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I. INTRODUCTION

SOURCE localization is an important problem that has
been studied in various contexts. For example, in the un-

derwater domain, acoustic source localization has applications
in search & rescue (e.g. finding the black-box of a sunken
aircraft), subsea operations, and in defense & coastal security.
While interaural phase difference (IPD) and interaural time
difference (ITD) techniques are well-studied and effective,
they require multiple spatially separated acoustic sensors with
accurate time synchronization. The need for time synchro-
nization can be relaxed through the use of interaural level
difference (ILD) techniques [1], but the need for large spacing
between sensors limits the use of such sensors on small robots.
Moreover, if source localization could be performed using a
single low fidelity acoustic sensor, the cost and complexity
of robots for source localization applications could be greatly
reduced.

In the absence of the multipath propagation, signal intensity
generally decreases monotonically with propagation range. A
signal source could be correctly localized by using gradient
ascent method to find the maximum intensity. However, signals
in many practical conditions experience multipath propagation.
The recevied signal intensity fluctuates significantly because
of constructive and destructive interference from various prop-
agation paths. Under such condition, the intensity pattern has
several local maxima and gradient ascent performs poorly.
If the multipath propagation of the signal from the source
can be accurately modeled, a few measurements at different
locations may be sufficient to determine the location of the
source. This basic idea has been explored in the matched field
processing (MFP) literature [2].

The key idea in being able to use a single sensor for source
localization is to mount it on a robot, and to use the motion of
the robot to spatially sample the field produced by the source,
and then apply MFP techniques. The natural next question is
how should the robot move in order to get the best localization
in the shortest possible time? This important question is the
focus of our paper. While the algorithm we propose is general
and may be used with any kind of signal, we specifically focus
on acoustic signals in this paper for concreteness.

The topic of path planning for source localization has not
been treated extensively in literature, but some researchers
have explored related ideas. In [3], an algorithm for radio
frequency source localization based on the received signal
intensity by multiple unmanned aerial vehicles (UAV) is
proposed for a non-line-of-sight propagation conditions. The
authors of [4] propose a method to localize an acoustic
source using emergent behavior of a small team of robots,
but the method performs poorly for single robots. In [5], the
authors propose a Monte Carlo tree search based path-planning

algorithm for a mobile robot to use a microphone array for
sound source localization.

II. PATH-PLANNING ALGORITHM

We assume a robot with an acoustic intensity sensor oper-
ating in an environment where the acoustic propagation can
be accurately modeled. The robot uses prior knowledge (e.g.
source is within a specific area of interest, source is on the
seabed, etc) to estimate an initial probability distribution for
the source location. The robot starts at a known location and
measures the acoustic intensity. It compares the measured
intensity value against modeled values for potential source
locations, and updates the probability distribution. The robot
then moves and makes a measurement at another nearby
location and repeats the process. We want to help the robot
plan its move in such a way as to make the probability
distribution as compact as possible, i.e., eliminate ambiguities
in our knowledge of source location, in a short period of time.

At time step i, the probability of the source at a location
x based on a set of measurements and corresponding robot’s
positions can be written as:

f(x|{(wj , zj)}∀j ∈ [1, i]),

where wj is the robot’s position when measurement zj was
made. We henceforth use set Yi ≡ ({(wj , zj)}∀j ∈ [1, i]) for
a more compact notation. By making the ith measurement at
location wi, the probability distribution of source location can
be updated using Baye’s Theorem:

f(x|Yi) = f(x|Yi−1 ∪ (wi, zi))

=
f((wi, zi)|Yi−1,x)f(x|Yi−1)

f((wi, zi)|Yi−1)

=
f((wi, zi)|Yi−1,x)f(x|Yi−1)∑
x f((wi, zi)|Yi−1,x)f(x|Yi−1)

.

(1)

We want the probability distribution f(x|Yi) to be as
compact as possible, such that the uncertainty is minimal. We
therefore wish to minimize the entropy of the distribution at
each time step i, by selecting the next location for the robot
to move to, essentially yielding an adaptively planned path.
Do note that this approach is greedy and does not generate a
globally optimal path, but still yields good results as we show
in the next section.

Minimizing the entropy of the posterior distribution of
source location is equivalent to maximizing the information
gain in the Bayesian update. We therefore plan our path by
choosing an action (direction for the robot to move) that
leads to maximal information gain at each step. Before a
robot makes a measurement at a given location, there is some
prior uncertainly about the sound intensity at that location.
Once the measurement is made, the uncertainly reduces to
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Fig. 1. Modeled transmission loss for the simulated environment

the measurement uncertainty (entropy of the measurement
noise). Hence the information gained closely follows the prior
uncertainty of modeled sound intensity, given f(x|Yi). We
use weighted variance as a measure of prior uncertainty and
choose an action at each time step to yield the next way point:

wi+1 = arg max
w∈A(wi)

∑
x

f(x|Yi)(Z(w,x)− µ)2, (2)

µ =
∑
x

f(x|Yi)Z(w,x),

where Z(w,x) is the modeled acoustic intensity at location
w if the source is assumed to be at location x, and A(wi) is
the set of feasible moves for the robot.

The essential idea is to let the robot move in a direction
where there is more uncertainty in modeled sound intensity
values based on the probability distribution of source location,
so as to maximize reduction of overall entropy. In summary,
our algorithm iterates over two steps until the source location
is confirmed to a required level of accuracy. The first step is
to take a measurement at current robot’s location and update
the probability distribution of the source location using (1).
The second step is to determine the optimal direction for the
robot to move based on the weighted variance using (2).

III. RESULTS

We illustrate the efficacy of our algorithm on a specific
marine application of localizing a 1 kHz acoustic source on
the seabed using an autonomous underwater vehicle (AUV)
equipped with a single hydrophone. We simulate a 2D envi-
ronment with 25 m water depth and 1 km range of interest.
We assume a flat bathymetry, sandy seabed, and slightly
downward-refracting sound speed profile. Fig. 1 shows the
resultant transmission loss pattern for such an environment
using a Bellhop underwater propagation model. Measured
intensity values are simulated by adding random noise with
a standard deviation of 10 dB to the modeled value in dB.

We start the AUV at a range of 300 m from the source
and a depth of 10 m. Three different path planning policies
are compared. The policy “straight” moves the AUV in a
straight line at constant depth. The policy “random” moves
the AUV in a randomly generated direction after each step
(step size of 1 m). The last policy “adaptive” is our proposed
algorithm to move the AUV in the direction that minimizes
source localization entropy. The simulation for each policy
allows the AUV to execute a 50 m path (50 time steps), and

Fig. 2. A sample trajectory generated by each of the three policies

Fig. 3. Evolution of overall entropy of source location for the three policies

the simulation is repeated 100 times to collect performance
statistics.

Fig. 2 shows a sample trajectory of the AUV generated by
each of the three policies. The source localization entropy,
averaged over 100 runs for these three policies, is plotted in
Fig. 3 as a function of distance traveled. Table I summarizes
the 90%-trimmed root-mean-square (RMS) localization error
over the 100 runs. As clearly seen, our proposed adaptive
policy results in the lowest overall entropy and smallest
localization error among the three tested policies.

TABLE I
RMS LOCALIZATION ERROR FOR THE THREE POLICIES

Policy RMS Error
Straight 209.3 m
Random 52.2 m
Adaptive 10.6 m
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