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Abstract

We present a novel parallel continuous collision detection (PCCD)
method to utilize the widely available multi-core CPU architec-
ture. Our method works with a wide variety of deforming models
and supports self-collision detection. Our method uses a feature-
based bounding volume hierarchy (BVH) to improve the perfor-
mance of continuous collision detection. Also, our method selec-
tively performs lazy reconstructions. To design a highly scalable
PCCD method, we propose novel task decomposition methods for
our BVH-based collision detection and dynamic task assignment
methods to obtain a high load-balancing among computation work-
loads assigned to each thread. Our method achieves up to 7.3 times
performance improvement by using 8-cores compared to using a
single-core. The high performance improvement is mainly due to a
few dependencies and synchronizations among different computa-
tion tasks performed in each thread. As a result, our PCCD method
is able to achieve an interactive performance, 50 ms – 140 ms, on
average, for various deforming benchmarks consisting of hundreds
of thousand triangles.

1 Introduction

Collision detection between deforming models is one of fundamen-
tal tools of various applications including games, physically-based
simulation, CAD/CAM systems, computer animation, and robotics.
Collision detection can be classified into two categories: discrete
and continuous collision detection methods. Discrete collision de-
tection (DCD) finds intersecting primitives at discrete time steps.
DCD can be performed quite efficiently by using bounding volume
hierarchies (BVHs) of input models and show interactive perfor-
mance. Therefore, DCD has been widely used in many interactive
applications. However, DCD methods can miss colliding primitives
that occur between two discrete time steps. This issue can be quite
problematic in physically based simulations (e.g., cloth simulation),
CAD/CAM applications, etc. On the other hand, continuous colli-
sion detection (CCD) identifies the first time of contacts and inter-
secting primitives during a time interval between two discrete time
steps. Typically, CCD methods model continuous motions of prim-
itives by linearly interpolating positions of primitives between two
discrete time steps.

Although CCD methods improve the accuracy of collision detection
compared to DCD methods, CCD methods typically require much
longer computation time. Therefore, CCD technology has not been
actively used in interactive applications such as games. There are
many approaches to accelerate the performance of CCD by design-
ing specialized algorithms on certain types of models (e.g., rigid
objects [Redon et al. 2002], articulated bodies [Redon et al. 2005;
Zhang et al. 2007], and meshes with fixed topology [Govindaraju
et al. 2005; Wong and Baciu 2005; Hutter and Fuhrmann 2007] and
introducing efficient culling methods [Curtis et al. 2008; Tang et al.
2008]. However, these methods may take hundreds of milliseconds
and, even, a few seconds on performing CCD for deforming models
consisting of hundreds of thousand triangles.

Recently, the performance of CPUs is improved by increasing the
number of cores instead of improving the clock frequency of a sin-
gle core [Asanovic et al. 2006]. Also, most of commodity hardware
already has two or more cores. Moreover, it is expected that hun-
dreds of cores on a chip can be built in a near future according to
the technology trend of the transistor integration capacity [Borkar
2007]. Intel has already designed a prototype of a many-core archi-
tecture with 80 cores that can have TeraFlop performance [INTEL
2006].

In this paper we address the problem of designing a parallel CCD
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Figure 1: Cloth Benchmark: The left image shows a frame of our
cloth simulation benchmark consisting of 92 K triangles. The right
image shows the frame rate, frames per second (fps), of our parallel
continuous collision detection method with an ideal frame rate as-
suming a perfect scalability as a function of the number of cores
in the CPU architecture. In this benchmark our method spends
56 ms for continuous collision detection including self-collisions on
average and 6.4 times performance improvement by using 8-cores
over using a single-core. We use an Intel Xeon machine with two
2.83 GHz quad-core CPUs.

algorithm that can utilize the performance of multi-core CPU ar-
chitecture. There have been several parallel collision detection
methods by using GPUs and CPUs. Particularly, there are many
approaches using GPUs to perform collision detection including
CCD [Govindaraju et al. 2003; Knott and Pai 2003; Heidelberger
et al. 2004; Sud et al. 2006]. These methods employ image-based
techniques to perform collision detection and exploit massive par-
allelism of GPUs. There are, however, only a few works on par-
allel collision detection methods using multiple CPUs. GPU based
methods may miss collisions due to the discrete image resolution of
the image-based methods and may not be able to provide interac-
tive performance for CCD between large and arbitrarily deforming
models.

Main results: We present a novel parallel continuous collision de-
tection (PCCD) method to achieve the interactive performance of
CCD between deforming models on commodity multi-core CPU
architecture. Our PCCD method supports various kinds of deform-
ing models and self-collision detection. Our method is based on
a feature-based bounding volume hierarchy (BVH) and selectively
performs a lazy BV reconstruction method to improve the perfor-
mance of CCD. In order to design a highly scalable parallel CCD
method, we propose novel task decomposition and dynamic task
assignment methods (Sec. 4 and Sec. 5). We also propose a sim-
ple parallel BVH update method (Sec. 6). We highlight the perfor-
mance of our algorithms with various benchmarks and analyze the
performance of our PCCD method (Sec. 7).

Overall, our method has the following benefits:

1. High scalability: Due to a few dependencies and synchro-
nizations between computational tasks, our method achieves
highly scalable performance as we allocate more cores to our
PCCD method. For example, we are able to achieve up to 7.3
times performance improvement by using 8-cores over using
a single-core.

2. Interactive performance: Due to the high scalability of our
method combined with benefits of using lazy BV reconstruc-
tion and a feature-based BVH, our PCCD method spends
50ms – 140ms on average and, thus, is able to achieve inter-
active performance for CCD including self-collisions between
deforming models consisting of tens or hundreds of thousand
triangles.

3. Generality: Our PCCD method can handle various types of



deforming models including polygon soups. Also, our task
decomposition and dynamic task assignment methods can
be applicable directly to other BVH-based proximity queries
such as minimum separation distance.

2 Related Work

The problem of collision detection has been well studied in vari-
ous fields including computer graphics, simulation, computational
geometry and robotics. Also, good surveys are available [Lin and
Manocha 2003; Ericson 2004; Teschner et al. 2005]. In this section,
we review prior work mainly on continuous collision detection and
parallel computation for collision detection.

2.1 Continuous Collision Detection (CCD)

CCD algorithms find the first time-of-contacts (ToC) in continuous
time intervals. There are many different approaches and some of
them include algebraic methods [Provot 1997; Kim and Rossignac
2003; Choi et al. 2008], swept volume [Hubard 1993; Abdel-Malek
et al. 2002], adaptive bisection [Schwarzer et al. 2002], and conser-
vative advancement methods [Mirtich 2000]. However, these meth-
ods are designed to particular types of input models and may be
slow to be used in interactive applications.

CCD methods have been further optimized for rigid models [Re-
don et al. 2002] and articulated models [Zhang et al. 2007]. These
methods are based on tight-fitting pre-computed hierarchies. CCD
methods for deformable polygonal meshes are initially designed for
meshes with fixed connectivity [Govindaraju et al. 2005; Wong and
Baciu 2005; Hutter and Fuhrmann 2007] and, recently, are extended
to models with topology changes [Curtis et al. 2008; Tang et al.
2008].

Culling techniques: CCD methods for inter-collision and intra-
collisions, i.e., self-collisions, are very expensive and, thus, many
culling techniques have been proposed. Tang et al. [2008] pro-
posed continuous normal cones to identify mesh regions where self-
collisions cannot occur and cull those regions from the considera-
tion of self-collision detection. Also, Sean et al. [2008] proposed
a new feature-based BVH, called Representative-Triangles, which
partitions features (e.g., vertices, edges, and triangles of the mesh)
and removes all the redundant elementary tests during self-collision
detection. Our PCCD method is built on top of the feature-based
BVH and can be combined together with the continuous normal
cones.

2.2 Parallel Collision Detection

There are many collision detection methods parallelized by using
GPUs and CPUs.

GPU-based parallel collision detection (CD): There have been
considerable efforts to perform collision detection efficiently using
GPUs [Heidelberger et al. 2004; Knott and Pai 2003; Govindaraju
et al. 2003]. Govindaraju et al. [2003] proposed an approach for
fast CD between complex models using GPU-accelerated visibility
queries. Kolb et al. [2004] introduced an image-based CD algo-
rithm for simulating a large particle system. There have been GPU-
based algorithms for self-collision and cloth simulations [Vassilev
et al. 2001; Baciu and Wong 2002; Govindaraju et al. 2005] special-
ized on certain types of input models (e.g., closed objects). These
image-based techniques suit well with GPU architecture. However,
due to the discrete image resolution, they may miss some collisions.
Also, Gress et al. [2006] introduced a BVH-based GPU collision
detection method for deformable parameterized surfaces. Sud et
al. [2006] proposed a unified GPU-framework for various proxim-
ity queries including CCD.

Parallel CD on CPUs: There are relatively less work on paral-
lel CD methods using CPUs. Lawler and Laxmikant [2002] pro-
posed a voxel-based CD method for static model using distributed-
memory parallel machines. They applied a generic load-balancing
method to the problem of collision detection and achieved up to

Figure 2: Breaking Dragon Benchmark: These images are from
the breaking dragon benchmark consisting of 252 K triangles. Our
method shows 6.7 times improvement on average by using 8-cores
and, thus, achieves an interactive performance (e.g., 7.7 fps on av-
erage) for performing CCD in this benchmark.

about 60% parallel efficiency. Figueiredo and Fernando [2004] de-
signed a parallel CD algorithm for virtual prototype environment.
This method is based on a culling method considering overlapping
areas between BVs. However, it does not use bounding volume
hierarchies to further improve the performance of collision detec-
tion. This method achieved its best performance, two times im-
provement, by using 4-cores over using a single-core and, then,
showed lower performance as more CPUs are added. These par-
allel methods supported DCD of static models.

There are also parallel BVH construction methods. Wald [2007]
proposed a fast parallel BVH construction method. Ize et al. [Ize
et al. 2007] proposed an asynchronous BVH construction while us-
ing refitted BVHs. Once the construction is done, the constructed
BVH is swapped with a BVH that is used for the BVH traversal.
Although these techniques are designed for ray tracing, these meth-
ods can be used for collision detection and can be combined with
our method.

3 Overview

In this section, we give a background on CCD and discuss issues of
designing a parallel CCD method. Then, we give a brief overview
of our approach to fully utilize multi-core CPU architecture for in-
teractive CCD between deforming models.

3.1 Background on Continuous Collision Detection (CCD)

We perform CCD to compute the first time of contacts between
deformable models and contact information necessary for various
simulations including cloth simulation. There are two types of
contacts: inter-collisions between two different models and intra-
collisions, i.e., self-collisions, within a model. Our CCD algorithm
detects these two types of contacts. These contacts arise in two
contact configurations, vertex-face (VF) case and edge-edge (EE)
cases. These two cases are detected by performing VF and EE ele-
mentary tests [Provot 1997; Bridson et al. 2002].

To define a continuous motion of a primitive between two discrete
time steps, a simple linear interpolation between two instances of
the primitive is widely used in various interactive applications. In
this linear interpolation, the VF and EE elementary tests reduce to
solving cubic equations [Provot 1997], which are derived from co-
planarity conditions. Our method also employs this simple linear
interpolation method. However, our method can use other complex
in-between motions such as a screwing motion [Redon et al. 2002].

Bounding volume hierarchies (BVHs): BVHs are widely used
to accelerate the performance of DCD and CCD methods. There
are different types of bounding volumes (BVs). Some of the com-
monly used BV types include simple shapes such as spheres [Hub-
bard 1993] and axis-aligned bounding boxes (AABBs) [van den
Bergen 1997], or tight-fitting BVs such as oriented bounding boxes
(OBBs) [Gottschalk et al. 1996], and discretely oriented polytopes
(k-DOPs) [Klosowski et al. 1998], etc. We use the AABB represen-
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tation due to its fast update method and wide acceptance in various
collision detection methods [Teschner et al. 2005]. Given a BV
node n of a BVH, we use notations of L(n) and R(n) to indicate
the left and right nodes of the node n.

Feature-based BVHs: Each leaf node of common BVHs has tri-
angles of models. An intermediate node has a BV that can contain
all the triangles under the sub-tree rooted at the node. However,
it has been known that there are many redundant VF and EE ele-
mentary tests by using such BVHs that partition each triangle in a
leaf node for CCD. Recently, Representative-triangle [Curtis et al.
2008] has been introduced to address this problem. This method
is based on a simple feature-based BVH, whose leaf node contains
unique features (e.g., vertices, edges, and faces) of models instead
of containing each triangle of the model. We particularly choose to
use this simple feature-based BVH since it elegantly removes the
redundant VF and EE elementary tests and maps well to parallel
computation.

BVH update: As models are deforming, we have to update BVHs
of such deforming models. There are three different approaches
for BVH update methods. The first approach is to refit extents
of BVs by traversing the BVH in a bottom-up manner [Larsson
and Akenine-Möller 2006; James and Pai 2004]. This approach is
called BV-refitting. Although the BV-refitting methods are quite
fast, the quality, i.e., the culling efficiency, of BVHs becomes
poor if models undergo drastic deformations [Yoon et al. 2007].
The second approach is to reconstruct BVHs from scratch every
frame [Wächter and Keller 2006; Hunt et al. 2006] to maintain
the high culling efficiency of BVHs. However, these reconstruc-
tion methods can take long computation time due to their high time
complexity. Moreover, most portions of BVHs may not be accessed
during the BVH traversal for collision detection due to the local-
ized contacts between objects. Therefore, reconstructing whole
BVHs has not been widely used for collision detection [Teschner
et al. 2005]. The last approach is to combine the above two ap-
proaches and to selectively reconstruct small portions of BVHs that
may have poor culling efficiency [Otaduy et al. 2007; Yoon et al.
2007; Larsson and Akenine-Möller 2006] and refit the rest of por-
tions of BVHs. Typically, these selective reconstruction methods
are combined with lazy BV constructions and show the best perfor-
mance for collision detection in practice [Teschner et al. 2005].

3.2 BVH-based Collision Detection

When we perform collision detection between two objects, we first
create a collision test pair consisting of two root BVs of two ob-
jects’ BVHs. Then, we push the pair into a queue (or a stack). In
the main loop of CD algorithm, we dequeue a pair consisting of
nodes n and m from the queue and perform a BV overlap test be-
tween two BVs, n and m, of the pair. If there is an overlap, we
refine two BVs with their two child BVs and create four different
collision pairs, (L(n), L(m)), (L(n), R(m)), (R(n), L(m)), and
(R(n), R(m)). If we have to find self-collisions within nodes n
and m for dynamically deforming models, we also create two addi-
tional collision pairs, (L(n), R(n)) and (L(m), R(m)).

During performing collision detection, we may reach leaf nodes.
In this case, we perform the VF and EE elementary tests between
features associated with leaf nodes. We continue this process until
there is no more collision pairs in the queue. Also, note that the
inter-CD algorithm between two objects described above can be
thought as a self-collision detection method of a virtual node whose
two child nodes are root nodes of BVHs of those two objects. This
technique can be applied to more than two objects. For the sake
of the simplicity, we mainly focus on the self-collision detection
method of a BVH, which may be constructed from BVHs of many
objects.

3.3 Issues of Parallel CCD

In general, designing a parallel algorithm requires the following
four steps [Culler and Singh 1999, pages 82 – 90]: 1) decomposi-
tion of computations into tasks, 2) assignment of tasks to threads,

3) orchestration of communication and synchronization among
threads, and 4) mapping of threads to processors.

Conditions for accurate results: We should maintain that an out-
put of our parallel CCD is same to that of the serial CCD method.
To achieve this goal, it is required during the decomposition and
assignment steps that we do not omit any computation as compared
to those of the serial algorithm. Also, if two different computa-
tions have a particular order to be performed between them, the
orchestration part of the parallel algorithm should maintain their
computation ordering by using a proper synchronization.

Conditions for fast performance: The primary goal of design-
ing a parallel algorithm is to take advantage of many-core architec-
ture and, thus, improve the performance of a serial algorithm. It is
desirable to avoid performing redundant computations, unless hav-
ing them improves the overall performance of parallel algorithm.
Also, communication and synchronization are very expensive op-
erations in current parallel architecture and, thus, should be mini-
mized [Culler and Singh 1999]. Finally, similar amounts of tasks of
computations should be distributed to each thread to achieve high
load-balancing among threads. Also, it is desirable to achieve high
cache coherence in the process of the mapping different threads to
processors.

Highly-scalable parallel CCD: It is relative easy to parallelize ex-
isting BVH-based continuous or discrete collision detection meth-
ods by decomposing collision pairs stored in the queue (or stack)
and assigning partitioned collision pairs into threads. However,
there are two major issues to design a highly-scalable parallel CCD
method. First, collisions typically occur in very localized regions of
meshes. Therefore, some of collision pairs may turn out to be non-
colliding and, thus, terminate soon during the BVH traversal. On
the other hand, other collision pairs may collide and require check-
ing collisions between their child BVs until leaf nodes. As a result,
it is very hard to predict the computation workload required to iden-
tify collisions from each collision pair. Therefore, it requires an ef-
ficient dynamic task re-assignment algorithm to achieve high load-
balancing among different threads. Second, different threads can
access a same BV during the BVH traversal. The problem arises
when multiple threads access a same BV and trigger a lazy con-
struction for the BV simultaneously. To guarantee the correct re-
sult of the parallel CCD, we can use synchronization mechanisms.
However, a parallel algorithm with many synchronizations may not
show high-scalability. Due to these two difficult issues, it is non
trivial to design high-performing and highly-scalable parallel CCD
methods for deforming models.

3.4 Overview of Our Approach

In order to take advantage of multi-core CPU architecture, we
propose a novel parallel CCD method (PCCD) supporting inter-
collisions and self-collisions between deforming models. At a high
level, our PCCD method consists of two parts: 1) BVH refitting
component and 2) collision detection with lazy BV reconstructions.

Our PCCD method updates a BVH of a deforming model by per-
forming the BV refitting before we perform any collision detec-
tion. Since the BV refitting alone may not provide BVHs with high
culling efficiency, we selectively perform lazy BV reconstructions
during the collision detection part while traversing the BVH.

Our PCCD method is based on a novel task decomposition, self-CD
task unit, to achieve high scalability as a function of the number of
cores. A self-CD task unit is a set of collision test pairs generated
by performing a collision test pair between two child nodes of a
node. Particularly, we identify self-CD task units that do not access
a same node during processing each task unit and, thus, perform the
lazy BV reconstruction without the use of any expensive locking
mechanisms, while processing these self-CD tasks in a parallel. To
achieve a high load-balancing among computational workloads as-
signed to each thread, we employ a simple dynamic task assignment
method that partitions self-CD task units of a thread to other threads
that finish the computation earlier than other threads. We also pro-
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Figure 3: Converting an Inter-CD to a Self-CD: An inter-
collision detection between two nodes na and nb is equal to a self-
collision detection of a node n, where na and nb are two child
nodes of the node n.

pose a method parallelizing each self-CD task unit for cases where
there are not enough self-CD task units to utilize all the available
threads.

4 Self-CD based Parallel CCD

In this section we explain our novel decomposition and task re-
assignment methods for our PCCD method.

Terminology: We define a few terminologies to describe our meth-
ods. We define a collision test pair set, CTPS(na, nb), to be all
the collision test pairs generated by performing a collision test pair
(na, nb) of two nodes na and nb to find inter-collisions between
those two nodes. Since an inter-collision detection between two
nodes can be thought as a self-collision detection within a virtual
node n, we also use a self collision test pair set, SCTPS(n) to de-
note CTPS(na, nb), where L(n) = na and R(n) = nb). An ex-
ample of converting an inter-collision detection between two nodes
into a self-collision detection of a node is shown in Fig. 3. We de-
fine that two nodes have a parent-child relationship if one of nodes
is in the sub-tree rooted at another node.

4.1 Self-CD based Decomposition

In this section we explain our decomposition of computations to
perform collision detection. Our method is based on task units of
a self-collision detection, self-CD, each of which performs a self-
collision detection of a node.

Computation of a self-CD task unit: Each self-CD task unit pro-
cesses collision test pairs represented by SCTPS(n) of a node n.
To assign task units to each thread, we push a node n into a task
unit queue and associate the queue with a thread. Self-CD task unit
has two phases: 1) setup phase and 2) collision detection phase. In
the setup phase, we first fetch a node from the task unit queue and
refine the node n into its two child nodes L(n) and R(n). Then, we
push those two child nodes into the task unit queue. We also create
a scheduling queue for dynamic task assignment to achieve a high
load-balancing, which will be explained later. Then, we perform the
collision detection phase. First, we create a collision test pair queue
and assign a collision test pair (L(n), R(n)) into the collision test
pair queue. We fetch a pair consisting of two nodes n and m from
the collision test pair queue and, then, perform a BV overlap test
between two BV nodes n and m of the pair. If there is a collision,
we refine both of those two nodes into L(n), R(n), L(m), and
R(m). Then, we construct four collision test pairs, (L(n), L(m)),
(L(n), R(m)), (R(n), L(m)), and (R(n), R(m)). We continue
this process until we reach leaf BV nodes. If we reach leaf BV
nodes, we perform exact VF and EE elementary tests between fea-
tures associated with the leaf BV nodes. If there is any collision,
we put the collision result into a result queue.

Disjoint property of task units: During processing a self-CD task
unit of a node n, SCTPS(n), we create and test various collision
test pairs of nodes that are in the sub-tree rooted at the node n. If
there is no parent-child relationship between two nodes, say n and
m, we can easily show that a set of accessed nodes during perform-
ing SCTPS(n) is disjoint from another set of accessed nodes dur-
ing performing SCTPS(m). We will utilize this disjoint property
to design an efficient parallel CCD algorithm.

Serial CCD method: Before we explain our PCCD method, we
first explain how to perform CCD with a single thread based on
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Th d 3
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n7
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Thread 4

65

Low-level nodes

Figure 4: High-Level and Low-Level Nodes: This figure shows
high-level and low-level nodes given 4 available threads. The right
portion of the figure shows an initial task assignment for 4 threads.

self-CD task units. Given two objects oa and ob with two BVHs
whose two root nodes are n and m, we first create a virtual node
v and set its child nodes to be n and m. Then, we perform a self-
CD task unit, SCTPS(v), of the node v. At the end of processing
the task unit of SCTPS(v), the collision test pair queue is empty.
However, the task unit queue can have two nodes, whose are two
child nodes of v. We fetch a node, n, from the task unit queue
and perform SCTPS(n). We continue this process until there is no
node in the task unit queue. Then, the result queue contains all the
collisions within each object and between two objects oa and ob. A
main property in this serial CCD method is that any pair of nodes
in the task unit queue do not have parent-child relationship. Also
note that this CD algorithm is easily extended to detect collisions
among any number of objects.

Our serial CCD algorithm does not have any redundant collision
test pairs nor miss any collision test pairs compared to a common
BVH-based collision detection method explained in Sec. 3.2. Our
serial CCD algorithm is constructed by simply reordering the pro-
cessing order of collision test pairs of typical BVH-based CD meth-
ods into self-CD task units.

4.2 Initial Task Assignment

We design each thread to process self-CD task units. Initially, each
thread is initialized with a node n. Then, each thread performs
a self-CD task unit represented by SCTPS(n). A node of BVH
is guaranteed to be accessed by only one thread at any time, if
there are no parent-child relationships among nodes assigned to
each thread due to the disjoint property of self-CD task units. In
this case, we do not need to use expensive locking mechanisms to
prevent that multiple threads attempt to reconstruct a same BV node
for a lazy BV reconstruction during the BVH traversal.

To guarantee that nodes assigned to each thread do not have any
parent-child relationship, we use the following simple initial task
assignment method. Suppose that there are p available threads that
we can utilize for the parallel computation. We first traverse a BVH
in a breath-first order. During the breadth-first order traversal of
the BVH, we maintain a queue containing nodes in the front of the
traversal. If the size of the queue is p, then, we stop the BVH traver-
sal and assign each node of the queue into each thread. We call
those nodes and all the nodes in the sub-trees rooted at those nodes
low-level nodes. We call all the other nodes high-level nodes. An
example of low-level and high-level nodes for 4 threads is shown in
Fig. 4.

Each thread performs a self-CD task unit, SCTPS(n), of an ini-
tially assigned node n. At the end of performing SCTPS(n), a
task unit queue of the thread can have two nodes which are two
child nodes of the node n. Then, the thread fetches a node from the
queue and performs the self-CD task unit of the node.

Once each thread finishes its computation, then, we process self-
CD task units of high-level nodes. First we process parent nodes,
n2 and n3 in the case of Fig. 4, of initially assigned nodes to each
thread. We wait until the processing of self-CD task units of two
nodes n2 and n3 finishes and, then, process their parent node, n1.
During processing high-level nodes, we do not add child nodes of

PaperID 145: PCCD: Parallel Continuous Collision Detection Page 4 of 8



Figure 5: N-Body Simulation Benchmark: This figure shows
two frames during the N-body simulation benchmark consisting
of 146 K triangles. Our method spends 138 ms on average and
achieves 7.3 times performance improvement by using 8-cores over
using a single-core.

those nodes to the task unit queue since we already processed self-
CD tasks of those child nodes. Note that there are no parent-child
relationships among high-level nodes processed in parallel.

In this simple task assignment method, we can very efficiency tra-
verse the BVH, perform the overlap tests, and invoke lazy BV re-
constructions, if necessary, without any locking procedure. How-
ever, a thread can finish its assigned task units much faster than
other threads due to the localized contacts among objects. In this
case, it is desirable to divide task units of a thread to the thread
finishing its task in order to fully utilize all the available p threads.
For this, we propose a dynamic task assignment in the next section.
Also, during processing high-level nodes, the number of self-CD
task units is less than the number, p, of available threads. To uti-
lize all the available threads, we also propose a method efficiently
parallelizing each self-CD task unit in Sec. 5.

4.3 Dynamic Task Assignment

Suppose that a thread trequest finishes its computation and there is
no more node left in the task unit queue. In order to detect another
thread tsrc that can give its computation workload to the thread
trequest, a scheduler managing the dynamic task assignment is re-
quired. We can use a centralized master scheduler running in a
dedicated thread. In this approach, the requesting thread trequest

first accesses the master scheduler. Then, the master scheduler ac-
cesses global information on the available computational workload
in each thread and chooses a thread to distribute its workload to the
requesting thread trequest. However, a cost for the context switch-
ing to the master scheduler thread is a high. Moreover, the access
to the master thread has to be serialized and, thus, it can lower the
scalability of the overall PCCD method. Instead, we embed our
scheduler in each thread and use it if necessary.

In order to choose a thread tsrc that has enough workload for the
requesting thread, our scheduler accesses the other thread’s infor-
mation. For example, each thread has its computation workload in
its collision test pair queue and task unit queue. Note that any lock-
ing mechanisms are not required to read the sizes of these queues
of other threads. We choose to distribute nodes stored in the task
unit queue to the requesting threads. Note that each node in the
task queue represents a self-CD task unit. The main reason why we
do not distribute pairs in the collision test pair queue is that if we
distribute pairs into other threads, the disjoint property of task units
would not be applicable and, thus, it would require an expensive
locking mechanism for the lazy BV reconstruction method.

Suppose that the scheduler of a thread trequest chooses a thread tsrc

to get its computation workload. In order to request the distribution
of computation workloads, the requesting thread trequest places a
request to the scheduling queue of the thread tsrc. To place the
request, a locking to the scheduling queue is required since other
threads may want to request and access the same scheduling queue.
Once placing the request, the thread trequest sleeps.

In each thread, we check whether its own scheduling queue is empty

or not by looking at its size right after finishing all the collision
test pairs and before performing another self-CD task unit. Since
we do not need to lock the scheduling queue to see whether it is
empty, it can be done quite efficiently. If there are no requests in
the queue, the thread can continue to process another self-CD task
unit by fetching a node from its task unit queue. If there are non-
zero k requests in the scheduling queue, we partition its computa-
tional workload into k + 1 sets while maintaining each partitioned
workload to be roughly equal. Since we also have to leave a work-
load for its own thread, we partition the computation workload into
k + 1. Note that nodes in the task unit queues do not have parent-
child relationships. Therefore, each thread can perform its self-CD
task unit without any modification and locking during processing
collision test pairs. Then, the thread tsrc sends a wake-up message
with the partitioned nodes to the requesting threads.

Once a thread trequest receives the wake-up message, the thread
assigns the received node into its task unit queue and resumes its
computation by performing self-CD task units. Pseudocode of our
parallel CCD algorithm based on self-CD task units is shown in
Listing 1. Note that we do not perform any synchronization nor
locking in the main collision detection loop.

P e r f o r m S e l f C D ( a node n ) {
TaskUni t Q <− n ;

whi le ( ! TaskUint Q . Empty ( ) ) {
n <− TaskUint Q . Dequeue ( ) ;

i f ( n has c h i l d nodes ) {
TaskUint Q <− L ( n ) and R( n ) ;

P a i r Q <− ( L (N) ,R(N ) ) ;

}
whi le ( ! P a i r Q . Empty ( ) ) { / / Main CD loop

P a i r <− P a i r Q . Dequeue ( ) ;

Per fo rm l a z y r e c o n s t r u c t i o n f o r nodes o f P a i r ;

i f ( I s O v e r l a p ( P a i r ) ){
i f ( I s L e a f ( P a i r ) )

Per fo rm e l e m e n t a r y t e s t s ;

e l s e

P a i r Q <− R e f i n e ( P a i r ) ;

}
}

i f ( ! Schedul ingQ . Empty ( ) )

D i s t r i b u t e i t s work t o t h e r e q u e s t i n g t h r e a d ;

}

Run a s c h e d u l i n g a l g o r i t h m and s l e e p ;

}

Listing 1: Pesudocode of PCCD method

Evaluating and partitioning the computation workload: Sup-
pose that we choose a thread to distribute its computation workload
to another requesting thread. Then, we have to partition its compu-
tation workload into equal-sized workloads. However, it is hard to
predict how much computation workload processing each node in
the task unit queue will require. Instead of designing a complex pre-
diction method, we simply return the first node, i.e., the front node,
in the queue to the requesting thread. Note that the front node in
the queue is likely to cause the most significant or equal compu-
tational workload compared to other nodes in the queue, given the
breadth-first order traversal of the BVH during processing self-CD
task units. Given this simple partitioning scheme, we only need to
look at the first node to evaluate the workload of each thread. More
specifically, we look at the first node and see how many triangles
are located under the sub-tree rooted at the node. The number of
triangles under a node is already available since this information
is necessary for the lazy BV reconstruction method. As a node
has more triangles, we can expect that the computation workload
of processing a self-CD task unit of the node is higher. Based on
this simple evaluation method, we choose a thread, tsrc. Note that
there may be multiple requests in the scheduling queue. Since each
thread will get the first node in the queue, we look at a node located
at k+1th position in the queue if there are already k requests in the
scheduling queue for the evaluation of the computation workload
of each thread.
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5 Parallelizing a Self-CD Task Unit

In this section we present a method parallelizing each self-CD task
unit.

5.1 Task Decomposition for Self-CD Task Unit

During processing high-level nodes, the number of self-CD task
units that can run in parallel is smaller than the number of avail-
able threads. For example, at the last step of our PCCD algorithm,
we process a single self-CD task unit of a root node of the BVH.
The algorithm described in the previous section can use only a sin-
gle thread processing the self-CD task unit although there may be
many available threads. In order to fully utilize all the available
threads, we propose an algorithm that performs a self-CD task unit
in a parallel manner. We designed two different methods paralleliz-
ing a self-CD task unit.

Lazy reconstruction without a locking mechanism: During
processing a self-CD task unit, we process each collision test pair
located in the collision test pair queue. If nodes accessed during
processing a set of collision pairs are disjoint from nodes of other
sets, we can process those sets of pairs in parallel without any locks
for lazy BV reconstructions. Our first method is based on a de-
composition of collision test pairs satisfying the above requirement.
Suppose that we are performing a self-CD task unit of a node n.
Then, we first perform a collision test pair between L(n) and R(n).
If there is a BV overlap between two nodes, we create four refined
collision test pairs, (L(n), L(m)), (L(n), R(m)), (R(n), L(m)),
and (R(n), R(m)). Note that two collision pairs of (L(n), L(m))
and (R(n), R(m)) do not share any same node. Therefore, their
refined collision test pairs cannot access a same node. Therefore,
we can perform these two collision test pairs into two threads in a
parallel manner. Then, we wait for the termination of two threads
processing these pairs and, then, we can do a similar parallel com-
putation for another two collision test pairs of (L(n), R(m)) and
(R(n), L(m)). The main advantage of this approach is that we do
not need any locking mechanism for lazy reconstructions during
the BVH traversal. However, we found that this method shows very
poor scalability (e.g., 2 times speedup by using even 8 cores). Since
the proposed algorithm requires synchronization before processing
another two pairs and computation time of processing a collision
test pair may vary a lot, this method does not effectively utilize
available threads.

Lazy reconstruction with a locking mechanism: Our second
method is based on a simple observation: we do not perform
many lazy BV reconstructions during processing high-level nodes
since we already traversed many nodes and performed lazy recon-
structions during processing self-CD task units of low-level nodes.
Therefore, we choose to use a locking mechanism for lazy BV re-
constructions. Since reconstructions of BVs happen rarely during
processing high-level nodes, there is a very low chance for a thread
to wait for a locked node. Since we guarantee to avoid perform-
ing multiple lazy reconstructions on a same node simultaneously
by using a locking mechanism, we can arbitrarily partition the pairs
of the collision test pair queue into k available threads. For parti-
tioning, we sequentially dequeue and assign a pair into k threads in
a round robin fashion. We choose this approach since collision test
pairs located closely in the queue may have similar geometric con-
figurations and, thus, have similar computation workload during
processing collision test pairs. We found that this method works
well.

6 Parallel BVHs Update

In this section, we explain our parallel BVH update method to effi-
ciently deal with deforming models.

6.1 BV Refitting

Before we perform the CCD during traversing a BVH, we first up-
date the BVH. Our BVH update method combines BV refitting and

Model Triangles Number of Representative CCD

(K) frames image time (ms)

Cloth simulation 92 465 Fig. 1 56

Exploding dragon 252 480 Fig. 2 130

N-body simulation 146 375 Fig. 5 138

Table 1: Dynamic Benchmark Models: This table shows the
complexity of the benchmarks with their representative images, the
number of frames used in tests, and the CCD computation time on
average.

selective BV reconstruction methods. Our algorithm first traverses
the BVH in a bottom-up manner and refits the BVs. To design a
parallel BVH update method utilizing k threads, we traverse the
BVH in a breadth-first order using a queue until the queue has k
nodes. Then, we assign each node in the queue to a thread and,
then, each thread performs the BV refitting to the sub-tree rooted at
the node. Since the BVH is unlikely to be balanced, a thread can
finish its BV refitting earlier than other threads. We can use a simi-
lar dynamic task assignment explained in Sec. 4.3 for dynamic load
balancing of the parallel BVH refitting method. However, we found
this approach is rather a heavy-weight solution for this problem and
requires some overhead for the BV refitting process.

Instead, we use a simple load-balancing scheme. Given k available
threads, we collect 2k nodes in the queue during the breadth-first
order BVH traversal. Then, we assign the first k nodes into each
thread in a round robin fashion. If a thread finishes its job, we
assign the next available node in the queue to the thread.

6.2 Selective BV Reconstruction

BV refitting methods works quite well for dynamic models with mi-
nor deformations. However, for models with topological changes
and drastic deformations, BV refitting methods show poor perfor-
mance due to the expanded BVs. We use a selective BV reconstruc-
tion method to address the problem of the BV refitting and improve
the performance of CCD. To identify BVs whose culling efficiency
is lower and can be improved by the BV reconstruction, we use a
heuristic metric proposed by Larsson and Akenine-Möller [2006].
This metric measures a ratio of the volume of a BV node to the
sum of volumes of its child nodes. If the ratio is less than 0.9 as
suggested by [Larsson and Akenine-Möller 2006], we consider the
node to have low culling efficiency.

Lazy reconstruction: For the BV reconstruction of a node, we use
a simple median-based partitioning of triangles associated with the
node. Although this method runs fast, the reconstruction time of a
node is much more expensive than a BV overlap test. Also, due to
the localized contacts among objects, small portions of a BVH are
likely to be accessed during performing collision detection. There-
fore, we employ a lazy reconstruction method, which reconstructs
a node when we access the node and find that the culling efficiency
of the node is low based on the metric we described above.

7 Implementation and Results

In this section we describe our implementation and highlight the
results of our PCCD method with different benchmarks.

We have implemented our PCCD method on an Intel Xeon desktop
machine with two 2.83 GHz quad-core CPUs and WindowsXP. We
use OpenMP library [Dagum and Menon 1998] to parallelize our
method. We rely on OpenMP for the mapping of threads to pro-
cessors. We construct a BVH for each object and, then, merge
these multiple BVHs into a one big BVH by recursively merging
two BVHs into one. Then, a self-collision detection of a merged
single BVH is equal to inter-collision detections among multiple
objects.

Benchmarks: We test our method with three types of dynamic
scenes. These include:

• Cloth simulation: A cloth drapes on a ball and, then, the ball
is spinning (Fig. 1). This benchmark consists of 92 K triangles
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Figure 6: Frame Rates: These two graphs show frame rates,
frames per second (fps), of the cloth simulation (Fig. 1) and
the breaking dragon benchmarks (Fig. 2). Our method achieves
17.9 fps and 7.7 fps for two benchmarks respectively by using 8-
core machine. Compared to the single-core method, our method
is able to achieve about 7 times performance improvement for two
tested benchmarks.

and undergoes severe non-rigid deformations.

• Breaking dragon: A bunny collides with a dragon model.
Then, the dragon model breaks into numerous pieces (Fig. 2).
This model has 252 K triangles.

• N-body simulation: This benchmark consists of multiple
moving objects consisting of 146K triangles (Fig. 5). Each
object may undergo a rigid or deformable motion and objects
collide with each other and the ground.

These models are downloaded from the UNC dynamic scene bench-

marks1. These models have different model complexity and char-
acteristics. As a result, they suit well to testing the performance of
our algorithm. Detail information of each benchmark is shown in
Table 1.

7.1 Results

We test our PCCD method with 8 cores and measure the time spent
on performing the CCD including self-collision detections. Our
method spends 56 milliseconds (ms), 130 ms, and 138 ms on aver-
age for the cloth simulation, the breaking dragon, and N-body simu-
lation respectively. These computation times translates to 17.9, 7.7,
and 7.3 frame per seconds (fps) on average for these three bench-
marks respectively. The frame rates of our PCCD method for the
cloth simulation and the breaking dragon benchmarks are shown
in Fig. 6. The downward spikes appeared in the graph of frame
rate in the cloth simulation benchmark are caused by infrequent
BV reconstructions of high regions of BVHs, which require high
computation time.

We also measure the performance of our PCCD method as a func-
tion of the number of cores. Particularly, we measure the perfor-
mance of the PCCD method with 1, 2, 4, and 8 cores. We are
able to achieve high scalability for our method with different num-
ber of cores. For example, our PCCD method shows 6.4, 6.7,
and 7.3 times performance improvement by using 8-cores over a
single-core version in the cloth simulation, the breaking dragon,
and N-body simulation respectively. The performance of the PCCD
method as a function of the number of cores is shown in Fig. 7.

7.2 Analysis and Comparison

At a high level, our PCCD method consists of four components;
1) BV refitting, 2) parallel CCD with low-level nodes, 3) parallel
CCD with high-level nodes, and 4) other serial components and
miscellaneous parts (e.g., setup of the threads). The portion of each
component over the whole computation is shown in Fig. 8 and the
scalability of each component is shown in Fig. 9.

Parts of BV refitting and parallel CD with high-level nodes take
small portions, 7%–13% and 2%–10% respectively, of the whole
computation. Since contacts occur in a few localized regions of

1 http://gamma.cs.unc.edu/DynamicB

Figure 7: Scalability of the PCCD Method: This figure shows
the performance improvement of our PCCD method as a function
of the number of cores over using a single-core with different bench-
marks. Ideal performance is linearly increased from the single-core
performance.

Figure 8: Portions of Components of PCCD Method: This
graph shows relative portions of different components of our PCCD
method with different benchmarks. The most time consuming part
is processing self-CD task units for low-level nodes.

meshes, it is very hard to predict the amount of work associated
with each collision pair and a node. Therefore, it is hard to achieve
a high load-balancing among different threads. Because of this,
these two parts show relatively low scalability (e.g., four times im-
provement by using 8-cores over the single-core performance). The
part of parallel CCD with low-level nodes takes a major portion,
80%–90%, of our whole computation. This part shows more than
7 times improvement by using 8-cores over the single-core version
due to the dynamic load-balancing method. Since the portion of
processing self-CD tasks of low-level nodes is the largest, its high
scalability translates to the high scalability of our overall PCCD
method. Also, serial components of our PCCD method take a very
small portion (e.g., less than 2%).

Comparison with GPU-based methods: We compare our algo-
rithm over the state of the art GPU-based CCD method proposed by
Sud et al. [2006]. In this method, they also used a cloth simulation
benchmark consisting of 15 K triangles similar to our cloth simu-
lation benchmark although the model complexity is different. They
used AMD Athlon 4800 X2 CPU and a GeForce 7800 GPU. Their
method spends about 700 ms. Note that our method spends 56 ms
in our cloth simulation benchmark model and the model complex-
ity of our cloth simulation benchmark is 6 times higher than the
one used in [Sud et al. 2006]. GPU-based techniques based on data
read-backs like [Sud et al. 2006] may achieve much lower perfor-
mance improvement compared to the GPU performance improve-
ment since the performance of read-backs has not been improved in
past years. Also, according to the paper of [Sud et al. 2006], their
reported read-back time spanned between 50 ms and 60 ms, which
is comparable even to the whole computation time of our PCCD
method in our cloth simulation benchmark consisting of 92 K tri-
angles.

8 Conclusion and Future Work

We have presented a novel parallel continuous collision detection
method utilizing the multi-core CPU architecture. Our method
is based on a novel task decomposition, self-CD task unit, to re-
duce dependencies and synchronizations among different threads.
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Figure 9: Scalability of Components of PCCD Method: This
figure shows the scalability of different components of our PCCD
method as a function of the number of cores.

Also, we have proposed a simple, but efficient dynamic task re-
assignment method to achieve high load-balancing among different
threads. Our method can achieve interactive performance for CCD
including self-collision detection between deforming models con-
sisting of hundreds of thousand triangles. Moreover, we are able to
achieve up to 7.3 times performance improvement by using 8-cores
over using a single-core.

There are many avenues for future work. First we would like to
extend our current PCCD method to exploit the SIMD functional-
ity of commodity architecture. This will be particularly important
for Larrabee architecture since it has 16 wide SIMD functionality.
Also, we would like to test our method with a parallel machine with
more than 8-core machines and further improve the scalability of
our method. Currently, 16-core machines have low performance/-
cost ratio compared to 8-core machines. We expect that this will be
resolved soon. Finally, we would like to design parallel algorithms
for other proximity queries including minimum separation distance
and penetration depth queries.
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