). 2

[DCVB∗13] DOMÍNGUEZ J. M., CRESPO A. J., VALDEZ-
BALDERAS D., ROGERS B., GÓMEZ-GESTEIRA M.: New
multi-GPU implementation for smoothed particle hydrodynam-
ics on heterogeneous clusters. Computer Physics Communica-
tions 184, 8 (2013), 1848–1860. 3

[GSSP10] GOSWAMI P., SCHLEGEL P., SOLENTHALER B., PA-
JAROLA R.: Interactive SPH simulation and rendering on the
GPU. In Proc. of ACM SIGGRAPH/EG Symposium on Computer
Animation (2010), pp. 55–64. 1, 2, 6

[HKK07] HARADA T., KOSHIZUKA S., KAWAGUCHI Y.:
Smoothed particle hydrodynamics on GPUs. In Proc. of Com-
puter Graphics International (2007), 63–70. 1, 2

[Hoe09] HOETZLEIN R.: FLUIDS v.2 - a fast, open source, fluid
simulator. http://www.rchoetzlein.com/eng/graphics/fluids.htm,
2009. 6

[HS13] HORVATH C. J., SOLENTHALER B.: Mass preserving
multi-scale SPH. Pixar Technical Memo 13-04 (2013). 2

[IABT11] IHMSEN M., AKINCI N., BECKER M., TESCHNER

M.: A parallel SPH implementation on multi-core CPUs. Com-
puter Graphics Forum 30, 1 (2011), 99–112. 1, 2, 3, 6, 8

[ICS∗13] IHMSEN M., CORNELIS J., SOLENTHALER B., HOR-
VATH C., TESCHNER M.: Implicit incompressible SPH. Visu-
alization and Computer Graphics, IEEE Transactions on (2013).
2, 8

[IOS∗14] IHMSEN M., ORTHMANN J., SOLENTHALER B.,
KOLB A., TESCHNER M.: SPH fluids in computer graphics.
State-of-the-Art Report, Eurographics (2014). 2

[KLL∗13] KIM D., LEE J., LEE J., SHIN I., KIM J., YOON S.-
E.: Scheduling in heterogeneous computing environments for
proximity queries. IEEE Transactions on Visualization and Com-
puter Graphics 19, 9 (2013), 1513–1525. 9

[KSY14] KIM T.-J., SUN X., YOON S.-E.: T-ReX: Interactive
global illumination of massive models on heterogeneous comput-
ing resources. IEEE Transactions on Visualization and Computer
Graphics 20, 3 (2014), 481–494. 3, 9

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-
based fluid simulation for interactive applications. In Proc.
of ACM SIGGRAPH/EG Symposium on Computer animation
(2003), pp. 154–159. 2

[NVI13] NVIDIA: CUDA programming guide 5.0, 2013. 2, 3

[PDC∗03] PURCELL T. J., DONNER C., CAMMARANO M.,
JENSEN H. W., HANRAHAN P.: Photon mapping on pro-
grammable graphics hardware. In Proc. of the ACM SIG-
GRAPH/EG conf. on Graphics hardware (2003), pp. 41–50. 2

[QMN09] QIU D., MAY S., NÜCHTER A.: Gpu-accelerated
nearest neighbor search for 3d registration. In Computer Vision
Systems. Springer, 2009, pp. 194–203. 2

[Sam06] SAMET H.: Foundations of MultiDimensional and Met-
ric Data Structures. Morgan Kaufmann, 2006. 2

[SG11] SOLENTHALER B., GROSS M.: Two-scale particle sim-
ulation. ACM Transactions on Graphics 30, 4 (2011), 81. 2

[SP09] SOLENTHALER B., PAJAROLA R.: Predictive-corrective
incompressible SPH. ACM Transactions on Graphics 28, 3
(2009), 40. 2, 5, 8

[YGKM08] YOON S.-E., GOBBETTI E., KASIK D., MANOCHA

D.: Real-Time Massive Model Rendering. Morgan & Claypool
Publisher, 2008. 3

[YHGT10] YANG J. C., HENSLEY J., GRÜN H., THIBIEROZ N.:
Real-time concurrent linked list construction on the gpu. Com-
puter Graphics Forum 29, 4 (2010), 1297–1304. 4, 6

[ZHWG08] ZHOU K., HOU Q., WANG R., GUO B.: Real-time
kd-tree construction on graphics hardware. In SIGGRAPH Asia
(2008), ACM, pp. 1–11. 2

submitted to High Performance Graphics (2014)


