

PAU Perception and Activity Understanding Group

Deep learning for robust audio perception in human-robot interactions

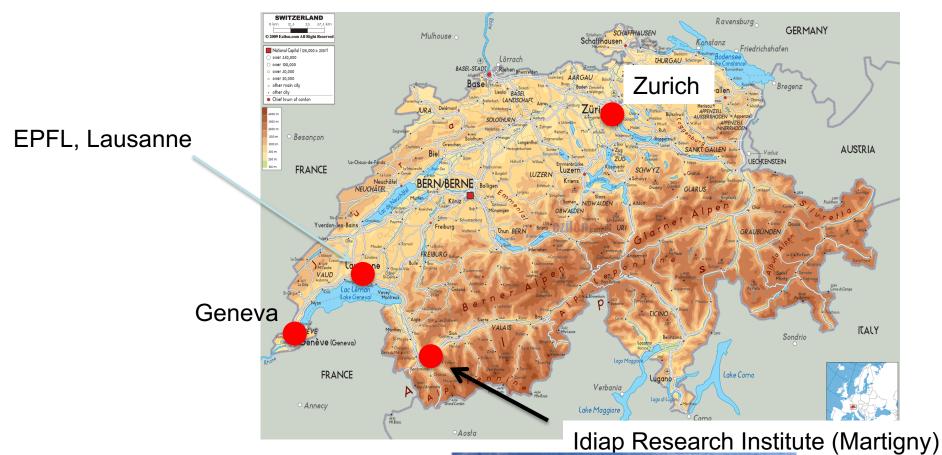
Jean-Marc Odobez

IDIAP/EPFL Senior researcher – Head of PAU group

2019 ICRA workshop on

Sound Source Localization and its Applications for Robots

Switzerland

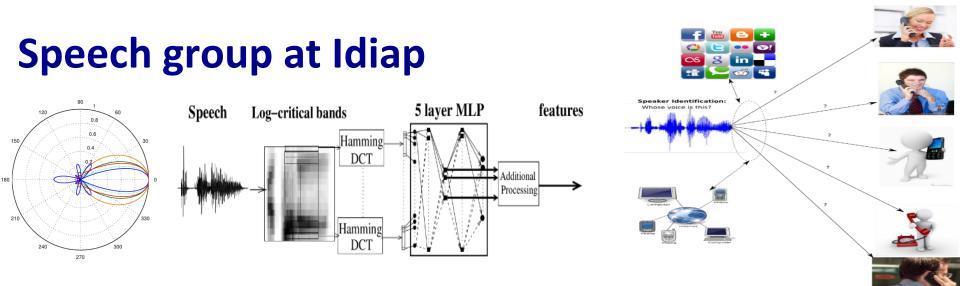


IDIAP Research Institute, in (very) brief

- Non for profit Foundation, created in 1991
 - academic affiliation with EPFL

- Human resources: around 100 people
 - 14 permanent researchers + 50 research associates (postdocs, PhD students) from more than 25 countries

- Main research areas Artificial Intelligence for society
 - Machine Learning
 - Perceptual and Cognitive systems (speech, computer vision, natural language processing)
 - Human and Social Behavior (face-to-face communication, mobile, social media analysis,...)
 - Biometry
 - Robotics



- Head: Prof. Hervé Bourlard
 - Researchers: Petr Motlicek, M. Magimai-Doss, Phil Garner
 - 25+ persons (researchers, phds, postdocs, interns, ...)
- Most speech related tasks
 - Forefront of Automatic Speech Recognition -- multilinguality
 - Speaker analysis (verification, identification, diarisation, role detection)
 - Microphone arrays and localization (beamforming, ad-hoc architectures)
 - Text-to-speech synthesis
 - Pathological speech processing
 - Speech assessment

PAU group research themes and objectives

Thematic : sensing, interpreting, understanding

- Perceptual component extraction physical representations - detection, tracking, pose
- Activity understanding gestures, behaviors individual, group level context
- Methods & Models computer vision, (multimodal) signal processing, sociology machine learning: statistical models; deep learning
- Applications surveillance, human-robot interfaces, sociology, multimedia content analysis

Interaction analysis

Idiap - KTH dataset

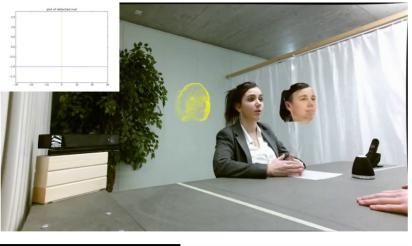
HeadFusion 360 degree head tracking

Head gestures (nods)

3D Morphable Model and 3D Reconstruction

Yu Yu, Kenneth Alberto Funes Mora, Jean-Marc Odobez Idiap Research Institute and EPFL

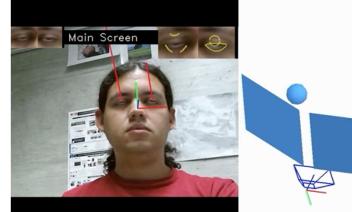
HeadFusion: 360° Head Pose Tracking combining



MUMMER (H2020 EU)

 Set-ups & Tasks (tracking, reid, non-verbal cues)

Gaze & attention



PAU Perception and Activity Understanding Group

Deep learning for robust audio perception in human-robot interactions

Jean-Marc Odobez

Joint work with

- Weipeng He (Phd student)
- Petr Motlicek (researcher)

- Joint sound source localization and discrimination with deep learning
- Multiple Sound source localization NN adaptation using weak labels

Interacting with robots : MuMMER EU project

- GOAL: Develop a humanoid robot
 - public shopping mall
 - entertaining, give information, directions
 - autonomous, natural interactions

Participants

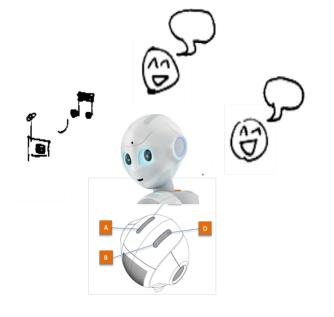
- University of Glasgow (UK)
- Heriott-Watt University (UK)
- Idiap Research Institute (CH)
- LAAS-CNRS (France)

- Softbank Robotics Europe (France)
- VTT Technical Research Center (Finland)
- Ideapark (Finland)

Sound source localization & discrimination

- Challenges
 - Unknown number of sound sources
 - Strong noise (robot ego-noise, background)
 - Speech and non-speech sources
 - Speech overlap (simultaneous speakers)
 - Short utterances during interactions

Sound source localization



Sound source

Two micro-phones

 $R_{12}(\tau) = \frac{1}{2\pi} \int \Psi_{12}(\omega) X_1(\omega) X_2(\omega)^* e^{j\omega\tau} d\omega$

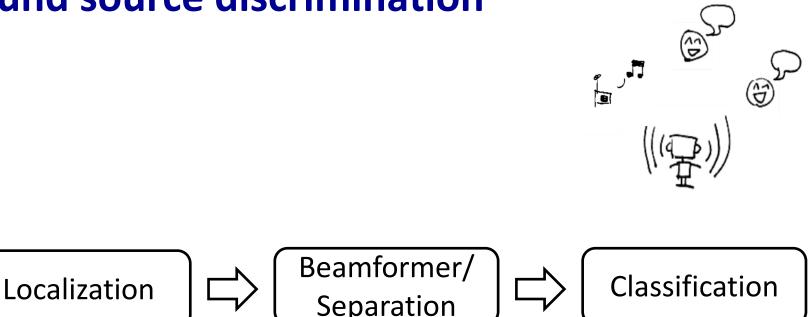
Micro-phone array

GCC-PHAT

- Traditional approaches (localization) : signal processing
 - Interaural time and intensity differences
 - Time difference of arrival (TDOA)
 - E.G. : GCC-PHAT: Generalized Cross-Correlation with Phase Transform
 - => relies on modeling assumptions

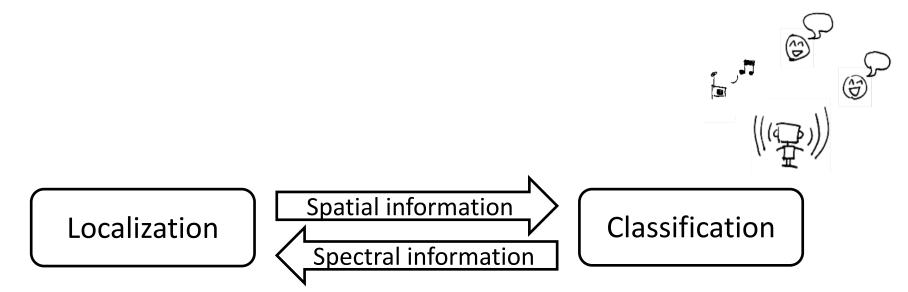
(head model, geometry knowledge, obstacles, propagation, ...)

Sound source discrimination



- Previous methods : solve the problem sequentially
- Issues:
 - beamforming : enhances the signal coming from a given direction
 - direction is approximately known
 - different audio representation/processing for localization and classification
 - related: which signal frequencies comes from which direction ?

Sound source localization & discrimination



• Proposition: learning-based

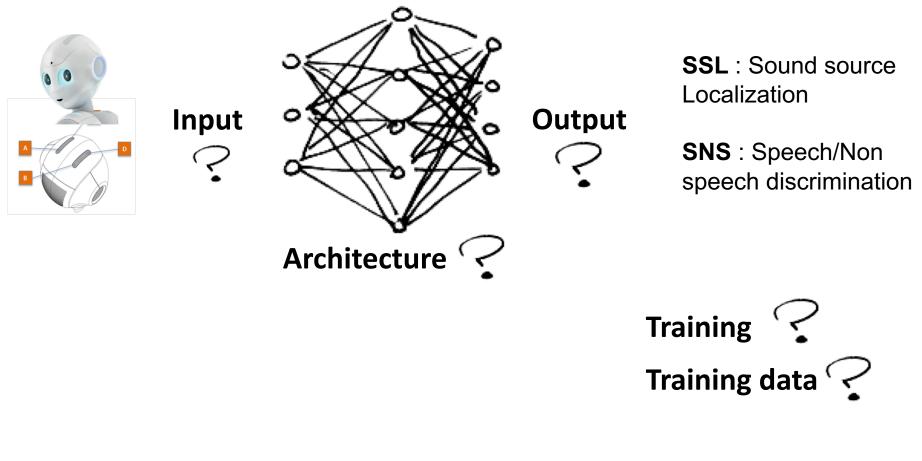
joint localization & discrimination

- both tasks help each other
- fewer assumption required
- direct optimization for the tasks

Deep Neural Networks for Multiple Speaker Detection and Localization, He, Motlicek, Odobez, Int. Conference on Robotics and Automation (ICRA) 2018

Joint Localization and Classification of Multiple Sound Sources Using a Multi-task Neural Network, He, Motlicek, Odobez, Interspeech 2018

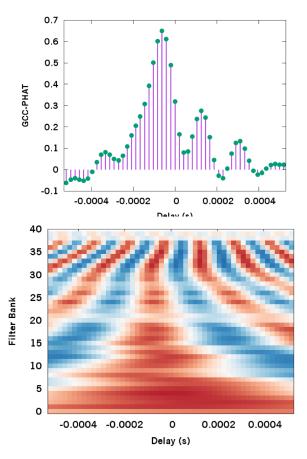
Sound source localization & discrimination

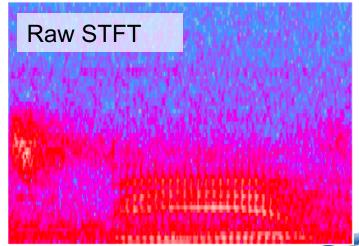


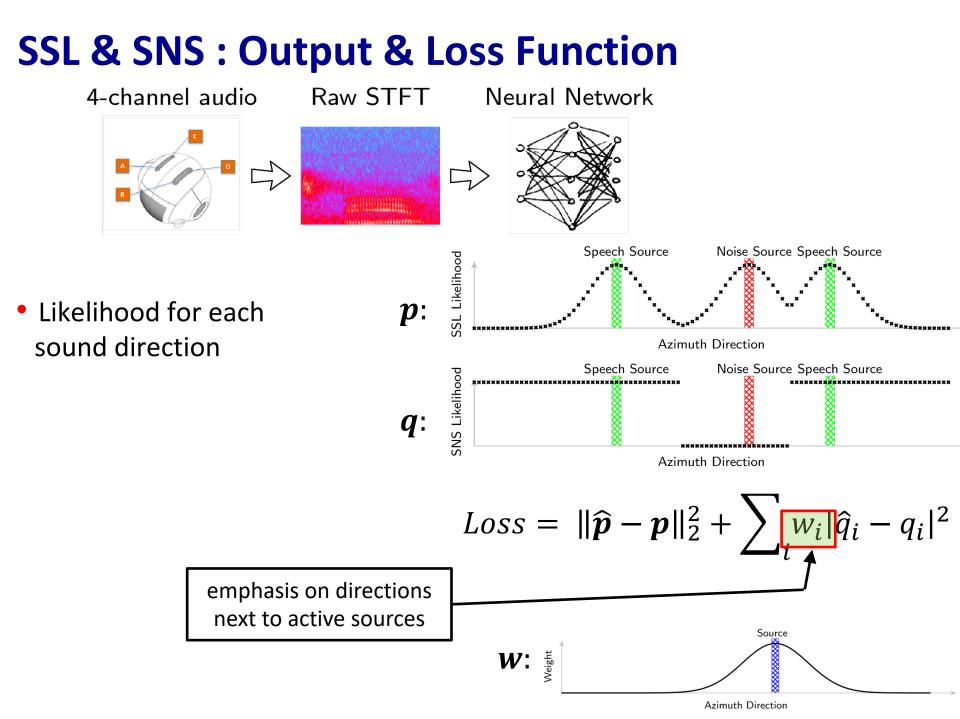
• How to proceed?

SSL & SNS : Input

- Input signals
- Per pair of microphone (6)
 - GCC-PHAT delay coefficients
 - GCC-PHAT on filter banks
 - Ok for localization
 - Lacks spectral information for SNS
- Short-Time Fourier transform (SFTF) per microphone

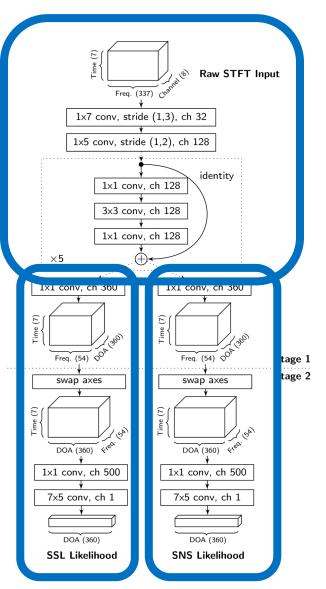






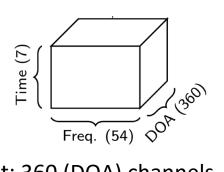
SSL & SNS : Network structure

- Fully convolutional
 - Residual network trunk
 - Two task-specific branches



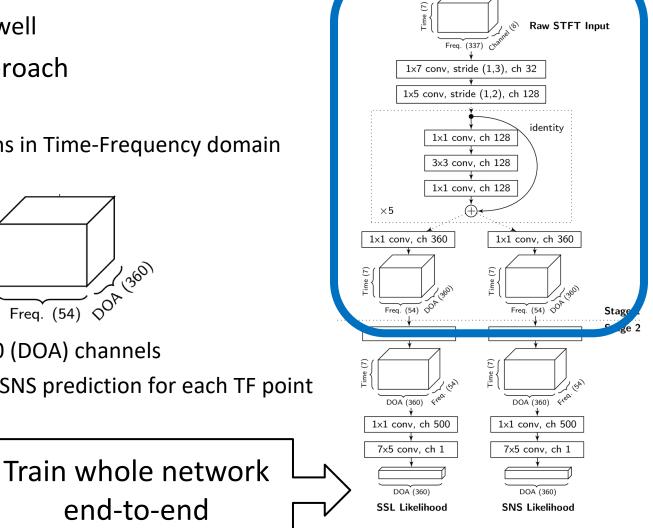
SSL & SNS : Network training

- End-to-end
 - Not working well
- Two-stage approach
 - Stage 1
 - Convolutions in Time-Frequency domain



- Output: 360 (DOA) channels
- early SSL & SNS prediction for each TF point

end-to-end



SSL & SNS : Network training

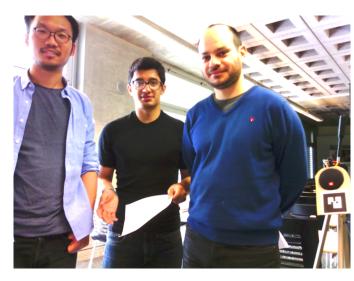
- End-to-end
 - Not working well
- Two-stage approach



SSL & SNS : Experiments

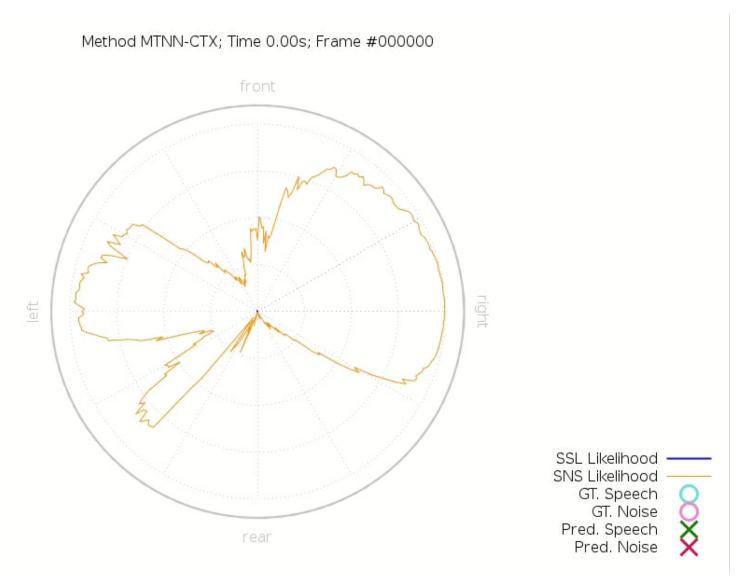
- Training
 - Loudspeakers: 32 hours, 148 speakers
 - Speech: AMI Corpus
 - Non-speech: Google AudioSet
 - Pepper moves to collect data with variabilities
 - => faster data-collection

- Loudspeaker: 17 hours, 16 (different) speakers
- Human talkers: 8 minutes, 7 speakers (with loudspeakers Non Speech sources)
- Sound Source Localization for Robots (SSLR) Dataset https://www.idiap.ch/dataset/sslr



AMI Corpus: http://groups.inf.ed.ac.uk/ami/corpus/ AudioSet: https://research.google.com/audioset/

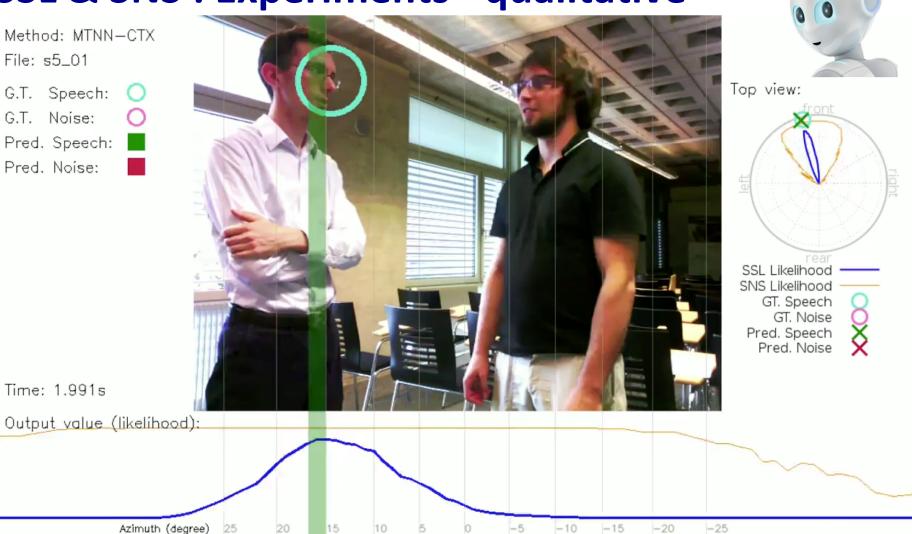
SSL & SNS : Experiments – qualitative results



Loudspeaker recording

SSL & SNS : Experiments - qualitative

Method: MTNN-CTX File: s5_01 G.T. Speech: G.T. Noise: Pred. Speech: Pred, Noise:



- Blue curve: likelihood of a sound source
- Yellow curve: is the source speech (1) or not (0)

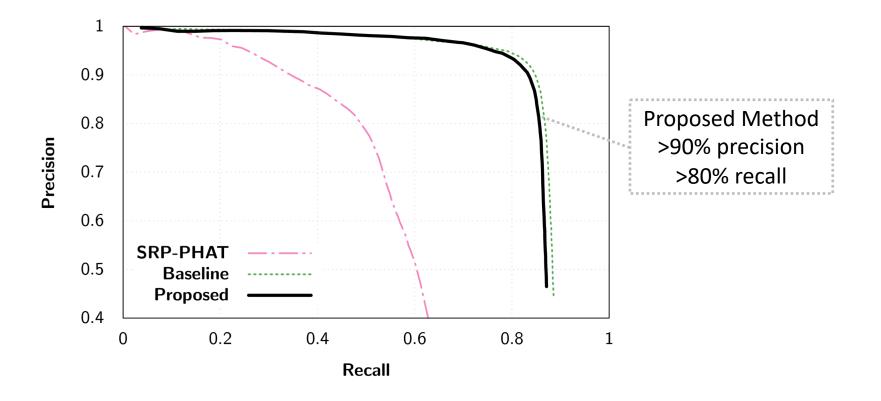
SSL & SNS : Experiments – evaluation

Tasks

- Sound Localization
- Speech/Non-speech Classification
- Speech Localization
- Methods
 - Baseline: two-step approach
 - localization NN
 - MVDR + classification (NN on beamformed signal)
 - Proposed method

SSL & SNS : Experiments – sound localization

Human recordings



SSL & SNS : Experiments – speech/non-speech

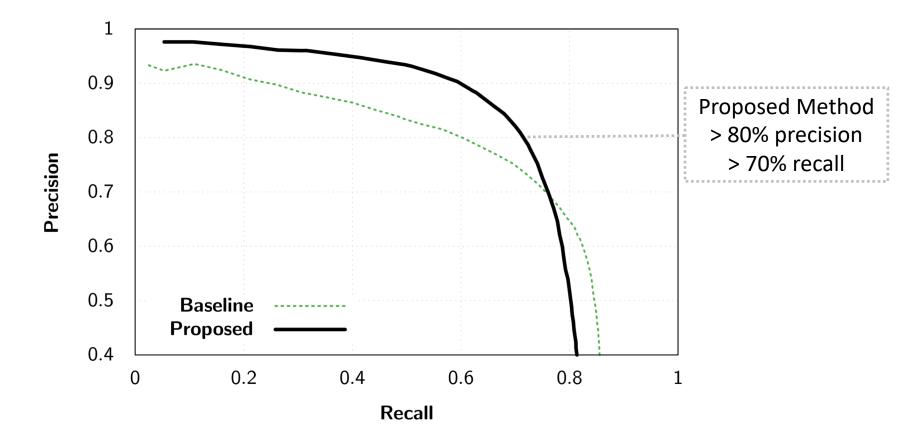
	(**************************************		
	Accuracy	Loudspeaker	Human
Baseline		0.80	0.68
Proposed Method		0.95	0.85

(Assuming sound direction is known)

- Proposed method
 - much better
 - good generalization

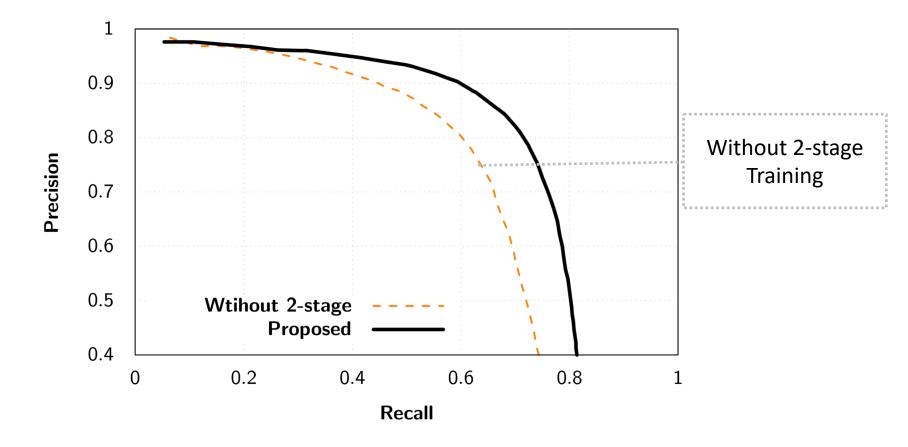
SSL & SNS : Experiments – speech localization

Human recordings



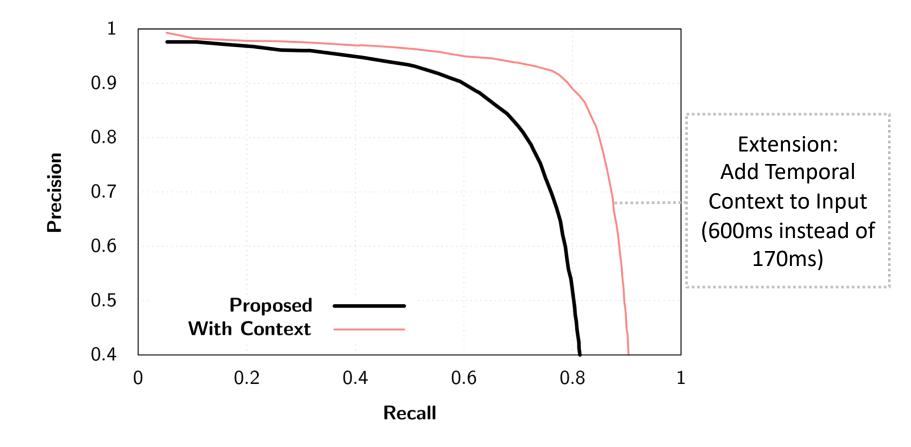
SSL & SNS : Experiments – speech localization

Human recordings



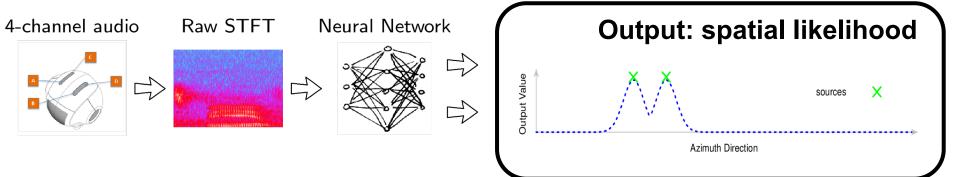
SSL & SNS : Experiments – speech localization

Human recordings



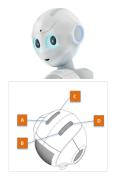
- Joint sound source localization and discrimination with deep learning
- Multiple Sound source localization NN adaptation using weak labels

Learning to localize sound

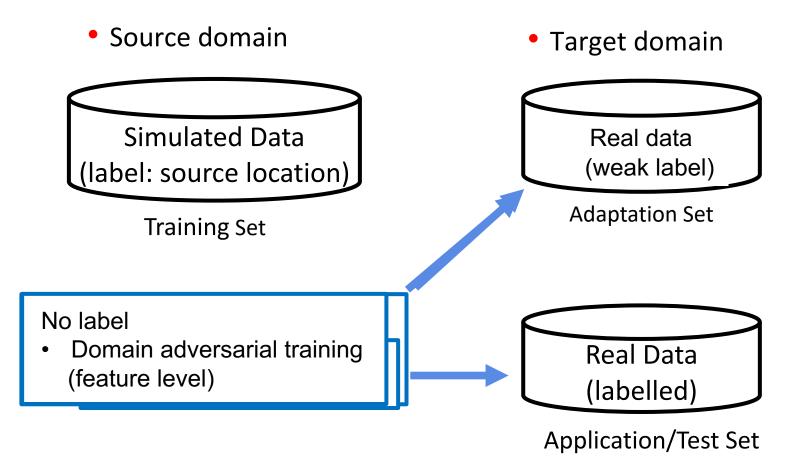


- Current issue training data
 - diversity in source signals (voices, noise), power, positions, noise, etc.
 - device specific
 - collection and annotation can be costly
- Approach & motivations
 - train network with simulated data –apply to real data?
 - control diversity, exploit large datasets
 - reality gap : mismatch between simulation & real conditions
 - device physical body & microphone response pattern, room features,...

We need domain adaptation !

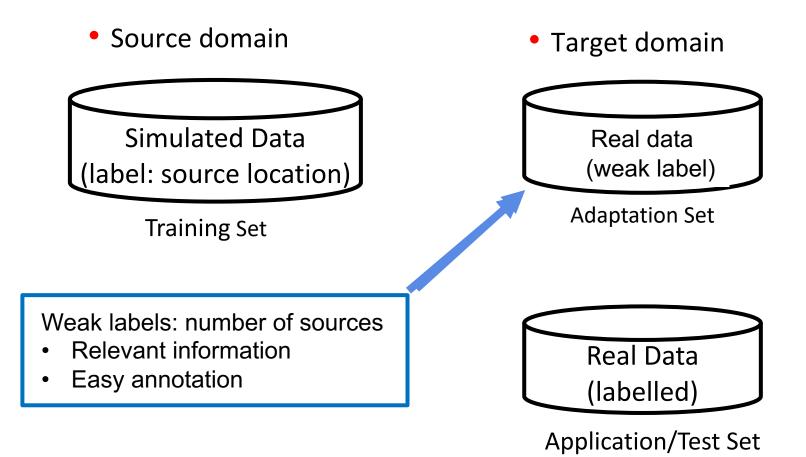


Domain adaptation – problem formulation



Adaptation of Multiple Sound Source Localization Neural Networks with Weak Supervision and Domain-Adversarial Training, He, Motlicek, Odobez, Int. Conference on Acoustic, Speech and Signal Processing (ICASSP) 2019

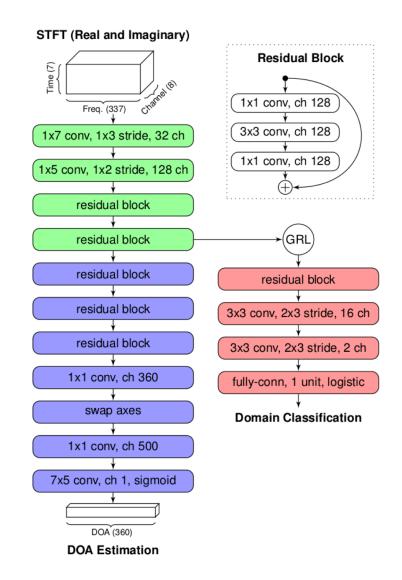
Domain adaptation – problem formulation



Adaptation of Multiple Sound Source Localization Neural Networks with Weak Supervision and Domain-Adversarial Training, He, Motlicek, Odobez, Int. Conference on Acoustic, Speech and Signal Processing (ICASSP) 2019

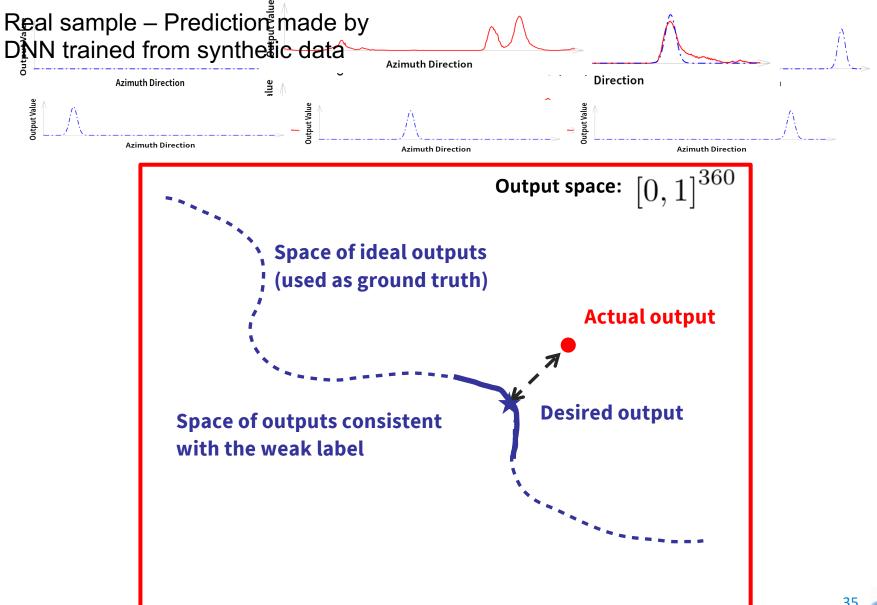
Domain adaptation – domain adversarial training

- Goal: learn features (green part)
 - Perform well for the task (purple part) (on simulated data)
 - Are domain independent (red part)
 => domain classifier can not distinguish those produced from the real or simulated data



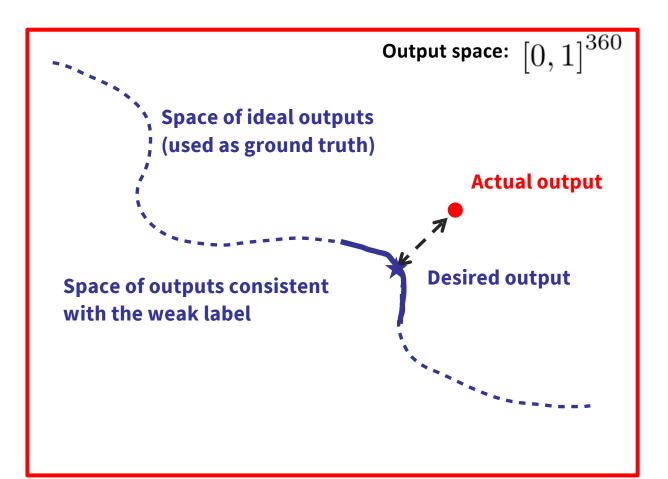
Ganin et al. "Domain-adversarial training of neural networks," Journal of Machine Learning Research, 2016.

Domain adaptation – weak supervision

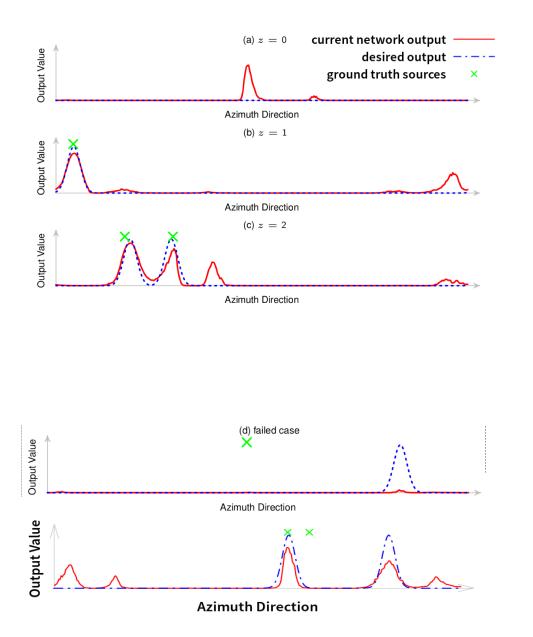


Domain adaptation – weak supervision

Real sample – Prediction made by DNN trained from synthetic data



Domain adaptation – weak supervision



- Adaptation
 - real samples
 - generate outputs from the network trained from synthetic data
 - collect desired outputs using the weak label information
 - ⇒ fine-tune the network with the (real sample, desired output) dataset

Experiments

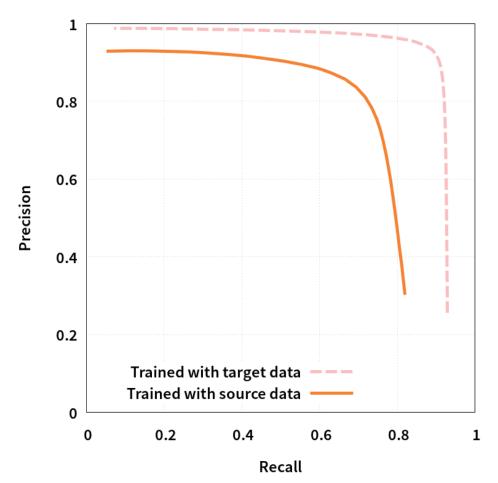
- Data : clean segment from the AMI corpus
 - Source domain: simulation with RIR generator (several rooms & reverberation coefficients)
 - Target domain: real data (loudspeaker + robot)

- Evaluation
 - Frames of 170ms
 - Maximum 2 sources
 - Correct detection: error < 5 degrees

RIR: Room-Impulse-Response simulator .

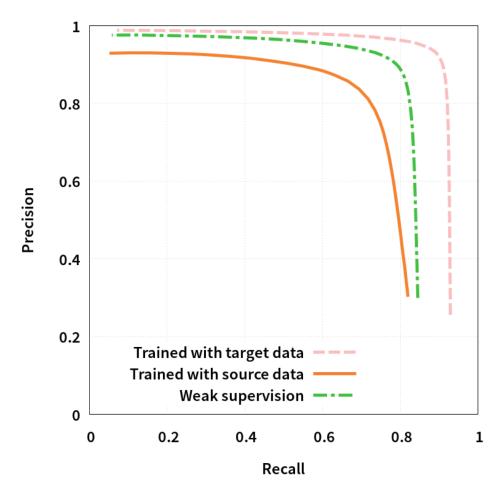
J.B. Allen and D.A. Berkley, "Image method for efficiently simulating small-room acoustics," Journal Acoustic Society of America, 65(4), April 1979, p 943.

Results – supervised training

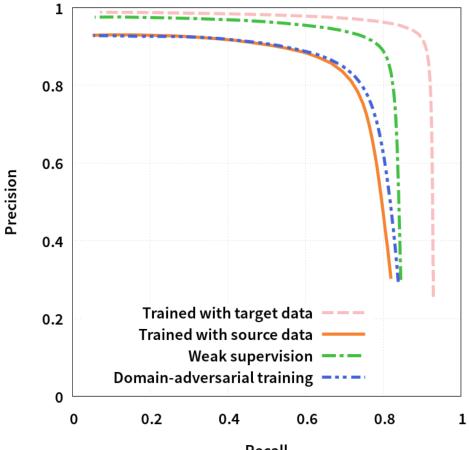


39 🍰

Results – weak supervision

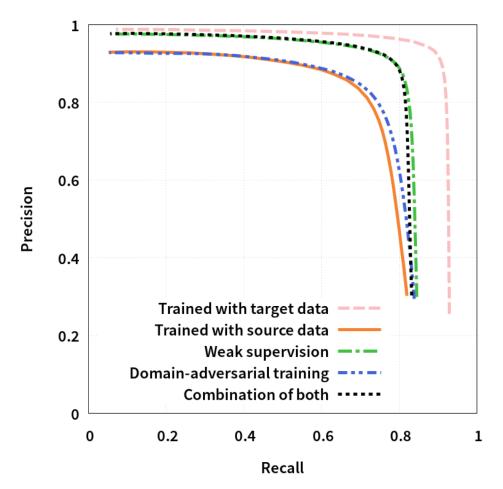


Results - domain adversarial



Recall

Results – weak + adversarial combined



- Adversarial training
 - difficult to find the trade-off between domain-invariance and discriminative power

SLS & SNS : conclusions

- Deep learning-based methods
 - Tasks: Sound localization ---- joint sound localization and classification
 - Likelihood output encoding : easy handling of multiple sources
 - Two-stage training: adding intermediate supervision
 - Robot embodiment: simplifies training data collection
 - Easy addition of temporal context
 - Significant better performance compared to baselines
- Domain adaptation (quick generalization to other devices): synthetic to real domain
 - Weak supervision (known number of sources) => significant improvement
 - Domain-adversarial training fails to yield significant results
- Next steps
 - Curriculum learning (Done => closes the reality gap)
 - Working on joint localization & voice embedding
 - Better simulators

Thanks for your Attention ! Questions ? 43