
Auton Robot (2019) manuscript No.
(will be inserted by the editor)

Simultaneous Planning of Sampling and Optimization
Study on Lazy Evaluation and Configuration Free Space Approximation for Optimal Motion
Planning Algorithm

Donghyuk Kim1 · Sung-Eui Yoon1

Received: date / Accepted: date

Abstract A recent trend in optimal motion planning has
broadened the research area toward the hybridization of
sampling, optimization, and grid-based approaches.

A synergy from such integrations can be expected to
bring the overall performance improvement, but seamless
integration and generalization is still an open problem. In
this paper, we suggest a hybrid motion planning algorithm
utilizing both sampling and optimization techniques, while
simultaneously approximating a configuration-free space.

Unlike conventional optimization-based approaches, the
proposed algorithm does not depend on a priori information
or resolution-complete factors, e.g., a distance field. Ours in-
stead learns spatial information on the fly by exploiting em-
pirical collisions found during the execution, and decentral-
izes the information over the constructed graph for an effi-
cient reference. With the help of the learned information, we
associate the constructed search graph with the approximate
configuration-free space so that our optimization-based lo-
cal planner exploits the local area to identify the connec-
tivity of free space without depending on the precomputed
workspace information.

To show the novelty of the proposed algorithm, we ap-
ply the proposed idea to asymptotic optimal planners with
lazy collision checking; lazy PRM∗ and Batch Informed
Tree∗, and evaluate them against other state-of-the-arts in
both synthetic and practical benchmarks with varying de-
grees of freedom. We also discuss the performance analysis,

Donghyuk Kim
E-mail: donghyuk.kim@kaist.ac.kr

Sung-Eui Yoon
E-mail: sungeui@kaist.edu, corresponding author

1Scalable Graphics, Vision and Robotics (SGVR) Lab, School
of Computing, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon, South Korea

properties of different algorithm frameworks of lazy colli-
sion checking and our approximation method.

Keywords Motion Planning · Lazy Collision Checking ·
Trajectory Optimization · Configuration-Free Space
Approximation

1 Introduction

Sampling-based motion planning algorithms have been well
studied for the past several decades thanks to their proba-
bilistic completeness and wide applicability. Some promi-
nent examples are RRT (LaValle 1998) and PRM (Kavraki
et al. 1996), which can be viewed as random geometric
graph construction in the configuration-free space.

For the asymptotic optimal motion planning, Karaman
and Frazzoli (2011) presented RRT∗, PRM∗, and RRG,
which guarantee almost-sure asymptotic optimality. These
optimal variants successfully opened a new research area in
motion planning by providing a theoretical foundation and
have been applied to practical solutions for real problems
(Bialkowski et al. 2011; Jeon et al. 2011; Karaman et al.
2011).

In contrast to the sampling-based planners,
optimization-based planners convert a non-convex mo-
tion planning problem into a sequence of convex problems
for quickly finding a locally optimal solution (Kalakrishnan
et al. 2011; Park et al. 2012; Zucker et al. 2013). These
approaches mainly aim to minimize an objective function
with respect to planning constraints, such as smoothness
for optimality, while estimating the gradients of obstacle
potential for feasibility, i.e., the non-collision constraint.
Some papers have studied the configuration-free space
approximation for various purposes (Bialkowski et al.
2013a,b; Burns and Brock 2005a,b; Pan and Manocha
2016; Rickert et al. 2014; Shkolnik and Tedrake 2011).

2 Donghyuk Kim1, Sung-Eui Yoon1

Among them, Shkolnik and Tedrake (2011) represented
the configuration-free space as a set of hyperspheres
using empirical collision information for efficient biased
sampling. Bialkowski et al. (2013a) took a similar approach
but used explicit proximity computation to compute the
boundary of the hyperspheres. In their following work,
Bialkowski et al. (2013b) used a KD-tree based repre-
sentation to represent the approximate configuration-free
space with provable convergence to the ground-truth. On
the other hand, Denny and Amato (2011, 2012) suggested
a methodology of mapping configuration-obstacle space to
guide the sampling within free space. Denny et al. (2013)
presented an extensive work in conjunction with lazy graph
expansion for efficient graph expansion.

Kim et al. (2018a) suggested using configuration-free
space approximation to predict regions that likely have
no collisions. This approach is tailored to lazy collision
checking to balance the overhead of collision checking and
graph restructuring. Pan and Manocha (2016) proposed a
probabilistic collision checking with free space approxima-
tion. They introduced an environment learning phase to un-
derstand the given geometric structure and then exploited
learned knowledge using spatial coherency for a probabilis-
tic collision checking.

As a hybrid approach, Choudhury et al. (2016) sug-
gested RABIT ∗ (Regionally Accelerated Batched Informed
Trees) which is the integration of a sampling-based algo-
rithm BIT∗ (Batched Informed Tree, Gammell et al. 2015)
and an optimization-based algorithm, CHOMP (Covari-
ant Hamiltonian Optimization for Motion Planning, Zucker
et al. 2013). This hybrid algorithm considers the pros and
cons of both approaches together to identify difficult-to-
sample homotopy of the solution path efficiently, while pre-
serving the asymptotic optimality.

It is, however, only workable under the assumption that
a precomputed workspace information, e.g., a distance field,
is given a priori or is analytically computable on demand,
which can be a serious burden in practical problems.

In this paper, we present a hybrid approach of sampling-
based and optimization-based planning, in which the en-
tire planning process is accomplished on the fly. The pro-
posed algorithm uses empirical collision information to
learn the configuration-free space during the execution. The
optimization-based planner utilizes the learned information
to guide trajectories toward the configuration-free space
to establish more connections between sampled configura-
tions. We also suggest an efficient decentralization of sam-
ples so that two different types of planners can work seam-
lessly with our approximate configuration-free space.

In the subsequent sections, we first explain the pre-
liminaries of the sampling-based and optimization-based
approach (Sec. 2). Sec. 3 gives an overview of the pro-
posed algorithm (Sec. 3.1), and how to approximate the

Algorithm 1: NAÏVE PRM∗

1 V ←{qinit ,qgoal}
2 E← /0
3 while Termination condition is not satis f ied do
4 qsample← Sample()
5 if IsCollisionFree(qsample) then
6 Insert qsample to V
7 Qnear ← Near(qsample)
8 foreach qnear ∈ Qnear do
9 if IsCollisionFree((qnear,qsample)) then

10 Insert (qnear,qsample) to E

11 U pdateSolutionPath(G)

12 return SolutionPath(G)

configuration-free space with sampling-based motion plan-
ning (Sec. 3.2), followed by optimization based local plan-
ning with learned information (Sec. 3.3). We then demon-
strate its benefits by experiments with various dimensions
against other state-of-the-art planners (Sec. 4). Lastly, we
discuss the properties of our method and the configuration-
free space approximation in detail (Sec. 5).

This paper is an extended version of Dancing PRM∗

(Kim et al. 2018b) to shed light on the applicability and nov-
elty of Dancing PRM∗. It shares preliminaries (Sec. 1, 2)
and the central theme (Sec. 3) with the original work. Some
of experiment results and analysis on the asymptotic com-
plexity are reused combined with our new results. On top
of that, we provide additional materials in this paper, as fol-
lows:

1. Provide an abstraction of our approach over a generic
sampling-based motion planning algorithm (Sec. 3).

2. Present BDT∗ (Batch Dancing Tree), which is the
integration of the local trajectory optimization with
configuration-free space approximation of Dancing
PRM∗ and BIT∗ (Batch Informed Trees Gammell et al.
2015), to show the generality of our idea (Sec. 3.4).

3. Report additional experiment results to show the perfor-
mance of BDT∗ with analysis of the different behavior
between BDT∗ and Dancing PRM∗ in terms of a lazy
graph expansion (Sec. 4).

4. Discuss how each component in our configuration-free
space approximation, i.e., witness propagation and ra-
dius compensation, contributes to the error reduction
(Sec. 5.3 and 5.4).

2 Background

This section reviews major previous studies and presents
preliminaries and notations employed throughout the paper.

Simultaneous Planning of Sampling and Optimization 3

2.1 Sampling-based Motion Planning

In this paper, we mainly consider the optimal motion plan-
ning problem, whose objective is to find a feasible and op-
timal trajectory ξ connecting two given end points qinit and
qgoal satisfying ξ (0) = qinit and ξ (1) = qgoal in the config-
uration space X, where a trajectory ξ : [0,1]→ X. For fea-
sibility, ξ should lie in the configuration-free space X f ree,
where X f ree ⊂ X and the configuration obstacle space Xobs
is defined to be X\X f ree.

To explain how sampling-based approaches construct a
search graph G= (V,E)∈X, we briefly explain naı̈ve PRM∗

shown in Alg. 1, which is one of the prominent sampling-
based planners.

In each iteration of Alg. 1, PRM∗ samples a ran-
dom configuration qsample and checks its validity with
IsCollisionFree(·) (Line: 5) which returns true if a given
configuration q or an edge (qi,q j) is valid i.e. ∈ X f ree.
For each valid configuration qsample, r-nn (r-nearest neigh-
bor) query of Near(·) finds near neighbors, Qnear, (Line:

7) within a ball of radius γ

(
log |V |
|V |

)1/d
centered at qsample,

where d is the dimension of the problem, |V | is the cardi-
nality of V , and γ is a user defined constant greater than
1 (Karaman and Frazzoli 2011). k-nn (k-nearest neighbor)
query can also be an alternative to r-nn within Near(·); in
that case, k is defined by dγ(e+ e

d) · log(|V |)e (Karaman and
Frazzoli 2011).

Line 9 checks collision for every possible connection of
(qnear ∈ Qnear,

qsample) to find a feasible connection between con-
figurations in G; this is also known as local planning.
U pdateSolutionPath(·) computes the shortest path from
qinit to qgoal on the constructed graph G if the anytime prop-
erty is required for the given problem. Otherwise, the short-
est path is computed (Line: 12) using a well-known A∗ or
Dijkstra’s algorithm at the end of execution.

In this study, the foundation of the proposed algorithm
is based on sampling-based planning, mainly with PRM∗.
Furthermore, to see wide applicability of our approach, we
also test another sampling-based planning method BIT∗.

Irrespective of PRM∗ and BIT∗, the role of the employed
sampling-based planner within our method is to divide the
entire motion planning problem into a set of smaller local
planning problems while approximating the configuration-
free space with empirical collisions. We discuss how the
optimization-based local planning works with our spatial in-
formation in the subsequent section.

2.2 Optimization-based Motion Planning

Our local planner is based on a gradient optimization tech-
nique, CHOMP (Covariant Hamiltonian Optimization for

Table 1 Notation summary table.

Notation Description
ξ (t) Configuration on the trajectory ξ at a time t = [0,1].

B Set of entire body points for a given robot model.

x(ξ (t),b)
Mapping of a body point b ∈ B at a configuration ξ (t)
to the corresponding point in the workspace.

x′ Derivative of x(·).
c(·) Obstacle potential for being close or inside Xobs.

J Kinematic Jacobian, i.e., d
dq x(q,b),q ∈ X and b ∈ B.

V,E Vertex and edge set of the search graph G.

V ∗
Set of sample configurations observed during planning
regardless of collision-freeness.

Motion Planning, Zucker et al. 2013). We first briefly review
the concept of CHOMP and discuss the motivation with our
observations.

The objective of CHOMP is to find a smooth, collision-
free trajectory ξ , exactly like that of sampling-based plan-
ning. The objective function, U (ξ), is then formalized as
the following:

U (ξ) = fprior(ξ)+λ · fobs(ξ), (1)

where fprior can be considered as a sum of squared deriva-
tives for the trajectory ξ to satisfy local optimality and ad-
ditional constraints, such as controlling smoothness or lim-
iting the maximum acceleration. The obstacle cost function
fobs penalizes a configuration of a robot for being close to
Xobs to avoid any collision. To be specific, fobs and its gra-
dient ∇ fobs are formalized in Eqs. 2 and 3, respectively:

fobs(ξ) =
∫ 1

0

∫
B

c(x(ξ (t),b))
∥∥∥ d

dt
x(ξ (t),b)

∥∥∥db dt, (2)

∇ fobs(ξ) =
∫

B
JT‖x′‖ · [(I− x̂′x̂′T)∇c− cκ] db. (3)

Roughly speaking, Eq. 2 stands for a cost integration
over the given trajectory ξ where an obstacle potential func-
tion, c(·) penalizes a configuration being near the obstacle
space and the term inside ‖ · ‖ is a measurable length of
a trajectory through x(ξ (t),b) in the workspace. The nota-
tions used in both equations and throughout the paper are
also summarized in Table 1.

The computation of the obstacle potential c(·) depends
on a body simplification, and workspace information such
as the distance field (Zucker et al. 2013), which can be com-
puted using Euclidean Distance Transforms (EDT) in the
workspace, for instance.

The robot model B is generally simplified by a swept-
sphere volume (Park et al. 2012; Zucker et al. 2013). x(·)
plays a mapping role from a configuration ξ (t) defined in
the configuration space to the workspace. As a result, the
integration of whole body B results in the obstacle potential
for a configuration ξ (t).

4 Donghyuk Kim1, Sung-Eui Yoon1

Fig. 1 These figures show a 2D manipulation problem with two joints
α and β in a planar space. The left figure shows how the robot is rep-
resented for working with workspace obstacle information (left) and
the signed distance field of the environment (right). In the left, a robot
arm is simplified by a set of body points b ∈ B (small squares), each
of which is a center of swept-sphere volume (red circles). In the right,
potentials against the obstacle are computed by the proximity of those
in the workspace (black arrow).

Eq. 3 shows the gradient of Eq. 2, where ∇c(·) is the
gradient of obstacle potential c(·), and κ is the curvature of
the trajectory. The objective function of CHOMP contains
obstacle potential terms such as c(·) and ∇c, which are hard
to compute in the configuration space.

For this reason, the conversion from the configuration
space to the workspace with x(·) and J is introduced to com-
pute fobs and ∇ fobs for a trajectory defined in the configura-
tion space using workspace information.

When it comes to practical performance, the use of
workspace obstacle potential makes the planning process
less affected by the dimensionality of the configuration
space. As a result, it generally provides a faster dynamic
trajectory generation and the stable result compared to
sampling-based planners.

Fig. 1 shows a 2D manipulation planning problem with
workspace obstacle potential in an illustrative way. In the
left figure, a robot body is represented as a set of reference
points B with swept-sphere volumes (red circles). The ap-
proximate volume is usually set conservatively to ensure
that the entire robot body is lying inside. This approxima-
tion makes the collision checking process much lighter than
checking the exact robot body with the signed distance field
shown in the right figure.

A set of points in the workspace x(ξ (t),b),∀b ∈ B are
computed from a configuration ξ (t), and we then average
them according to Eq. 2 and Eq. 3 with kinematic Jacobian
J in order to be used in the configuration space where ξ is
defined.

The limitation of the aforementioned process can be
summarized as follows. First, CHOMP only guarantees the
convergence to a local optimum since the optimization pro-
cess exploits the local convexity of fobs. Fortunately, the
local optimality issue has been studied extensively with
a stochastic sampling (Kalakrishnan et al. 2011; Zucker

Fig. 2 The left figure shows the configuration space of Fig. 1. If
we can represent the configuration space in a usable form, we can di-
rectly compute the obstacle potential and its gradient without any other
conversions between the workspace and configuration space. The right
figure shows the corresponding movement in the workspace between
two configurations (α ,β) and (α ′, β ′).

et al. 2013) and a hybrid approach of sampling-based and
optimization-based planning (Choudhury et al. 2016; Kuntz
et al. 2017). Second, CHOMP and its variants, including
other existing hybrid frameworks assume a discretized and
approximate representation, e.g., distance fields in finite res-
olutions, in the workspace and the simplified robot model B.
For these reasons, the resolution of the distance field and the
simplified robot representation can affect the performance
or further harm the completeness.

On the other hand, Fig. 2 shows what they look like in
the configuration space, where obstacle potentials can be
computed without the robot body simplification B, x(·) and
Jacobian, J. It has been, however, known as a hard problem
to compute such information and even represent it in a us-
able form, especially for a high-dimensional space. It will,
thus, be the key to our problem for representing and approx-
imating such space for seamless integration of hybrid plan-
ners.

In the subsequent section, we describe how the pro-
posed algorithm approximates such space without using dis-
cretized workspace information or expensive overheads re-
lated to proximity computation in the configuration space
while preserving the asymptotic optimality by integrating a
sampling-based approach. We also suggest space informa-
tion decentralization associated with the search graph for
efficient referencing.

3 Algorithm

In this section, we describe the overview of our algorithm
first and then elaborate each component in it with underlying
theoretical meanings.

Simultaneous Planning of Sampling and Optimization 5

(a) (b)

Fig. 3 The left is a visualization of X̃ f ree, regions covered by a set of
light blue circles in 2D; for simplicity, we show the merged region of
circles, instead of visualizing each circle. Each configuration q ∈ V is
associated with an approximate collision-free hypersphere in X. Their
radii are trimmed by witness (red cross symbol) which is a configu-
ration in Xobs found during local planning (dotted black segment on
the left side) or a sample qsample (the right side in the same figure).
The right figure shows an example of local optimization for a trajec-
tory, ξ . Black arrows show the gradient of obstacle potential computed
with our approximate configuration space and the red curved segment
shows an optimized trajectory. Each red dot indicates an intermediate
configuration ξ (t) on the discretized ξ .

3.1 Overview

At a high level, the core of our idea is based on the inte-
gration of optimization-based and sampling-based planning
without a priori knowledge of the given environment.

Fig. 5 shows an abstraction of the proposed algorithm.
The main flow with the four solid boxes shows a single it-
eration of a generic sampling-based motion planning algo-
rithm, which also can correspond to PRM in Alg. 1. We
first approximate the configuration-free space X̃ f ree using
empirical collisions found in both vertex and edge collision
checking on the fly (Sec. 3.2). We also propagate the empir-
ical collision information, and inherit from near neighbors
on the implicit proximity graph (Sec. 3.2 and 5.3). Each
edge is processed in local planning and rejected edges (e.g.,
due to the collisions) are handled by our local trajectory op-
timization as backup local planning. The optimizer works
with our configuration-free space approximation; hence, the
trajectory optimization is solely performed in the configura-
tion space without any prior workspace information.

In order to leverage the efficiency of our local trajectory
optimization, minimization of the number of local planning
is necessary to concentrate on promising edges by skipping
unnecessary ones, which can be achieved by lazy collision
checking (Hauser 2015, Gammell et al. 2015, Haghtalab
et al. 2018).

To show the novelty and applicability, we suggest
two different asymptotic optimal planners, Dancing PRM∗

and BDT∗ (Batch Dancing Tree) named after lazy PRM∗

(Hauser 2015) and BIT∗ (Batch Informed Tree, Gammell
et al. 2015), respectively. Lazy PRM∗ is based on DSPT
(Dynamic Shortest Path Tree, Frigioni et al. 2000) for lazy

Fig. 4 A sequence of witness propagation for a sample configura-
tion qsample and its near neighbors within the light-blue circle with a

radius of γ

(
log |V |
|V |

)1/d
. Pairs of configuration and its former witness

are connected by red segments, and blue dotted lines indicate witness
newly updated. qsample inherits its witness wqsample first (left) from its
near neighbors. It is then propagated to other neighbors in the circle
to ensure that near neighbors have a witness as the closest empirical
collision.

collision checking, while BIT∗ uses LPA∗ (Life-long Plan-
ning A∗, Koenig et al. 2004) based approach. We also dis-
cuss how differently both algorithmic frameworks behave in
terms of lazy graph expansion in Sec. 3.4.

In what follows, we first introduce the configuration-free
space approximation and the local trajectory optimization
with Dancing PRM∗ as a generalized form of a sampling-
based motion planner.

3.2 Configuration Free Space Approximation

The main purpose of the approximate configuration-free
space of X f ree, X̃ f ree is to efficiently guide trajectories to-
wards local configuration free space during the optimiza-
tion.

We choose to represent X̃ f ree as a set of hyperspheres
motivated by previous studies (Bialkowski et al. 2013a; Kim
et al. 2018a; Shkolnik and Tedrake 2011)

for scalability and light-weight proximity computation,
e.g., the distance function. While the representation is analo-
gously defined, our study differs in terms of the approxima-
tion procedure and accessing strategy for efficient integra-
tion with optimization-based planning explained in a later
paragraph.

Fig. 3(a) shows a conceptual image of X̃ f ree, which can
be formalized as:

X̃ f ree = {x | ‖x−qi‖< rqi}, qi ∈V, (4)

where rqi is the approximate minimum distance to the clos-
est obstacle in Xobs.

Intuitively, each configuration q ∈ V is associated with
a single hypersphere of which radius is the distance to the
closest obstacle witness, wq ∈ Xobs found during the execu-
tion, such that ‖q−wq‖= rq.

6 Donghyuk Kim1, Sung-Eui Yoon1

Local Planning

Sampling

Nearest neighbor search

Vertex collision checking

Local trajectory

optimization

Free space

approximation

Witness

propagation

Free space

approximation

Fig. 5 An abstraction of the proposed algorithm. The blue dotted
boxes indicate proposed components in conjunction with a generic
sampling-based motion planning algorithm represented by the solid
boxes.

A new witness wq can be generated and replaced by the
samples listed in List. 1 during the execution, as long as it
results in a smaller radius.

List 1 List of samples causing the update of X̃ f ree.

1. A sampled configuration qsample ∈ Xobs (Line: 5 in Alg 1).
2. An intermediate configuration that turned out to be in Xobs during

an explicit collision checking (Line: 9 and 11 in Alg. 1).
3. A witness propagated from near neighbors.

Note that the intermediate configuration (2) can be easily
computed during an edge collision checking with a discrete
collision checker which is widely used in the most conven-
tional sampling-based planners (LaValle 2006).

The above procedures are intended to exploit local em-
pirical collisions found by collision checking; both vertex
and edge collision checking, not to use any other additional
proximity computation.

Alg. 2 shows Dancing PRM∗ which is integrated with
the configuration-free space approximation procedure. The
main flow is almost identical to that of PRM∗ in Alg. 1, and
procedures newly added or that behave differently from the
original are highlighted in the pseudocode. The lines related
to the configuration-free space approximation are 15-16, 17
and 13 which correspond to the cases in Tab. 1. We discuss
the details in the subsequent sections.

Decentralized storage for observed collision states.
Since X̃ f ree is associated with the search graph G, we need
an appropriate method to use X̃ f ree to optimize an edge; an
example is shown in Fig. 3(b).

As an efficient handling for our approximate
configuration-free space, we adopt a decentralized storage
strategy for X̃ f ree, where each q ∈ V maintains a subset

Algorithm 2: DANCING PRM∗

1 V ←{qinit ,qgoal}; E← /0
2 while Termination condition is not satis f ied do
3 qsample← Sample()
4 if IsCollisionFree(qsample) then
5 Insert qsample to V
6 Vqsample ← /0
7 Qnear ← Near(qsample,V)

8 Insert Qnear to Vqsample

9 foreach qnear ∈ Qnear do
10 Insert (qnear,qsample) to E
11 Insert qsample to Vqnear

12 U pdateShortestPathTree(·)
13 PropagateCFreeSpace(Qnear,qsample)

14 else
15 qnearest ← Nearest(qsample,V)

16 U pdateCFreeSpace(qsample)

17 CheckSolutionPath(G)

18 return SolutionPath(G)

Vq ⊂V . Vq is updated with its near neighbors (Line: 6, 8, 11
in Alg. 2).

As a result, our search graph G can be considered as a
proximity graph (Jaromczyk and Toussaint 1992), and also
similar to the neighborhood set of RRTX (Otte and Frazzoli
2015). The primary benefit of this kind of structure is that
each configuration q ∈V can retrieve a local subset of X̃ f ree
centered at q without performing any additional NN query.

When a vertex is inserted into Vq, the maximum dis-
tance from q to the newly added vertex is bounded by

γ

(
log |V |
|V |

)1/d
, since the bound value is identical to the search

radius of Near(·) in the nature of sampling-based motion
planning. Therefore, for an edge (q ∈ V,w ∈ V), we can
guarantee that a subset of X̃ f ree covered by Vq, and Vw en-
tirely surrounds the edge.

Witness propagation step. To acquire more accurate
X̃ f ree in practice, we apply a witness propagation step (Line:
13 in Alg. 2). Our key insight for the witness propaga-
tion is to treat finding the closest configuration obstacle for
q ∈ X f ree as a connectivity problem on random geometric
graphs (Karaman and Frazzoli 2011). This suggests that for
an arbitrary configuration q ∈ V , all witnesses of V located

within the ball of radius γ

(
log |V |
|V |

)1/d
centered at q serve as

candidates for wq.

For this purpose, we define PropagateCFreeSpace(·)
(Alg. 3), which initializes a new sample configuration
rqsample using witnesses of its near neighbors Qnear, and
also propagates its witness wqsample to Qnear at the same
time. Fig. 4 shows an exemplar sequence of witness prop-
agation for a sample configuration qsample depicted in
Alg. 3. This process enhances the association between lo-
cal near neighbors and the closest witness to reduce the

Simultaneous Planning of Sampling and Optimization 7

Algorithm 3: PropagateCFreeSpace
Input: qsample, a sample configuration,

Qnear , a set of near neighbor of qsample
1 rqsample ← ∞; wqsample ← /0
2 foreach qnear ∈ Qnear do
3 if (wqnear 6=∅)∧ (‖wqnear −qsample‖< rqsample) then
4 rqsample ←‖wqnear −qsample‖
5 wqsample ← wqnear

6 foreach qnear ∈ Qnear do
7 if (wqsample 6=∅)∧ (‖wqsample −qnear‖< rqnear) then
8 rqnear ←‖wqsample −qnear‖
9 wqnear ← wqsample

error of our configuration-free space approximation. Like-
wise, U pdateCFreeSpace(·) (Line: 16 in Alg. 2) updates
the radii of cumulative neighbors of qnearest , Vqnearest with
qsample ∈ Xobs.

It is, however, inevitable to over-estimate the collision-
free radii with a limited number of samples. For this reason,
we propose a statistical technique to reduce the error further,
named radius compensation, in the subsequent section, and
also analyze the approximation error in Sec. 5.3.

3.3 Local trajectory optimization in Configuration Space

Our CHOMP-based optimizer is performed lazily in where
explicit edge collision checkings are invoked. In Dancing
PRM∗, it is CheckSolutionPath(·) as depicted in Alg. 4.
Compared to lazy PRM∗ (Hauser 2015), we additionally ac-
tivate our local trajectory optimizer, Optimize(·) only after
a collision checking for an edge (v ∈ V,w ∈ V) is failed, it
can be thus considered as a backup local planner.

At the beginning of each iteration in
CheckSolutionPath(·) (Alg. 4), we retrieve a provi-
sional solution path Esolution ⊂ E (Line: 3), which possibly
contains infeasible edges due to the lazy collision checking.
When the solution path validation fails by an intermediate
configuration qobs ∈ Xobs along the edge ei (Line: 5), we
remove ei from E (Line: 6). We then update the local subset
of X̃ f ree, i.e., radii of configurations in Vv ∪Vw for an edge
ei = (v,w) (Line: 7).

Our optimization-based local planner then attempts to
optimize the invalid edge ei (Line: 8) to find a new trajec-
tory bypassing local Xobs using X̃ f ree. Successful optimiza-
tion yields a non-linear trajectory, σopt , which increases the
chance of reducing the cost of the solution path or finding a
better homotopy.

The local planner explicitly takes into account the
obstacle potential computation with our approximate
configuration-free space X̃ f ree, which learns the given ar-
bitrary environment dynamically.

This generality separates our work from (RABIT∗,
Choudhury et al. 2016) which assumes the obstacle poten-

Algorithm 4: CheckSolutionPath
Input: G, a search graph

1 Esolution← /0
2 repeat
3 Esolution← ProvisionalSolutionPath(G)
4 foreach ei ∈ Esolution do
5 if ¬IsCollisionFree(ei) then
6 E = E \ {ei}
7 U pdateCFreeSpace(ei)
8 σopt ← Optimize(ei)
9 if IsCollisionFree(σopt) then

10 E = E ∪ {σopt}
11 else
12 U pdateCFreeSpace(σopt)

13 U pdateShortestPathTree(G)
14 Break

15 until ei ∈ X f ree,∀ei ∈ Esolution

tial, fobs and ∇ fobs, to be given a priori or analytically com-
putable.

When it comes to the optimization process, we replace
the obstacle potential computations (Eqs. 2, 3) with more
simpler forms (Eqs. 8, 5) by removing the conversion be-
tween the workspace and configuration space.

In the objective function of Eq. 1, fprior is generally as-
sumed to be independent of the environment (Zucker et al.
2013) and computed in the configuration space.

We, therefore, only deal with fobs depicted in the follow-
ing equation:

fobs(ξ) =
∫ 1

0
c(ξ (t)) ‖ d

dt
ξ (t) ‖ dt. (5)

Unlike the original form in Eq. 2, we can naturally eliminate
the following things for our obstacle cost function:

1. The use of resolution-complete workspace obstacle in-
formation.

2. The workspace-configuration mapping function x(·).
3. The integration over the simplified body model B.

These are possible because we can directly compute the ob-
stacle potential c(ξ (t)) with the following equation as for-
malized in Zucker et al. (2013):

c(ξ (t)) =

−D(ξ (t))+ 1

2 ε, D(ξ (t))< 0
1

2ε
(D(ξ (t))− ε)2, 0 <D(ξ (t))≤ ε

0, otherwise,

(6)

where ε is the clearance threshold and D(ξ (t)) is
the distance field value computed from our approximate
configuration-free space X̃ f ree:

D(ξ (t)) =−min
∀q∈V

(‖ξ (t)−q‖−ω(|V ∗|) · rq). (7)

8 Donghyuk Kim1, Sung-Eui Yoon1

According to the general definition of a signed distance
field, it gives a negated distance to the closest X̃ f ree for a
configuration outside X̃ f ree, and we discuss the definition of
ω(·) in the subsequent section.

Radius Compensation. The concept of ω(·) in Eq. 7 is
to compensate the overestimation of rq. Since our approxi-
mation entirely depends on the random sampling procedure,
we can expect an overestimation of collision-free radius r,
i.e., r≥ r∗, where r∗ is the ground-truth distance to the clos-
est obstacle space. To accommodate this approximation er-
ror, we apply a radius compensation procedure, defined by
ω(n), a parameter function of n, to be max(1− ζ · δ (n),0).
ω(n) is designed to converge toward 1 as n→ ∞,

which is considered as a sparsity of V ∗ in our work. We
discuss our approximation process and radius compensation
in more detail and experimentally show its impact in terms
of the accuracy later in Sec. 5.

Fig. 3(b) visualizes an example of a gradient of obsta-
cle potentials denoted by black arrows in the configuration
space.

By applying compensation ω(·), the boundary of X̃ f ree
can shrink toward V and the optimizer works more conser-
vatively.

We can also compute ∇ fobs, as follows:

∇ fobs(ξ) = ‖ξ ′‖ · [(I− ξ̂ ′ · ξ̂ ′
T
)∇c− cκ], (8)

where ∇c for a specific ξ (t) is a normalized d-dimensional
direction vector toward the closest X̃ f ree, and can be com-
puted as p−ξ (t)

‖p−ξ (t)‖ , where

p = arg min
q∈V

(‖ξ (t)−q‖−ω(|V ∗|) · rq) (9)

It is, however, computationally expensive to compute the
obstacle potentials c(ξ (t)) and ∇c(ξ (t)) if we consider
the entire V , which must be evaluated repeatedly during
the optimization. To this end, we restrict the configuration
space used for a local optimization of ξ (q f rom, qto) with
Vq f rom ∪Vqto only. First, this choice is made mainly because

(1) Vq∈V can be constructed with Near(·) in the nature of
PRM∗-like planner without having additional NN-query
and

(2) maintaining more samples in Vq f rom ∪Vqto can give rise
to a substantial overhead.

The reduction of this approach in terms of overheads is
also discussed in Sec. 5.2.

Nonetheless, this approach may result in a sub-optimal
result, but this happens in a low probability. Furthermore,
this sub-optimal result will be improved as we have more
sampling iterations. Under these circumstances, the opti-
mizer makes the given initial trajectory to converge within
the configuration-space covered by Vq f rom ∪Vqto , which is

Algorithm 5: BATCH DANCING TREE∗

1 V ←{qinit ,qgoal}; E← /0
2 Xsamples←{qgoal};
3 QV ← /0; QE ←{(qinit ,qgoal)}
4 while Termination condition is not satis f ied do
5 if QV ≡ and QE ≡ /0 then
6 Xsamples← SampleCollisionFree(mbatch)

7 Vx← /0, ∀x ∈ Xsamples
8 QV ←V

9 while BestQueueValue(QV)≤ BestQueueValue(QE) do
10 vbest ← BestInQueue(QV)

11 Qnear ← Near(vbest ,V);Xnear ← Near(vbest ,Xsamples)
12 if IsNew(vbest) then
13 Insert Qnear to Vvbest , and Xnear to Vvbest

14 Insert vbest to Vq∈Qnear , and vbest to Vx∈Xnear

15 ExpandVertex(vbest ,Qnear,Xnear)

16 ProcessEdge(BestInQueue(QE))

17 return SolutionPath(G)

Algorithm 6: PROCESSEDGE ((v,x)∈QE), v∈V,x∈
Xsamples .
1 Pop (v,x) from QE

2 if gG(v)+ ̂(|(v,x)|)+ ĥ(x)< gG(qgoal) then
3 if IsCollisionFree((v,x)) then
4 σ(v,x) = (v,x)

5 else
6 σ(v,x) = Optimize((v,x))

7 if IsCollisionFree((v,x))∧ ĝ(v)+ |σ(v,x)|+ ĥ(x)<
gG(qgoal) then

8 if gG(v)+ |σ(v,x)|< gG(x) then
9 E← E ∪σ(v,x)

10 Update V,Xsamples and QE

11 else
12 QV ← /0; QE ← /0

found to be a reasonable choice for faster optimization in
practice.

Back to the pesudocodes of Dancing PRM∗,
U pdateShortestPathTree(·) (Line: 12 in Alg. 2 and
line: 13 in Alg. 4) is invoked when a graph restructuring
such as edge insertion or deletion occurs in order to
maintain the shortest solution path from qinit to qgoal over
the search graph G (Hauser 2015) which is necessary for
anytime lazy collision checking in PRM∗.

Finally, CheckSolutionPath(·) is terminated (Line: 15)
when it yields a feasible solution path after validating the
best-so-far provisional solution path by lazy collision check-
ing.

3.4 Batch Dancing Tree∗

The integration of BIT∗ with our proposed algorithm can be
viewed as a variation of RABIT∗ (Choudhury et al. 2016),

Simultaneous Planning of Sampling and Optimization 9

where the original local optimizer is replaced by ours with
the configuration-free space approximation. The benefit of
BIT∗ is to use batches of samples and Lifelong Planning A∗

-based graph search (Gammell et al. 2015), which results in
an efficient lazy graph expansion.

In this algorithm, we consider BT∗ (Batch Tree) as a
simplified version of BIT∗ (Gammell et al. 2014) without the
informed sampler to focus on the sampling-invariant analy-
sis.

The pseudocode of the proposed algorithm, BDT∗

(Batch Dancing Tree), is depicted in Alg. 5, where the high-
lighted lines indicate modified ones from RABIT∗. BDT∗

maintains two disjoint vertex sets: V , the actual vertex set
in graph G = {V,E}, which is a tree rooted at qinit . Also,
Xsamples is a set of samples not connected to G, which con-
tains samples to be inserted into G.

Unlike Sample(·) in Alg. 2, SampleCollision
Free(mbatch) randomly samples mbatch>0 of collision-
free configurations at once. BDT∗ then incrementally
expands its search graph by LPA∗ (Line: 9-10) in increasing
order of a heuristic cost, gG(v)+ ĥ(v) for a vertex v ∈ QV

and gG(v)+ ̂(|(v,x)|)+ ĥ(x) for an edge (v,x) ∈ QE .
In the above equation, gG(v) represents a cost-to-come

to v over the search graph G, which is the cost of the shortest
path in G connecting qinit to v. |(v,x)| is a positive value of
motion cost from v to x, and it has ∞ if (v,x) contains any
collision. ĥ(v) stands for an admissible estimation of cost-
to-go from v to qgoal and ̂(|(v,x)|) is that of the motion cost
value.

ProcessEdge(·) in Alg. 6 considers three constraints
(Line: 2, 7, 8) to minimize the number of edge collision
checking and the cardinality of the edge set E. To be spe-
cific, it determines whether to invoke an explicit collision
checking followed by our local optimization for an edge
e ∈ QE or reject.

In these inequality conditions, ĝ(v) stands for an admis-
sible estimation of cost-to-come from qinit to v. These con-
straints are checked to prune edges that cannot improve the
current solution even further.

For the construction of X f ree, three subroutines;
Sample(·), ProcessEdge(·) and ExpandVertex(·) related
to collision checking are changed internally according to
List. 1 so that any empirical collision found by an explicit
collision checking is propagated to near configurations in V .

To summarize the significant differences between Danc-
ing PRM∗ and BDT∗, the first thing is the way to sam-
ple configurations (1 sample vs. mbatch per batch), and how
to compute a path in G (DSPT vs. LPA∗). The other pro-
cesses, such as the configuration-free space approximation
and optimization, are applied identically. We also expect
that the other planners sharing the basic skeleton of a gen-
eralized sampling-based planner can be integrated with our

Dancing part, i.e., local optimization with the configuration-
free space approximation.

We discuss how the graph expansion procedure in BDT∗

differs from that in lazy PRM∗ in Sec. 4.4 to analyze their
properties.

4 Experiments

4.1 Experiment setup

For a fair comparison, all the tested methods are built upon
the same proximity subroutines such as discrete collision de-
tection and the nearest neighbor search available in OMPL
(Open Motion Planning Library, Sucan et al. 2012).

For visualization and framework integration, we use V-
REP simulator (E. Rohmer 2013). For near neighbor search,
Near(·), k-nn is used with a parameter γ = 1.1 and the
CHOMP-based optimizer works with parameters of λ = 1,
ε = 10−3, µ = 2.0, z = 10, ζ = 0.3 and imax = 10, which
are applied identically to RABIT∗ and our methods. The re-
ported results are averaged over 30 trials.

4.2 Comparison against RABIT∗

We first compare the performance of DancingPRM∗ and
BDT∗ against RABIT∗, which is applicable only when the
explicit representation of X f ree is available, i.e., the analytic
computation of obstacle potential is available.

Since our approaches do not assume such an environ-
ment, we cannot say that the direct comparison in this set-
ting is completely fair. Nonetheless, we would like to show
how our method works, even in these cases, to show the dif-
ference against RABIT∗.

For this test, our evaluation benchmark is constructed by
following the ones used in the original paper of RABIT∗.
Specifically, we consider two synthetic scenes, which are
R2 and R8 configuration spaces where a wall with ten nar-
row passages are located at the center in a d-dimensional
hypercube of a width 2, i.e. [−1,1]d . The boundary of the
configuration-obstacle space is created to be axis-aligned for
easy computation of c(·) and ∇c(·).

A pair of input configurations (qinit , qgoal) are set to
([−1, ...,−1], [1, ...,1]). This benchmark is, therefore, de-
signed to have multiple difficult-to-sample homotopies of
solution paths. We consider a point robot as an agent, its
workspace and the configuration space are therefore identi-
cal.

Fig. 6 shows our experimental results of the solution cost
as a function of computation time, and the error bars indicate
the variance of each algorithm. The value in the parentheses
of BDT∗ means the number of samples per batch, and the

10 Donghyuk Kim1, Sung-Eui Yoon1

0 0.2 0.4 0.6 0.8 1
Computation Time[sec]

2.9

2.92

2.94

2.96

2.98

3

So
lu

tio
n

C
os

t

RABIT* + DF(0.001)
RABIT* + DF(0.005)
RABIT* + Dynamic DF
DancingPRM*
BDT* (1000)
BT* (1000)
LazyPRM*
RRT*

(a) R2

0 2 4 6 8 10
Computation Time[sec]

6.5

7

7.5

8

8.5

9

So
lu

tio
n

C
os

t

RABIT* + Dynamic DF
DancingPRM*
BDT*
BT*
LazyPRM*
RRT*

(b) R8

Fig. 6 Performance comparison over computation time for different
algorithms in synthetic benchmarks. Results are averaged over 30 tri-
als. We show the average results with min and max bars in the graph;
min and max bars can be invisible, when they are very close to the av-
erage values. In R8, RABIT + DF (Distance Field)s are not reported
since the construction of the distance field with a reasonable resolution
is intractable in a high-dimensional space.

value is chosen by experiments with a range of 1 to 1000
batch sizes.

We also discuss a performance comparison of BT∗ and
BDT∗ with different batch sizes in Sec. 4.4.

Under our experimental setting, “RABIT∗ + DF(α)”
uses a d-dimension distance field with a resolution of α ,
given as a priori and “RABIT∗ + Dynamic DF” computes
obstacle potentials analytically on the fly.

The runtime computation of obstacle potential is possi-
ble because for a configuration xobs in Xobs, the minimum
distance to X f ree from xobs is a distance to the closest face of
the obstacle containing xobs, which is even computationally
lighter with axis-aligned obstacles.

0 20 40 60 80 100

Manipulation

Sponza

Conference Room

Computation Time(%)

OPT
SP
NN
CD
Etc.

Fig. 7 Computation time breakdown of the proposed algorithm
DancingPRM∗ measured in our benchmarks (Fig. 8). Each abbrevi-
ation in legend stands for OPTimization (OPT), Shortest Path tree
update (SP), Nearest Neighbor search (NN), and Collision Detection
(CD). Note that the computation time for X̃ f ree construction is negligi-
ble (< 1%) for all of three benchmarks.

Fig. 6(a) shows that RABIT∗ with a dynamic distance
field outperforms than those with precomputed distance
fields because the latter with a fixed resolution makes the op-
timization process more conservatively, i.e., yielding longer
trajectories that are farther from the boundary of Xobs on a
given α . Even in this case, our method shows comparable
performance to “RABIT∗ + Dynamic DF” due to the local
optimization with our configuration-free space approxima-
tion. Although the performance gap between the best and
the worst result seems to be only 1− 2%. However, when
it comes to the convergence speed toward the optimum, we
can notice the visible improvement. For instance, the solu-
tion cost of Lazy PRM∗ at 1s can be achievable by Dancing
PRM∗ much earlier; around at 0.5 sec, which is two times
faster in terms of the convergence speed.

In R8, it takes a huge amount of time and memory to
construct a distance field with a reasonable resolution. We
therefore only report “RABIT∗ + Dynamic DF” and other
planners. In R8 case, we can observe that our approaches,
both DancingPRM∗ and BDT∗ show lower performance
than RABIT∗ + Dynamic DF.

When we look at the performance improvement be-
tween our methods (Dancing PRM∗ and BDT∗) and their
base methods (lazy PRM∗ and BT∗), we can see that our
approaches show meaningful improvement. For the high-
dimensional case, DancingPRM∗ shows up to 10x faster
convergence speed over lazy PRM* in the given time bud-
get. At the same setting, BDT∗ shows 2x improvement over
BT∗. Our local trajectory optimization can be considered a
biased trajectory sampling guided by our configuration-free
space approximation. We can thus find the benefit from the
fact that the local optimizations are only performed at where
the conventional local planner failed to generate a feasible
one, which improves the probability to find a feasible one in
a difficult-to-sample region.

This experimental result, however, can be seen as neg-
ative for the proposed algorithms; especially, R8 seems to
show our limitation in a high-dimensional problem. In prac-

Simultaneous Planning of Sampling and Optimization 11

tice, however, we do not know the exact configuration-free
space and the obstacle potential computation in runtime re-
quires heavy computational overhead as well.

Regardless of the computational overhead, RABIT +
Dynamic DF is supposed to get exact obstacle potential val-
ues, which can be computed as a vector from a configura-
tion v ∈ Xobs to the closest face of the obstacle containing
v. Meanwhile, ours only depends on the samples to approx-
imate arbitrary configuration-free spaces.

For these reasons, beyond the theoretical aspect, we fur-
ther evaluate the proposed algorithms with more general
benchmarks, which RABIT∗ could not handle directly due
to the complexity of the configuration space in the next sub-
section.

4.3 Comparison in practical benchmarks

In this experiment, we compare DancingPRM∗ and BDT∗

against other asymptotic optimal planners, lazyPRM∗, BT∗

and RRT∗.
Fig. 8(a), 8(c), 8(e) show comparison results tested

in our benchmarks illustrated in Fig. 8(b), 8(d) and 8(f),
where the configuration space are R2, SE(3) and S6, re-
spectively. Fig. 7 shows a computation time breakdown of
DancingPRM∗ measured in our benchmark.

The benchmark set contains both easy-to-find ho-
motopies and difficult-to-sample optimal homotopy of
a solution path. Throughout all of three benchmarks,
our approaches, i.e., local trajectory optimization with
configuration-free space approximation, not only improve
the performance by optimizing a solution path in a specific
homotopy but also help to identify a better homotopy ear-
lier than other tested planners. Moreover, the light computa-
tion of our X̃ f ree makes the proposed algorithm accomplish
the entire process in runtime without priori space informa-
tion, while providing a better result against other tested al-
gorithms.

The 6-DOF of Figs. 8(d) and 8(f) has a relatively higher
computation cost for collision checking as observed in
Fig. 7. Especially, RRT∗ without lazy collision checking
shows inferior performance in such cases, and we thus only
report the results of planners with a lazy collision checking.

The proposed algorithms, both Dancing PRM∗ and
BDT∗ show better performance over the other tested meth-
ods across different benchmarks as shown in the experiment
results, even with the overhead of free space approximation
and optimization-based local planning. On top of that, the
proposed algorithms tend to have a lower variance compared
to their original forms, BT∗ and Lazy PRM∗, as shown in
Fig. 8(c) and 8(e). Specifically, Dancing PRM∗ has a vari-
ance of 0.0326 at the end of execution, while its original
form, Lazy PRM∗ shown in Fig. 8(e), has 0.0435, which

is approximately 30 % higher than ours. This is mainly at-
tributed by the enhanced exploitation in a difficult-to-sample
area by our local trajectory optimization. The proposed algo-
rithms are capable of generating more connections between
configurations. As a result, the improved connectivity can
improve not only the convergence speed, but also stability
of the solution cost with a lower variance.

Last but not least, there are no substantial overheads on
our configuration-free space approximation in the nature of
sampling-based planning is another benefit of our algorithm.

4.4 Comparisons with varying batch sizes

In this work, we presented BDT∗, which is the integra-
tion between the core of Dancing PRM∗ and LPA∗-based
graph expansion with batch sampling, originally presented
in Gammell et al. (2015). For a better understanding of
BDT∗, we discuss how BDT∗ and Dancing PRM∗ work dif-
ferently and the effect of batch sizes in this subsection.

In Fig. 9, we measure the performance with varying
batch sizes from 1 to 1000 in the R2 benchmark (Fig. 8(b)).
As we can observe, there is a performance improvement
as the number of samples per batch increases. Also, the
core of Dancing PRM∗, i.e., local trajectory optimization
with configuration-free space approximation, successfully
improves the convergence speed toward the optimum even
with BT∗. We can observe the computation time breakdown
over varying batch sizes in Fig. 10. Compared to Fig. 7, the
difference can be summarized by follows:

(1) In Dancing PRM∗, so-called optimistic thrashing
(Hauser 2015; Kim et al. 2018a) poses an additional
overhead on shortest path computation (SP). Its effect
is maximized in the 2D benchmark (Fig. 8(b)) due to the
cluttered environment with narrow passages around the
optimal homotopy.

(2) BDT∗ spends more time on collision checking, most of
which are on edge collision checking.

(3) In BDT∗, the local trajectory optimization (OPT) be-
comes the majority as the batch size increases. This is
because LPA∗-based expansion in BDT∗ requires more
edges to be checked for collision, and the computation
overhead of local trajectory optimization is identical re-
gardless of the length of the trajectory, unlike collision
checking.

The most important point is that the use of DSPT (Dy-
namic Shortest Path Tree) gives rise to the optimistic thrash-
ing problem, causing a more overhead on the shortest path
computation. Meanwhile, LPA∗-based expansion requires
more edge collision checking than the DSPT-based ap-
proach, because the edges satisfying the constraints at line 2
in Alg. 6, i.e., gG(v)+ |̂(v,x)|+ ĥ(x)< gG(qgoal) are checked
for collision, where ·̂ stands for an admissible estimation.

12 Donghyuk Kim1, Sung-Eui Yoon1

0 1 2 3 4 5
Computation Time[sec]

2.03

2.04

2.05

2.06

2.07

2.08

2.09

2.1

So
lu

tio
n

C
os

t

Dancing PRM*
BDT* (1000)
BT* (1000)
Lazy PRM*
RRT*

(a) Performance vs. time (b) Conference Room : R2

0 5 10 15 20
Computation Time[sec]

3.5

4

4.5

5

5.5

6

6.5

So
lu

tio
n

C
os

t

Dancing PRM*
BDT* (1000)
BT* (1000)
LazyPRM*

(c) Performance vs. time (d) Sponza : SE(3)

0 5 10 15 20
Computation Time[sec]

6

6.5

7

7.5

8

8.5

9

So
lu

tio
n

C
os

t

Dancing PRM*
BDT* (1000)
BT* (1000)
LazyPRM*

(e) Performance vs. time (f) Manipulation : S6

Fig. 8 Performance comparison over computation time (left) and the given environment (right). The plots show the performance of asymptotic
optimal planners tested in our benchmark. The horizontal black dotted line shows the best solution cost achieved by algorithms without our local
trajectory optimization. Figures on the right side are the visualization of benchmarks. Results are averaged over 30 attempts, and RRT∗ is not
reported for Fig. 8(c) and 8(e) due to a high performance gap. The error bars stand for the variance of solution costs.

Simultaneous Planning of Sampling and Optimization 13

0 1 2 3 4 5
Computation Time[sec]

2

2.05

2.1

2.15

2.2

2.25

2.3

So
lu

tio
n

C
os

t

BDT* (1)
BDT* (10)
BDT* (100)
BDT* (1000)
BT* (1)
BT* (10)
BT* (100)
BT* (1000)

Fig. 9 Performance comparison with varying the number of samples
per batch in BDT∗. The results are averaged over 30 attempts and tested
in Fig. 8(b). A higher number of samples per batch provides a better
convergence speed at the expense of anytime property.

0 20 40 60 80 100
Computation Time(%)

1000

100

10

1

T
he

 n
um

be
rs

 o
f

sa
m

pl
es

 /
B

at
ch

Etc.
CD
NN
OPT

Fig. 10 Computation time breakdown of Batch Dancing Tree∗ tested
in Fig. 8(b). The result shows the distribution of computation time
spent on each component over varying batch size. Note that the ma-
jority of Etc. is a graph expansion based on LPA∗, which corresponds
to SP in Fig. 7. The overhead for the configuration-free space approxi-
mation is measured < 3% in this experiment.

On the other hand, DSPT-based lazy collision checking
is performed only for the edges on the solution path, thus it
has a much stronger condition, i.e., gG(v)+|(v,x)|+hG(x)=
gG(qgoal), where hG(x) is a cost-to-go from x to qgoal over
G.

Since both |̂(v,x)| ≤ |(v,x)| and ĥ(x) ≤ hG(x) hold,
DSPT-based approach is designed to require a less number
of edges for collision at the expense of optimistic thrashing.
Likewise, as the more edges reach at line 6 in Alg. 6, the por-
tion of optimization overwhelms those of other components
in terms of computation time.

Note that while we report the case of R2 only here,
its tendency is similar throughout all of the three different
benchmarks.

5 Analysis

In this section, we discuss various properties of the pro-
posed methods. We first discuss the asymptotic optimality
and then the time complexity of the computational overhead
induced by the configuration-free space approximation and
optimization-based local planning.

5.1 Almost-sure Asymptotic Optimality

Let Eproposed and ElazyPRM∗ refer to the valid edges in a graph
constructed by the proposed DancingPRM∗ and lazy PRM∗

(Hauser 2015), respectively; two vertex sets of VlazyPRM∗ and
Vproposed are defined in a similar way. Without loss of gen-
erality, we assume that a sequence of random samples and
subroutines in both planners are identical.

As described with Alg. 4, the proposed method never
rejects any edge e ∈ ElazyPRM∗ , because the path validation
in the proposed algorithm is identical to that in lazy PRM∗

except for the additional trajectory optimization. Instead, the
proposed algorithm optimized and refined an edge that was
initially identified to have collisions.

Accordingly, Eproposed could rather contain more num-
ber of edges than ElazyPRM∗ (Line: 10 in Alg. 4). Therefore,
ElazyPRM∗ ⊆ Eproposed holds.

On the other hand, the vertex set is identical, because
no modification is applied to the sampling and collision
checking on qsample as shown in Algs. 1 and 2, therefore,
VlazyPRM∗ =Vproposed .

Consequently, if we compute a solution path on
Gproposed = {Vproposed ,Eproposed}, the optimality of the
proposed algorithm follows that of lazy PRM∗, which
was proven almost-sure asymptotically optimal in Hauser
(2015).

For BDT∗, it considers more edges due to the weak
condition for local planning as discussed in Sec. 4.4,
thus ElazyPRM∗ ⊆ EBDT ∗ hold. As a result, it also follows
the asymptotic optimality of lazy PRM∗. While both of
our methods, Dancing PRM∗ and BDT∗ generate more
edges compared to Lazy PRM∗ and BT∗, respectively, our
methods have shown faster convergence speed. This is
because our local trajectory optimization integrated with
sampling-based planning efficiently exploits difficult-to-
sample homotopies. Our configuration-free space approxi-
mation, which is learned in the nature of sampling-based
planning, also guides the optimization process; therefore the
resulting algorithms are free from additional heavy com-
putational proximity calculation and a precomputed knowl-
edge of the environment.

14 Donghyuk Kim1, Sung-Eui Yoon1

5.2 Computational Complexity

The complexity and analysis of primitive operations used for
our method follow the discussion in Kleinbort et al. (2016).
We thus deal with overheads introduced mainly by the pro-
posed algorithms in this section.

Time Complexity In Alg. 2, we added various steps
for X̃ f ree construction. First of all, updates of Vq for the
configuration-free space approximation linearly increase as
the number of elements to be inserted increases, because
it does not have to be an ordered structure. We also have
O(|Qnear|) of iterations witness propagation (Sec. 3.2) ; thus
the time complexity of the entire while loop in Alg. 2 and the
while loop for ExpandVertex(·) in Alg. 5 are dominated by
that of Near(·), i.e., O(γd · 2d · log(|V |)), which is identical
to the expected cardinality of Qnear.

We perform an additional nearest neighbor search for
qsample ∈ Xobs (Line: 15 in Alg. 2 and 6 in Alg. 5), which is
proportional to log(|V |) ·L(Xobs), where L(·) is a Lebesgue
measure, i.e., the hypervolume of Xobs

It is an additional overhead compared to lazy PRM∗ de-
pending on the volume of the configuration-obstacle space,
since conventional PRM∗ and lazy PRM∗ reject the sample
configuration without nearest neighbor search.

Note that RRG also performs a nearest neighbor search
for every sample configuration; Dancing PRM∗ has no ad-
ditional overhead in that sampling phase compared to RRG
(Karaman and Frazzoli 2011).

The lazy collision checking is performed in both Danc-
ing PRM∗ and BDT∗ in Alg. 4 and 6, respectively. On top
of the procedures for lazy collision checking in these func-
tions, we additionally perform Optimize(·) for optimization-
based local planning. Its computational overhead with mod-
ified obstacle potentials defined in Eqs. 5 and 8 can be ex-
pressed as imax · z ·C(D(·)), where imax is the maximum iter-
ation of optimization, z the number of discretized intermedi-
ate nodes, and C(D) the computational complexity for D(·)
calculation. To compute D(·), subsets of Vu and Vv associ-
ated with the two end points of ξ for an edge (u,v) should
be considered. Its computational cost can be bounded by
O(γd · 2d · log(|V |)), the expected cardinality of Qnear. The
number of optimize(·) calls is, however, remarkably reduced
by lazy collision checking in practice.

According to the above analysis, we can conclude that
there is no substantial overhead in terms of the time com-
plexity, since the overhead for the configuration-free space
approximation is dominated by that of Near(·), thanks to
our decentralized storage in Sec. 3.2.

The analysis for the local trajectory optimization is
somewhat tricky since the number of local planning affects
the complexity of optimization, as shown in Fig. 7 and 10.
For this reason, its complexity heavily depends on the cost

1 2 3 4 5 6 7 8 9 10
Number of Collision Checking 103

10-5

10-4

10-3

10-2

10-1

100

A
pp

ro
xi

m
at

io
n

E
rr

or
 (

M
SE

)

R
0
=0.5 R

0
=0.4 R

0
=0.3 R

0
=0.2 R

0
=0.1 R

0
=0.0 Propagation Propagation + Compensation

(a) 2D

1 1.5 2 2.5 3 3.5 4 4.5 5
Number of Collision Checking 104

10-3

10-2

10-1

A
pp

ro
xi

m
at

io
n

E
rr

or
 (

M
SE

)

R
0
=0.3 R

0
=0.4 R

0
=0.5 R

0
=0.6 R

0
=0.7 Propagation Propagation + Compensation

(b) 8D

Fig. 11 Mean squared errors measured at intermediate configurations
during the local optimization by both our configuration-free space ap-
proximation and the ball-tree algorithm with different initial R0 val-
ues. Ours shows a monotonic decreasing result, while the ball-tree with
fixed initial radii tends to converge at a particular value depending on
the initial value. These plots use a logarithmic scale for the y-axis and
a linear scale for the x-axis.

of the solution path, gG(qgoal), during the execution, which
is the bounds for the edge expansion as discussed in Sec. 4.4.

Memory Complexity The proposed algorithm addition-
ally maintains the near neighbor set, Vv,∀v ∈ V in Sec. 3.2,
whose cardinality gradually increases as the number of sam-
ples goes higher. The memory overhead can be estimated
as the sum of cardinality, ∑v∈V |Vv|, which is Ω(γd · 2d ·
log(|V |) · |V |) since each Vv contains a cumulative near
neighbor set over the iterations. A possible way to allevi-
ate the complexity i.e., reduction of Ω(·) to O(·) is intro-
duced in Otte and Frazzoli (2015) where the planner culls
out neighbors outside the ball of radius r centered at v, where
r for r-nn search (Sec. 2.1).

5.3 Configuration free space approximation

Our configuration-free space approximation X̃ f ree is con-
structed entirely during the sampling process in an efficient

Simultaneous Planning of Sampling and Optimization 15

manner. Nonetheless, minimizing the approximation error
as low as possible is also important for the better optimiza-
tion performance.

In this subsection, we show the benefit of our witness
propagation and the radius compensation method explained
in Sec. 3.2 by measuring the error of our approximate free
space X̃ f ree against the inexact version of the ball-tree algo-
rithm (Shkolnik and Tedrake 2011). Both algorithms share
the representation and the skeleton of approximation proce-
dures, but the ball-tree algorithm initializes the radius of a
new sample configuration with a large value, R0.

For the ease of the experiment setup, we use the syn-
thetic scenes previously tested in the performance compari-
son against RABIT∗ (Sec. 4). We compare the mean squared
error of the distance value computed with X̃ f ree, i.e., D(x)
giving the minimum distance to the closest X̃ f ree from a con-
figuration x, which is defined in Sec. 3.3. Note that both
Propagation and Propagation + Compensation methods
are run on Dancing PRM∗, and the errors are measured at
the intermediate configurations during the local trajectory
optimization.

Fig. 11 shows the approximation error as a function of
the number of collision checking with more iterations. In the
plot legends, as defined in the original ball-tree algorithm,
different methods of R0 = rinit set their initial radius rx of
an approximate collision free hypersphere centered at a new
sample configuration x with rinit .

There is a noticeable observation that Optimize(·) in
Alg. 4 makes the majority of x lie in Xobs, especially on the
boundary of Xobs.

In this sense, this test is biased in terms of the sample
distribution, although it apparently reflects configurations
that matter most in the nature of Dancing PRM∗. Accord-
ingly, Fig. 11 should not be misinterpreted to indicate the
convergence of X̃ f ree toward X f ree.

Back to our experiment results, we can observe that prior
methods initialized with different fixed values suffer from
higher errors. This is mainly because newly sampled config-
urations have relatively insufficient information on the given
environment, and they are initialized regardless of the empir-
ical collision information accumulated. Meanwhile a sample
configuration with our approximation is capable of inherit-
ing those information from its near neighbors that can be
accessed without having any additional overhead in the na-
ture of sampling-based motion planner.

In the 2-dimensional case, we can guess the best R0
would be 0 in terms of the asymptotic error as shown in the
Fig. 11(a). This is because D(x) for an arbitrary configura-
tion x ∈ Xobs asymptotically converges to zero.

We also cannot say that any specific value of R0 outper-
forms every other option through the entire execution. For
instance, the reasonable choice can be far from R0 = 0 de-
pending on a given environment in practice.

In contrast, the result of R0 in the 8-dimensional case
shows that we achieve the lowest approximation error at
R0 = 0.5, which makes the parameter tuning complicated in
practice. Meanwhile, the combination of our witness propa-
gation and radius compensation provides better accuracy. In
addition to that, radius compensation reduces the error con-
sistently throughout the execution of the planning process,
demonstrating the robustness experimentally.

5.4 Radius compensation and dispersion

The purpose of radius compensation (Sec. 3.2) is to improve
our approximation model further with a limited amount of
empirical collision information. We have shown its benefit
experimentally in the previous subsection, and we discuss it
more deeply for better understanding of our approximation
process.

Radius compensation is based on the concept of
dispersion, which is also related to the optimal threshold for
nearest neighbor search in sampling-based motion planners
(Karaman and Frazzoli 2010). Dispersion of a finite sample
set P in a metric space (X,ρ) for a sample space X and a
metric ρ , is defined as the following equation:

δ (P) = sup
x∈X
{min

p∈P
{ρ(x, p)}}. (10)

The above equation can be interpreted as an expected radius
of the largest empty hypersphere in the given space.

For the sake of simplicity, we assume that the sampling
distribution is uniform, even though the actual sampling dis-
tribution for the empirical collision is non-uniform due to
the behavior of collision detector (e.g., bisection or linear)
and especially the lazy collision checking.

The asymptotic bound of dispersion, i.e., δ (|P|) =

O(log(|P|)
|P|

1/d
), was originally introduced by Deheuvels

(1983) and Niederreiter (1992). It also has been studied in
the perspective of sampling-based motion planning (Kara-
man and Frazzoli 2011; Lindemann and LaValle 2005)
for the threshold of near neighbor search to guarantee the
almost-sure asymptotic optimality. In our work, we consider
the dispersion to be a sparsity or an expected approximation
error bound of V ∗, a set of samples checked for collision in
the given space X . As explained in Sec. 3.3, we presented
a radius compensation for the local trajectory optimization,
i.e.,

ω(|V ∗|) · rq, where ω(n) = 1.0−ζ ·δ (n). (11)

The multiplication between ω(·) and the collision-free
radius rq therefore becomes the asymptotic error bound of
our approximation, since the dispersion is the expected max-
imal gap between samples in V ∗. Fig. 12 shows the concept
of dispersion in an illustrative way.

16 Donghyuk Kim1, Sung-Eui Yoon1

Fig. 12 A concept of dispersion for the sample set V ∗ and the ra-
dius compensation. V ∗ consists of all sampled configurations in both
X f ree (blue) and Xobs (red) regardless of feasibility and including sam-
ples for edge collision checkings (dotted segments). The radius of the
red dotted circle on the right side stands for a dispersion of V ∗, which
is used as an approximate sparsity of V ∗. The radius of the left cir-
cle represents a compensated radius (grey-dotted smaller circle), i.e.,
ω(|V ∗|) · rq, which is shrunk from the original radius rq (grey-solid).

We use ζ = 0.3 as explained in Sec. 4, which is chosen
experimentally and provides the best performance regard-
less of the dimension of given problems.

Finally, the result of Fig. 11 provably shows that
the radius compensation improves the accuracy of our
configuration-free space approximation with a negligible
overhead as revealed in Fig. 7 and 10.

6 CONCLUSION and FUTURE WORK

In this paper, we have presented the local trajectory opti-
mization with the configuration-free space approximation
algorithm for optimal motion planing algorithms. We have
applied the proposed idea to the state-of-the-art motion plan-
ning algorithms with lazy collision checking, named as
Dancing PRM∗ and BDT∗.

They are almost-sure asymptotic optimal hybrid plan-
ners, which explore the configuration space with a sampling-
based approach while approximating the configuration-free
space. On the other side, they exploit the learned spatial in-
formation to optimize local trajectories around narrow pas-
sages or the boundary space.

The proposed algorithm does not depend on the pre-
computed space information or expensive proximity com-
putation for obstacle potentials throughout the entire pro-
cess for seamless integration. We instead approximate the
configuration-free space on the fly by empirical collisions
found during the execution and decentralize the spatial in-
formation over the search graph for efficient access.

The next research direction includes the accuracy and
representation issue for the configuration-free space. Even
though the hypersphere-based representation is simple and
effective in low or moderate dimensional spaces, it would
not yet be an all-purpose solution. Furthermore, as observed
from Fig. 11, the most of local trajectory optimizations at
an early phase would be unsuccessful with premature space
information, while the search graph in the later phase will be
getting dense enough to represent fine-grained trajectories
without the local optimization as well. We, therefore, expect
that study on the conditional activation of local trajectory
optimization can be beneficial for further improvement.

Acknowledgements We appreciate the anonymous review-
ers for constructive comments and insightful sugges-
tions. This work was partially supported by the National
Research Foundation of Korea (NRF) grant funded by
the Korea government (MSIT, No. 2019R1A2C3002833),
Next-Generation Information Computing Development Pro-
gram through the National Research Foundation of Ko-
rea (NRF) funded by the Ministry of Science, ICT (NRF-
2017M3C4A7066317), and Defense Acquisition Program
Administration and Defense Industry Technology Center
under the contract UC160003D, Korea.

References

Bialkowski, Joshua, Sertac Karaman, & Emilio Frazzoli
(2011). Massively parallelizing the RRT and the RRT. In
IEEE/RSJ Int’l. Conf. on Intelligent Robots and Systems
(IROS), pp 3513–3518.

Bialkowski, Joshua, Sertac Karaman, Michael Otte, &
Emilio Frazzoli (2013a). Efficient collision checking
in sampling-based motion planning. In Int’l. Workshop
on the Algorithmic Foundations of Robotics (WAFR), pp
365–380.

Bialkowski, Joshua, Michael Otte, & Emilio Frazzoli
(2013b). Free-configuration biased sampling for motion
planning. In IEEE/RSJ Int’l. Conf. on Intelligent Robots
and Systems (IROS), pp 1272–1279.

Burns, Brendan, & Oliver Brock (2005a). Sampling-based
motion planning using predictive models. In IEEE Int’l.
Conf. on Robotics and Automation (ICRA), pp 3120–
3125.

Burns, Brendan, & Oliver Brock (2005b). Toward Optimal
Configuration Space Sampling. In RSS, Cambridge, USA.

Choudhury, Sanjiban, Jonathan D Gammell, Timothy D
Barfoot, Siddhartha S Srinivasa, & Sebastian Scherer
(2016). Regionally accelerated batch informed trees (RA-
BIT*): A framework to integrate local information into
optimal path planning. In IEEE Int’l. Conf. on Robotics
and Automation (ICRA), pp 4207–4214.

Simultaneous Planning of Sampling and Optimization 17

Deheuvels, Paul (1983). Strong bounds for multidimen-
sional spacings. Probability Theory and Related Fields,
64(4):411–424.

Denny, Jory, & Nancy M. Amato (2011). Toggle PRM: Si-
multaneous mapping of C-free and C-obstacle - A study
in 2D -. In IEEE/RSJ Int’l. Conf. on Intelligent Robots
and Systems (IROS), pp 2632–2639.

Denny, Jory, & Nancy M. Amato (2012). The Toggle
Local Planner for sampling-based motion planning. In
IEEE Int’l. Conf. on Robotics and Automation (ICRA), pp
1779–1786.

Denny, Jory, Kensen Shi, & Nancy M Amato (2013). Lazy
toggle PRM: a single-query approach to motion planning.
In Robotics and Automation (ICRA), 2013 IEEE Interna-
tional Conference on, pp 2407–2414. IEEE.

E. Rohmer, M. Freese, S. P. N. Singh (2013). V-REP: a
Versatile and Scalable Robot Simulation Framework. In
IEEE/RSJ Int’l. Conf. on Intelligent Robots and Systems
(IROS).

Frigioni, Daniele, Alberto Marchetti-Spaccamela, & Um-
berto Nanni (2000). Fully dynamic algorithms for main-
taining shortest paths trees. Journal of Algorithms,
34(2):251–281.

Gammell, Jonathan D, Siddhartha S Srinivasa, & Timothy D
Barfoot (2014). Informed RRT∗: Optimal sampling-based
path planning focused via direct sampling of an admissi-
ble ellipsoidal heuristic. In Intelligent Robots and Systems
(IROS), IEEE/RSJ International Conference on, pp 2997–
3004.

Gammell, Jonathan D, Siddhartha S Srinivasa, & Timothy D
Barfoot (2015). Batch informed trees (BIT*): Sampling-
based optimal planning via the heuristically guided search
of implicit random geometric graphs. In IEEE Int’l. Conf.
on Robotics and Automation (ICRA), pp 3067–3074.

Haghtalab, Nika, Simon Mackenzie, Ariel D Procaccia,
Oren Salzman, & Siddhartha S Srinivasa (2018). The
provable virtue of laziness in motion planning. In Int’l
Conf. on Automated Planning and Scheduling.

Hauser, Kris (2015). Lazy Collision Checking in
Asymptotically-Optimal Motion Planning. In IEEE Int’l.
Conf. on Robotics and Automation (ICRA).

Jaromczyk, Jerzy W, & Godfried T Toussaint (1992). Rela-
tive neighborhood graphs and their relatives. Proceedings
of the IEEE, 80(9):1502–1517.

Jeon, Jeong Hwan, Sertac Karaman, & Emilio Frazzoli
(2011). Anytime computation of time-optimal off-road
vehicle maneuvers using the RRT*. In IEEE Conference
on Decision and Control and European Control Confer-
ence (CDC-ECC), pp 3276–3282.

Kalakrishnan, Mrinal, Sachin Chitta, Evangelos Theodorou,
Peter Pastor, & Stefan Schaal (2011). STOMP: Stochas-
tic trajectory optimization for motion planning. In IEEE
Int’l. Conf. on Robotics and Automation (ICRA), pp

4569–4574.
Karaman, Sertac, & Emilio Frazzoli (2010). Incremental

sampling-based algorithms for optimal motion planning.
arXiv preprint arXiv:1005.0416.

Karaman, Sertac, & Emilio Frazzoli (2011). Sampling-
based algorithms for optimal motion planning. Int’l. Jour-
nal of Robotics Research (IJRR), 30(7):846–894.

Karaman, S., M. Walter, A. Perez, E. Frazzoli, & S. Teller
(2011). Anytime motion planning using the RRT*. In
IEEE Int’l. Conf. on Robotics and Automation (ICRA), pp
1478–1483.

Kavraki, Lydia E, Petr Svestka, J-C Latombe, & Mark H
Overmars (1996). Probabilistic roadmaps for path plan-
ning in high-dimensional configuration spaces. IEEE
Transactions on Robotics and Automation, 12(4):566–
580.

Kim, Donghyuk, Youngsun Kwon, & Sung-eui Yoon
(2018a). Adaptive Lazy Collision Checking for Optimal
Sampling-based Motion Planning. In Int’l. Conf. on Ubiq-
uitous Robots, pp 2519–2526.

Kim, Donghyuk, Youngsun Kwon, & Sung-eui Yoon
(2018b). Dancing PRM∗ : Simultaneous Planning of
Sampling and Optimization with Configuration Free
Space Approximation. In IEEE Int’l. Conf. on Robotics
and Automation (ICRA), pp 2519–2526. IEEE.

Kleinbort, Michal, Oren Salzman, & Dan Halperin (2016).
Collision detection or nearest-neighbor search? On the
computational bottleneck in sampling-based motion plan-
ning. Int’l. Workshop on the Algorithmic Foundations of
Robotics (WAFR).

Koenig, Sven, Maxim Likhachev, & David Furcy (2004).
Lifelong planning A∗. Artificial Intelligence, 155(1-
2):93–146.

Kuntz, Alan, Chris Bowen, & Ron Alterovitz (2017). Fast
Anytime Motion Planning in Point Clouds by Interleav-
ing Sampling and Interior Point Optimization. In Proc.
International Symposium on Robotics Research (ISRR),
pp 1–16.

LaValle, Steven M (1998). Rapidly-Exploring Random
Trees: A new Tool for Path Planning. Technical Report
98-11, Iowa State University.

LaValle, Steven M (2006). Planning algorithms. Cambridge
university press.

Lindemann, Stephen R, & Steven M LaValle (2005). Cur-
rent issues in sampling-based motion planning. In
Robotics Research. The Eleventh International Sympo-
sium, pp 36–54. Springer.

Niederreiter, Harald (1992). Random number generation
and quasi-Monte Carlo methods, volume 63. SIAM.

Otte, Michael, & Emilio Frazzoli (2015). RRT-X: Real-
Time Motion Planning/Replanning for Environments
with Unpredictable Obstacles. In Algorithmic Founda-
tions of Robotics XI, pp 461–478. Springer.

18 Donghyuk Kim1, Sung-Eui Yoon1

Pan, Jia, & Dinesh Manocha (2016). Fast probabilistic colli-
sion checking for sampling-based motion planning using
locality-sensitive hashing. Int’l. Journal of Robotics Re-
search (IJRR), 35(12):1477–1496.

Park, Chonhyon, Jia Pan, & Dinesh Manocha (2012). IT-
OMP: Incremental Trajectory Optimization for Real-
Time Replanning in Dynamic Environments. In Int’l
Conf. on Automated Planning and Scheduling.

Rickert, Markus, Arne Sieverling, & Oliver Brock (2014).
Balancing exploration and exploitation in sampling-based
motion planning. IEEE Transactions on Robotics (T-RO),
30(6):1305–1317.

Shkolnik, A., & R. Tedrake (2011). Sample-based plan-
ning with volumes in configuration space. arXiv preprint
arXiv:1109.3145.

Sucan, Ioan A, Mark Moll, & Lydia E Kavraki (2012). The
open motion planning library. ”IEEE Robotics & Au-
tomation Magazine.”, 19(4):72–82.

Zucker, Matt, Nathan Ratliff, Anca D Dragan, Mihail Piv-
toraiko, Matthew Klingensmith, Christopher M Dellin,
J Andrew Bagnell, & Siddhartha S Srinivasa (2013).
CHOMP: Covariant Hamiltonian optimization for motion
planning. Int’l. Journal of Robotics Research (IJRR),
32(9-10):1164–1193.

	Introduction
	Background
	Algorithm
	Experiments
	Analysis
	CONCLUSION and FUTURE WORK

