
Auton Robot (2021) manuscript No.
(will be inserted by the editor)

Analysis and Acceleration of TORM: Optimization-based Planning for
Path-wise Inverse Kinematics

Mincheul Kang1 · Sung-Eui Yoon1

the date of receipt and acceptance should be inserted later

Abstract A redundant manipulator can have many trajec-
tories for joints that follow a given end-effector path in
the Cartesian space, since it has multiple inverse kinemat-
ics solutions per end-effector pose. While maintaining ac-
curacy with the given end-effector path, it is challenging to
quickly synthesize a feasible trajectory that satisfies robot-
specific constraints and is collision-free against obstacles,
especially when the given end-effector path passes around
obstacles. In this paper, we present a trajectory optimization
of a redundant manipulator (TORM) to synthesize a trajec-
tory that follows a given end-effector path accurately, while
achieving smoothness and collision-free manipulation. Our
method holistically incorporates three desired properties
into the trajectory optimization process by integrating the
Jacobian-based inverse kinematics solving method and an
optimization-based motion planning approach. Specifically,
we optimize a trajectory using two-stage gradient descent
to reduce potential competition between different properties
during the update. To avoid falling into local minima, we
iteratively explore different candidate trajectories with our
local update. We also accelerate our optimizer by adaptively
determining the stop of the current exploration based on the
observation of optimization results. We compare our method
with five prior methods in test scenes, including external
obstacles and two non-obstacle problems. Furthermore, we
analyze our optimizer performance by experimenting with
three different configurations of robots. Our method robustly

Mincheul Kang
E-mail: mincheul.kang@kaist.ac.kr

Sung-Eui Yoon
E-mail: sungeui@kaist.edu, corresponding author

1Scalable Graphics, Vision and Robotics (SGVR) Lab, School
of Computing, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon, South Korea

minimizes the pose error in a progressive manner while sat-
isfying various desirable properties.

Keywords Kinematics · Motion Planning · Trajectory
Optimization · Redundant Manipulator

1 INTRODUCTION

Remote control of various robots has been one of the main
challenges in robotics, while it is commonly used for cases
where it is difficult or dangerous for a human to perform
tasks (Katyal et al., 2014; Long et al., 2019). In this remote
control scenario, a robot has to follow the task command ac-
curately while considering its surrounding environment and
the constraints of the robot itself.

In the case of a redundant manipulator that this paper
focuses on, a sequence of finely-specified joint configura-
tions is required to follow the end-effector path in the Carte-
sian space accurately. Traditionally, inverse kinematics (IK)
has been used to determine joint configurations given an
end-effector pose. The traditional IK, however, cannot con-
sider the continuity of configurations, collision avoidance,
and kinematic singularities that arise when considering to
follow the end-effector path.

Path-wise IK approaches (Rakita et al., 2018, 2019)
solve this problem using non-linear optimization by con-
sidering aforementioned constraints (Sec. 2.1). These ap-
proaches avoid self-collisions using a neural network, but
they do not deal with collisions for external obstacles. On the
other hand, prior methods (Holladay et al., 2019; Holladay
and Srinivasa, 2016) based on a motion planning approach
consider external obstacles and use IK solutions to synthe-
size a trajectory following the desired path in the Cartesian
space. By simply using IK solutions, however, these meth-
ods have time or structural difficulties in getting a highly-
accurate solution (Sec. 2.2).

2 Mincheul Kang1, Sung-Eui Yoon1

1 2 3

6 5 4

Fig. 1 These figures show a sequence of maneuvering the Fetch ma-
nipulator to follow the specified end-effector path (red lines). Our
method generates the trajectory that accurately follows the given end-
effector path, while avoiding obstacles such as the pack of A4 paper
and the table.

Optimization-based motion planners (Schulman et al.,
2013; Zucker et al., 2013) can make a trajectory that follows
the given path by adding the kinematic constraints to their
optimizer. However, these planners have difficulty dealing
with diverse constraints and complex paths since it tends to
fall into a local minimum (Sec. 2.3). Our method is also an
optimization-based approach, but we alleviate this problem
by performing an appropriate update method for a path-wise
IK problem and exploring various trajectories efficiently.

In this work, we present a trajectory optimization of a
redundant manipulator (TORM) for synthesizing a trajec-
tory that is accurately following a given path as well as
smooth and collision-free against the robot itself and ex-
ternal obstacles (Fig. 1). Our method incorporates these
properties into the optimization process by holistically in-
tegrating the Jacobian-based IK solving method and an
optimization-based motion planning approach. For effective
optimization, we consider different properties of our objec-
tives through a two-stage update manner, which alternates
making a constraint-satisfying trajectory and following a
given end-effector path accurately (Sec. 4.2). To avoid local
minima within our optimization process, we iteratively per-
form exploration for other alternative trajectories. We also
accelerate the iterative exploration by adaptively deciding
the stop of each exploration based on the observation of op-
timization results (Sec. 4.3). In addition, in order to strike
a good balance between the quality and generation time of
trajectory for the exploration, we apply a path simplification
to extract sub-sampled poses with appropriate intervals and
generate the trajectory using the random IK solution at the
extracted poses (Sec. 4.4).

To compare our method with the prior methods,
CHOMP (Zucker et al., 2013), Trajopt (Schulman et al.,
2013), RelaxedIK (Rakita et al., 2018), Stampede (Rakita
et al., 2019) and the work of Holladay et al. (Holladay et al.,
2019), we test four scenes with external obstacles and two

non-obstacle problems. Furthermore, we test three differ-
ent configurations of robots, Kuka 7-DoF, Fetch 7-DoF, and
Hubo 8-DoF (Sec. 5.1).

Overall, we observe that our method achieves more ac-
curate solutions given the equal planning time over the
tested prior methods. Also, our method robustly minimizes
the pose error reasonably fast with the anytime property,
which quickly finds an initial trajectory and refines the tra-
jectory (Karaman et al., 2011) (Sec. 5.2). This result mainly
arises from the holistic optimization process. To show the
benefits of our proposed methods, we test by replacing some
of our methods with other methods (Sec. 5.3) and ana-
lyze the results of three different configurations of robots
(Sec. 5.4).

The synthesized results of tested problems
and real robot verification can be seen in the at-
tached video. Our implemented code is available at
http://github.com/cheulkang/TORM.

This paper is an extension of the conference version of
TORM (Kang et al., 2020) and shares the problem statement
and preliminaries with the original work (Sec. 1 and Sec. 3).
The main additions are accelerated methods from the origi-
nal methods (Sec. 4) and various experiments and analyses
to show the applicability of the proposed methods (Sec. 5).
In addition, this paper includes more detailed descriptions of
the proposed methods and introduces broader related works
than the original paper (Sec. 2). The detailed additions from
the original work are as follows:

1. Provide a detailed description for a two-stage gradient
descent (TSGD) (Sec. 4.2) and a introduction of the pro-
jected gradient descent for solving a constrained prob-
lem on which the TSGD is based (Sec. 2.4).

2. Present an adaptive exploration that accelerates the ex-
isting iterative exploration by adding stop criteria based
on observing the optimization results (Sec. 4.3).

3. Improve the generation of different trajectories, specifi-
cally extracting sub-sampled poses applying a path sim-
plification method instead of extracting the poses at reg-
ular intervals (Sec. 4.4).

4. Add the comparison with optimization-based mo-
tion planners considering the kinematic constraints
(Sec. 5.2), CHOMP and Trajopt, including the explana-
tion of the constrained motion planning (Sec. 2.3).

5. Add the results and analysis for new two test scenes that
are more difficult than the prior problems (Sec. 5.1),
and the comparison with three different configurations
of robots, Kuka 7-DoF, Fetch-7-DoF, and Hubo 8-DoF
(Sec. 5.4).

http://github.com/cheulkang/TORM

Analysis and Acceleration of TORM: Optimization-based Planning for Path-wise Inverse Kinematics 3

2 RELATED WORK

In this section, we discuss prior studies in the fields of in-
verse kinematics and motion planning for matching the de-
sired end-effector path.

2.1 Inverse Kinematics

Inverse kinematics (IK) has been studied widely to find a
joint configuration from an end-effector pose (Buss, 2004).
In the case of a redundant manipulator where our target
robots belong to, there can be multiple joint configura-
tions from a single end-effector pose. For this problem,
several techniques for quickly finding solutions have been
proposed (Diankov, 2010; Sinha and Chakraborty, 2019).
In particular, task-priority IK algorithms (Chiacchio et al.,
1991; Chiaverini, 1997; Kanoun et al., 2011) prioritize solu-
tions based on an objective function for each purpose, e.g.,
kinematic singularity or constraint task.

Most methods that synthesize a trajectory geometrically
constrained for an end-effector pose use the Jacobian matrix
for finding a feasible solution (Berenson et al., 2009; Kunz
and Stilman, 2012; Stilman, 2007; Vahrenkamp et al., 2009).
Unfortunately, the Jacobian matrix is the first derivative of
the vector-valued function with multiple variables and thus
it can cause false-negative failures by getting stuck in local
minima or convergence failures due to the limits of the joint
angle (Beeson and Ames, 2015).

Trac-IK (Beeson and Ames, 2015) points out the prob-
lem and improves success rates by using randomly selected
joint configurations and sequential quadratic programming.
Nonetheless, its solutions do not guarantee continuity of a
sequence of joint configurations to make a feasible trajec-
tory (Rakita et al., 2018). In summary, the traditional IK ap-
proaches have different strengths and weaknesses for syn-
thesizing a feasible trajectory.

To get alleviated solutions, many studies have presented
optimization techniques with objective functions for syn-
thesizing a feasible trajectory with matching end-effector
poses. Luo and Hauser (2012) use a geometric and temporal
optimization to generate a dynamically-feasible trajectory
from a sketch input. Recently, Rakita et al. (2018) proposed
a real-time approach using a weighted-sum non-linear opti-
mization, called RelaxedIK, to solve the IK problem for a
sequence of motion inputs. Since the collision checking has
a relatively large computational overhead, RelaxedIK uses a
neural network for fast self-collision avoidance.

Based on RelaxedIK, two studies (Praveena et al.,
2019; Rakita et al., 2019) are proposed for synthesizing a
highly-accurate trajectory on off-line. One of them is Stam-
pede (Rakita et al., 2019), which finds an optimal trajec-
tory using a dynamic programming algorithm in a discrete-
space-graph that is built by samples of IK solutions. The

other work (Praveena et al., 2019) generates multiple can-
didate trajectories from multiple starting configurations and
then selects the best trajectory with a user guide by allowing
a deviation if there are risks of self-collisions or kinematic
singularities.

The aforementioned methods, called path-wise IK meth-
ods, optimize joint configurations at finely divided end-
effector poses. These optimization methods synthesize an
accurate and feasible trajectory satisfied with several con-
straints, i.e., continuity of configurations, collision avoid-
ance, and kinematic singularities. Inspired by this strategy,
we propose a trajectory optimization of a redundant manip-
ulator (TORM) to get a collision-free and highly-accurate
solution. Unlike prior path-wise IK works, our method con-
siders self-collision as well as external obstacles, thanks to
tight integration of an efficient collision avoidance method
using a signed distance field.

2.2 Motion Planning for Following an End-effector Path

Motion planning involves a collision-free trajectory from
a start configuration to a goal configuration. Based on
the framework of motion planning, two methods (Holla-
day et al., 2019; Holladay and Srinivasa, 2016) are pre-
sented to follow the desired end-effector path in Carte-
sian space. One (Holladay and Srinivasa, 2016) uses an
optimization-based method, specifically Trajopt (Schulman
et al., 2013), by applying the discrete Fréchet distance that
approximately measures the similarity of two curves. Al-
though the optimization-based motion planning approaches
quickly find a collision-free trajectory using efficient col-
lision avoidance methods, these approaches can be stuck in
local minima due to several constraints (e.g., joint limits and
collisions). To assist its optimizer, this approach separately
plans a trajectory by splitting the end-effector path as a set
of waypoints and then sampling an IK solution at each pose.

Its subsequent work (Holladay et al., 2019) points out
the limitation of the prior work that samples only one IK so-
lution for each pose. Considering this property, it presents a
sampling-based approach that iteratively updates a layered
graph by sampling new waypoints and IK solutions. How-
ever, this method needs a long planning time to get a highly-
accurate solution, even with lazy collision checking to re-
duce the computational overhead.

Even though these methods find a collision-free trajec-
tory by utilizing a motion planning approach and random
IK solutions, it is hard to get a highly-accurate solution due
to time or structural constraints. To overcome these difficul-
ties, our method incorporates the Jacobian-based IK solv-
ing method into our optimization process, instead of using
only IK solutions. The aforementioned path-wise IK ap-
proaches also use the objective function to minimize the

4 Mincheul Kang1, Sung-Eui Yoon1

end-effector pose error, but do not combine it with the objec-
tive function to avoid external obstacles. On the other hand,
our approach holistically integrates these different objec-
tives and constraints within an optimization framework, in-
spired by an optimization-based motion planning approach,
CHOMP (Zucker et al., 2013), and effectively computes re-
fined trajectories based on our two-stage gradient descent
method.

2.3 Constrained Motion Planning

A constrained motion planning (CMP) additionally consid-
ers kinematic or dynamic constraints in addition to finding
a collision-free trajectory (Bonalli et al., 2019; Kim et al.,
2016; Kingston et al., 2019; Schulman et al., 2013). In the
case of the kinematic constraint, e.g., pulling a drawer or
opening a door (Stilman, 2007), the CMP plans the trajec-
tory while limiting movement to specific transitional or ro-
tational axes. Our problem is similar to having the kine-
matic constraint on all transitional and rotational axes to
match a given end-effector path. However, most CMP plan-
ners do not have a structure to solve the problem, especially
sampling-based planners (Kim et al., 2016; Kingston et al.,
2019).

Although an optimization-based motion planner can
solve the problem by adding the kinematic constraints to
their optimizer with finely divided end-effector poses in a
similar manner of the path-wise IK approaches (Rakita et al.,
2018, 2019), it is difficult to deal with diverse constraints
and objectives, since it tends to fall into a local minimum.
For handling this problem, we present a two-stage gradient
descent to refine a trajectory to be feasible and accurate with
a given end-effector path, and an adaptive exploration to es-
cape local minima efficiently.

2.4 Gradient descent for a constrained problem

Gradient descent is a first-order iterative method of grad-
ually finding a parameter value to minimize an objective
function. While an unconstrained problem only focuses on
minimizing a given objective function, a constrained prob-
lem is important to find a parameter value that minimizes
the objective function in a feasible set (Boyd et al., 2004).

For solving a constrained problem, the projected gra-
dient descent (PGD) conducts a projection onto a feasible
set after minimizing a primary objective function. Another
method is conditional gradient descent (CGD), as known as
the Frank-Wolfe algorithm (Frank et al., 1956), which finds
a good feasible direction using a local linear approximation
of the objective function and then moves along the chosen
direction in each step.

Based on these algorithms, various works solving con-
strained problems extend and apply to fit their applications,
e.g., image reconstruction and spike estimation (Gupta et al.,
2018; Joulin et al., 2014; Traonmilin et al., 2020). We ap-
proach our path-wise problem as a constrained problem that
aims to reduce the error with the target end-effector poses
and puts collision and joint speed limits as constraints. We
aim to minimize the error with the poses and solve the prob-
lem through our two-stage gradient descent based on the
PGD concept.

2.5 Avoiding local minima for trajectory optimization

Optimization-based approaches usually synthesize the de-
sired trajectory quickly but have a problem of falling into
local minima. To escape local minima, STOMP (Kalakr-
ishnan et al., 2011) conducts a stochastic optimization,
and CHOMP (Zucker et al., 2013) applies the simulated
annealing (Van Laarhoven and Aarts, 1987), one of the
meta-heuristic algorithms, for its optimization. Recently,
Khan et al. (2021) use the Beetle Antennae Search algo-
rithm (Jiang and Li, 2017) to improve the robustness of their
trajectory optimization.

Another way to avoid local minima is to restart by
changing parameter values or initial trajectory (Beeson and
Ames, 2015; Tong et al., 2006; Zhao et al., 2021). Similarly,
we iteratively explore newly created trajectories to avoid lo-
cal minima. Furthermore, we accelerate the exploration by
deciding the restart based on the observation of past opti-
mization results.

3 Background

In this section, we define the path-wise IK problem we aim
to solve and then give the background based on previous
major studies.

3.1 Problem Definition

The path-wise IK problem is to find a trajectory, ξξξ , that
matches a given end-effector path, X , as well as satisfies var-
ious constraints, i.e., collisions with obstacles, joint velocity
limits, and kinematic singularities. The trajectory ξξξ is a se-
quence of joint configurations, and the end-effector path, X ,
is defined in the six-dimensional Cartesian space.

Our target robot is a redundant manipulator that has
multiple joint configurations given an end-effector pose;
if the manipulator has a controllable degree of freedom
(DoF) greater than six, it has infinitely many valid solutions.
Among many candidates, we synthesize a set of joint config-
urations as a trajectory to follow the given end-effector path

Analysis and Acceleration of TORM: Optimization-based Planning for Path-wise Inverse Kinematics 5

x0

n

x1 X

x

ξ

Fig. 2 This figure shows our problem that is synthesizing a feasible
and accurate trajectory ξξξ for a given end-effector path X . The red line
is X , which is approximated by end-effector poses X̃ = {xxx0,xxx1, ...,xxxn}
(green dots). The trajectory ξξξ is computed at end-effector poses X̃ . The
part of the synthesized trajectory shows that the end-effector follows
the red line, and the sequence of joint configurations is smooth and
collision-free, while avoiding obstacles such as the blue box and the
table.

accurately, while avoiding collisions for external obstacles
and the robot itself (Fig. 2).

We solve the problem by applying the waypoint param-
eterization (Flash and Potts, 1988) of the path that finely
splits the given end-effector path, X ≈ X̃ = {xxx0,xxx1, ...,xxxn};
xxx ∈ R6 is an end-effector pose. We then compute the joint
configurations for end-effector poses X̃ . As a result, the tra-
jectory is approximated as: ξξξ ≈ [qqq0 qqq1 ... qqqn]

T ⊂R(n+1)×d ,
where d is the DoF of a manipulator. When a start configu-
ration qqq0 is given, we compute the joint configurations from
its next configuration, qqq1, to the goal configuration qqqn. In our
problem, however, the start configuration may not be given,
while an end-effector path is given.

To solve our path-wise problem, we present a trajec-
tory optimization of a redundant manipulator (TORM) that
holistically integrates the Jacobian-based IK method and an
optimization-based motion planning approach. Main nota-
tions are summarized in Table 1.

3.2 Jacobian-based Inverse Kinematics

To match a given target end-effector path, our optimizer is
based on the Jacobian-based IK method. Many prior tech-
niques explained in Sec. 2.1 utilize the Jacobian-based IK
method, since it is very accurate with fast convergence (Bee-
son and Ames, 2015). In this paper, we combine it with
an optimization-based approach to quickly get a highly-
accurate trajectory, while avoiding collisions with obstacles
and achieving smoothness of joints.

The Jacobian-based IK computes a joint configuration
by iteratively minimizing the pose error, Fpose, between the

Table 1 Notation table

Notation Description

X̃
Target end-effector poses that are finely divided from

the given end-effector path X

ξξξ Set of joint configurations corresponding to X̃

qqqi
Joint configuration on the trajectory ξξξ at i-th

end-effector pose xxxi

JJJ Jacobian matrix, i.e., dxxx
dqqq ∈ R6×d

P
Set of body points in the workspace approximating

the geometric shape of the manipulator

xxx(qqq, p)
Partial forward kinematics from the manipulator base

to a body point p ∈ P at a configuration qqq

target and current end-effector pose. Since our work consid-
ers the given end-effector path, not a single pose, we utilize
the finely divided end-effector poses X̃ from the given path.
Consequently, Fpose for a trajectory is defined as:

Fpose(ξξξ) =
1
2

n

∑
i=0
‖xxxi−FK(qqqi)‖

2 , (1)

where FK(qqqi) computes the end-effector pose at the i-th
joint configurations qqqi using forward kinematics (FK). Note
that n is the number of end-effector poses X̃ divided by the
waypoint parameterization and qqqi represents the i-th joint
configuration corresponding to the i-th end-effector pose
xxxi. In this equation, ‖xxxi−FK(qqqi)‖

2 can be represented as
1
2 (xxxi−FK(qqqi))

T (xxxi−FK(qqqi)). Accordingly, we can derive
the functional gradient of the pose term, ∇Fpose, by the fol-
lowing:

∇Fpose(qqqi) = JJJT (xxxi−FK(qqqi)), (2)

where JJJ = dxxx
dqqq ∈ R6×d is the Jacobian matrix.

3.3 Optimization-based Motion Planning

For making a feasible trajectory, we adopt an
optimization-based motion planning approach, specifi-
cally CHOMP (Zucker et al., 2013), which synthesizes a
smooth and collision-free trajectory based on the covariant
gradient descent. This approach significantly reduces
the planning time by incorporating an efficient collision
avoidance method into its optimization process. By incor-
porating an optimization-based motion planning method
with these advantages into our method, we can quickly
get the desired solution, while avoiding collisions against
external obstacles and the robot itself.

CHOMP models an objective function consisting of
avoiding collisions and achieving smoothness:

U(ξξξ) = Fobs(ξξξ)+λFsmooth(ξξξ), (3)

6 Mincheul Kang1, Sung-Eui Yoon1

where λ is a regularization constant. While minimizing the
objective function, CHOMP finds a collision-free trajectory
from a start configuration to a goal configuration.

Fobs quantitatively measures proximity to obstacles us-
ing a signed distance field that can be calculated from the
geometry of workspace obstacles. The robot body is simpli-
fied into spheres, which serve as conservative bounding vol-
umes for efficient computation. Overall, Fobs for a trajectory
can be calculated highly fast and is formulated as:

Fobs(ξξξ) =
n−1

∑
i=0

P

∑
p

(
1
2

(
c(xxxi+1,p)+ c(xxxi,p)

)∥∥xxxi+1,p− xxxi,p
∥∥) ,

(4)

where xxxi,p is partial forward kinematics, i.e., a position of a
body point p ∈ P in the workspace at a configuration qqqi and
c(·) is an obstacle cost computed from the signed distance
field. At a high level, it approximately measures the sum of
penetration depths between the robot body and the obstacles.
Further, ∇Fobs can be derived as the following:

∇Fobs(qqqi)=
P

∑
p

JJJT
p

(
‖xxx′i,p‖[(III− x̂xx

′
i,px̂xx

′T
i,p)∇c(xxxi,p)− c(xxxi,p)κκκ]

)
,

(5)

where x̂xx
′
i,p is the normalized velocity vector, and κκκ =

‖xxx′i,p‖−2(III− x̂xx
′
i,px̂xx

′T
i,p)xxx

′′
is the curvature vector.

Fsmooth measures dynamical quantities, i.e., the squared
sum of derivatives, to encourage the smoothness between
joint configurations:

Fsmooth(ξξξ) =
1
2

n−1

∑
i=0

∥∥∥∥qqqi+1−qqqi

∆ t

∥∥∥∥2

. (6)

Using a finite difference method, Fsmooth is represented to
Fsmooth =

1
2 ‖ KKKξξξ + kkk ‖2= 1

2 ξξξ
T AAAξξξ +ξξξ

T bbb+ c, where KKK and
kkk are the matrix and vector for a finite-difference, AAA =

KKKT KKK, bbb = KKKT kkk, and c = kkkT kkk/2. We can then simply derive
∇Fsmooth as AAAξξξ +bbb.

4 Trajectory Optimization

In this section, we describe the motivation and overview of
our approach, followed by giving a detailed explanation of
our proposed methods.

4.1 Motivation and Overview

A simple way to integrate the Jacobian-based IK and the
optimization-based approach is to combine their objective
function. Specifically, we can approach the path-wise prob-
lem by iteratively updating the trajectory to minimize the

Input: Target end-effector path Output: Synthesized trajectory

Deciding whether to stop
the current exploration

Extracting sub-sampled poses

Generating a new trajectory Refining the trajectory with the TSGD

Checking a given condition

Restart

Fig. 3 This figure shows an abstraction of our overall algorithm. The
blue boxes represent the iterative process, and one exploration means
the refinement process starting from a newly generated trajectory.

cost of the objective function consisting of three different
terms:

U(ξξξ) = Fpose(ξξξ)+λ1Fobs(ξξξ)+λ2Fsmooth(ξξξ). (7)

We, however, found that a naı̈ve approach cannot get a
highly-accurate solution due to conflicts among each func-
tional gradient when updating a trajectory (Fig. 4(a)).

Additionally, this optimization-based update method has
a probability of falling into local minima due to its local na-
ture. One way of escaping local minima is to perform a fixed
number of local updates by repeatedly restarting from differ-
ent values (Tong et al., 2006). However, it is rather unclear
how many updates we need to perform for our task.

To alleviate the aforementioned problems, we first
present a two-stage gradient descent (TSGD) that optimizes
a trajectory by dividing two parts: making a trajectory to be
feasible and matching a given end-effector path. The TSGD
mainly focuses on minimizing the pose error, while achiev-
ing the feasibility as satisfying various constraints (Sec. 4.2).

We also propose an adaptive exploration (AE) to avoid
local minima efficiently. The AE explores different new tra-
jectories with the TSGD and adaptively decides whether
to stop the current exploration instead of repeating a fixed
number of updates. The stop criterion is decided through the
observation of optimization results (Sec. 4.3).

Overall, our algorithm iteratively performs two parts,
generating a new trajectory, ξξξ new, (Sec. 4.4) and updating
the trajectory (Fig. 3). An initial trajectory is created in the
same way as generating a new trajectory. The update part
locally refines the trajectory using our TSGD, along with
examining whether or not to restart the current exploration.
During the iterative process, we find the trajectory that has
the smallest Fpose with satisfying the feasibility (Sec. 4.5).
This process continues until satisfying a given condition,
e.g., running time or cost.

4.2 Two-Stage Gradient Descent

Our goal is to get a highly-accurate solution with satisfying
the feasibility. To achieve the goal, we holistically integrate

Analysis and Acceleration of TORM: Optimization-based Planning for Path-wise Inverse Kinematics 7

ξ

min

0 Fpose

C

ξ2

ξ1

(a) Simple integration

ξ0 Fpose

C

ξ1

ξ2

min

(b) TSGD

Fig. 4 This shows the illustration of optimization progress for a sim-
ple integration using Eq. 7, and our TSGD (Eq. 9). Each gray contour
line represents equal Fpose, and the center, marked ⊗, of innermost
contour has the smallest Fpose. The simple integration (a) is difficult
to reach the minimum Fpose due to conflicts between three different
terms; black arrows represent the update process of the simple integra-
tion through the sum of three functional gradients. On the other hand,
our TSGD approaches to the minimum Fpose through alternatively up-
dating the trajectory toward the feasible set C shown in the red region
using ∇Fobs and ∇Fsmooth (green arrow) and updating the trajectory to-
ward the minimum Fpose using ∇Fpose (blue arrow).

the Jacobian-based IK with an optimization-based motion
planning approach. When simply combining their terms as
shown in Eq. 7, we can get a solution through iterative re-
finement of a trajectory, but the computed trajectory tends
to be sub-optimal, because it is updated from the weighted
sum of different functional gradients computed for different,
even worse conflicting, purposes (Fig. 4).

To reduce conflicts between different functional gradi-
ents, we present a two-stage gradient descent (TSGD) that
focuses on minimizing Fpose and considers other factors as
constraints. Specifically, our optimization problem is de-
fined as a constrained problem:

argmin
ξξξ

Fpose(ξξξ), subject to ξξξ ∈C, (8)

where C is a feasible set.
Our TSGD solves Eq. 8 by iteratively performing two

parts consisting of updating to make a feasible trajectory
and updating the trajectory to match closer to the minimum
point in terms of Fpose, marked as ⊗ (Fig. 4(b)). We design
our TSGD inspired by the projected gradient descent that
conducts a projection onto a feasible set C after minimiz-
ing a primary objective function to solve a constrained prob-
lem. Instead of the projection, we update the trajectory to be
feasible by minimizing Fobs and Fsmooth. Since the feasible
set C cannot be computed at once due to the complexity of
the constraints (Bonalli et al., 2019; Schulman et al., 2013;
Zucker et al., 2013), we find a feasible trajectory by repeat-
edly minimizing Fobs and Fsmooth.

Concretely, our TSGD is repeated in which each odd it-
eration updates the trajectory using ∇Fobs and ∇Fsmooth, and

ξ0

Fpose

C

ξ1

ξ2

min

(a) Case where Fpose is increas-
ingly growing

min

Fpose

C
ξ0

ξ1ξ2

(b) Case where Fpose is reducing
without the feasibility

Fig. 5 This illustrates two problematic cases for ineffective explo-
ration; the information of this figure can be seen in Fig. 4. Note that
these figures are examples of one exploration from a newly generated
trajectory, ξ0. (a) is the case where Fpose gradually increases due to
the strong tendency to make a feasible trajectory. In contrast, (b) is the
case where Fpose is gradually reduced, but it is still not feasible.

in which even iteration updates the trajectory using ∇Fpose:

ξξξ i+1 =

{
ξξξ i−η1AAA−1(∇Fobs +λ∇Fsmooth), if i is odd,
ξξξ i−η2∇Fpose, otherwise,

(9)

where η is a learning rate, and AAA is from an equally trans-
formed representation of the smooth term (see the bottom
of Sec. 3.3). AAA−1 acts to retain smoothness and to acceler-
ate the optimization by having a small amount of impact on
the overall trajectory. ∇Fobs and ∇Fsmooth using AAA−1 have a
computational benefit by giving an influence between suc-
cessive joint configurations, which is shown in Zinkevich
(2003); Zucker et al. (2013). On the other hand, ∇Fpose does
not apply AAA−1 to compute highly-accurate joint configura-
tions matched for each finely divided end-effector pose.

Our TSGD needs a more number of iterations by per-
forming two separate updates over the simple integration
(Eq. 7). Nevertheless, we found that our method shows
a faster convergence speed than the simple integration
(Fig. 9); in our experiment, our TSGD shows at least 100
times less pose error over the simple integration (Table 4).
This is thanks to the TSGD, which effectively resolves con-
flicts between constraints.

4.3 Adaptive Exploration

Our update rule based on gradient descent has a probability
to fall into sub-optimal due to its local nature. Furthermore,
there can be many surrounding local minima in our solu-
tion space, since we consider several different properties of
constraints, e.g., collisions, velocity limits, and matching a
given path.

To effectively avoid getting stuck in local minima, we
suggest an adaptive exploration (AE) that can explore new,
different trajectories, while examining whether to stop each
exploration part or not. Note that a redundant manipulator

8 Mincheul Kang1, Sung-Eui Yoon1

can have multiple joint configurations at a single pose, thus
we can construct many candidate trajectories. By utilizing
this property, we generate new, different trajectories, which
are locally refined based on our TSGD.

An iterative exploration, starting with new values, has
been used to avoid local minima in works based on the gra-
dient descent (Beeson and Ames, 2015; Tong et al., 2006).
On the other hand, the iterative exploration has the draw-
back of computational waste by performing a fixed number
of iterations for each exploration.

To improve the effectiveness of the exploration, we set
a stopping criteria inspired by accelerated gradient meth-
ods (Kim and Fessler, 2018; O’donoghue and Candes,
2015), which can dramatically improve the convergence rate
through a heuristic restart scheme. Our AE restarts when it is
likely that the exploration progress is ineffective, or makes
little change in the recently updated trajectories as a local
minimum.

We have observed that our optimizer has poor explo-
ration in typically two cases. One of the cases is that Fpose
is increasing as the force to satisfy the constraints is strong
(Fig. 5(a)). The other case is that Fpose is gradually re-
duced, but any trajectories do not achieve the feasibility
(Fig. 5(b)). These cases may occur as one of the two stages
has a greater impact on the optimization, but are more af-
fected by an initial trajectory, ξξξ 0. When the initial trajec-
tory is not good enough, such as violating the constraints in
many parts of the trajectory, finding the desired solution only
with local updates is difficult. Such importance of initial val-
ues in optimization-based planning has been discussed in
several works (Beeson and Ames, 2015; Luo and Hauser,
2012). Hence, we can accelerate our optimization by restart-
ing from a new trajectory when the current exploration is
judged to the aforementioned cases.

The AE makes a decision to restart by checking whether
the exploration progress corresponds to either one of the two
cases or falls into a local minimum. To do that, we set a
restart scheme based on the past optimization results, specif-
ically pose error Fpose and feasibility; the results are calcu-
lated after even iteration in the TSGD. Our restart scheme
examines the change tendency of Fpose approximately by
computing the average slope of past m Fpose based on the
current Fpose:

β =
1
m

m

∑
i=1

(Fu
pose−Fu−i

pose)/i, (10)

where u is the current iteration index; if u < m, we do not
execute this process, and we set m to 5. Specifically, we first
examine whether the current exploration falls into a local
minimum by checking |β | < 1× 10−6. Next, we examine
whether the current exploration corresponds to two cases
of ineffective exploration (Fig. 5). The first case (Fig. 5(a))
where Fpose is gradually increasing is checked by β > 0.1.

x0
nx

(a) 50 intervals (8) (b) 10 intervals (33) (c) Path simplification
(9)

0 nx x
(d) 50 intervals (13) (e) 10 intervals (57) (f) Path simplifica-

tion (25)

Fig. 6 This figure shows sub-sampled poses S (blue dots), extracted
from finely divided end-effector poses X̃ (red dots), in the problem of
square tracing and writing “hello”. From S, we construct a new trajec-
tory ξnew that starts with random IK solutions and is found in a greedy
manner minimizing Eq. 7. (a,d) and (b,e) are extracted uniformly at
10 and 50, respectively. (c) and (f) are the results computed by the
path simplification using the DP algorithm. () represents the number of
extracted sub-sampled poses as blue dots. (b) has too many S, increas-
ing the time to generate a new trajectory ξξξ new. On the other hand, (d)
has a small number of S, which is not enough to make an potentially
good trajectory. On the other hand, we apply the path simplification to
extract the appropriate S (c, f) regardless of various forms of paths.

The second case (Fig. 5(b)) where Fpose is enough reduced
without the feasibility is checked by simultaneously testing
|β | < 1× 10−3 and examining whether the constraints are
satisfied. Note that the exploration is continued if the afore-
mentioned, three conditions are not satisfied.

We decide the restart from a new trajectory through a
simple, yet effective restart scheme. As a result, our ap-
proach shows a faster convergence than performing an ex-
ploration by a fixed number of iterations (Table 4). This is
mainly thanks to the adaptive iterations.

4.4 New Trajectory Generation

Each exploration part generates a new trajectory ξξξ new. We
strive to find a potentially good trajectory for our local opti-
mization, which considers our objectives with smoothness,
avoiding obstacles, and following a given path. Because
merely connecting start and goal configurations can result
in a sub-optimal solution, especially in cases of complex
scenarios (e.g., Fig. 6 and environments with external ob-
stacles) (Holladay and Srinivasa, 2016).

Overall, we consider random configurations and choose
one that minimizes three different terms (Eq. 7) in a greedy
manner for generating an initial trajectory. As the first step,
we extract sub-sampled poses, S, from the end-effector
poses X̃ , since working with more poses tends to increase
the complexity of generating a trajectory. We can uniformly
extract S at γ intervals from X̃ , but it is challenging to set γ

Analysis and Acceleration of TORM: Optimization-based Planning for Path-wise Inverse Kinematics 9

for effectively handling various end-effector paths (Fig. 6).
For example, when the interval is small, the generation time
increases. On the other hand, when the interval is large, the
quality of the path may deteriorate.

To handle this trade-off problem, we extract the most
important poses that can well maintain the shape of a given
path. To compute such important poses, we apply the path
simplification method, specifically Douglas-Peucker (DP)
algorithm (Douglas and Peucker, 1973). In our method, the
DP recursively extracts X̃ finding the furthest pose between
two poses that are initially start and end poses. This recur-
sive process stops when the furthest pose is closer than a
given distance.

In the case of having a long distance between two ad-
jacent sub-sampled poses computed from the DP, there is a
probability to create poor quality of trajectory. Accordingly,
we additionally extract S so that there are no more than 50
poses between the two adjacent poses. Note that this extrac-
tion process is a one-time operation that is cached and reused
during all the exploration processes.

In the next step, we find suitable joint configurations at
the sub-sampled poses. For the first, sub-sampled pose as the
start end-effector pose xxx0, we simply compute a random IK
solution at the pose if a start configuration is not given. For
its next pose, we compute j random IK solutions at the pose
and greedily select one that minimizes Eq. 7 when connect-
ing it with the configuration of the previous pose; we set j to
100. Lastly, we connect chosen joint configurations through
linear interpolation for generating a new trajectory, which is
then locally refined by our TSGD.

Our trajectory generation method sometimes generates
a poor quality of trajectory due to its random nature. Even
though we can reduce the randomness by increasing the
number of sub-sampled poses with many IK solutions, it
exponentially increases the generation time. We, therefore,
extract sub-sampled poses at appropriate intervals using the
path simplification to maintain a balance between generation
time and quality of trajectory. Furthermore, we compensate
for the randomness of the generated trajectory by exploring
various trajectories through adaptive exploration (Sec. 4.3).

4.5 Trajectory Constraints

During the optimization process, we may find a low-cost
solution, but it can violate several constraints. For exam-
ple, a trajectory can have collisions with obstacles or self-
collisions, even though the trajectory accurately follows a
given end-effector pose. Hence, we check collisions every
time we find a better trajectory during our optimization pro-
cess.

In addition to the collision checking, a manipulator com-
monly has several constraints that must satisfy lower and

upper limits of joints, velocity limits, and kinematic sin-
gularities for joints. In the case of lower and upper lim-
its of joints, it is traditionally handled by performing L1
projection that resets the violating joints value to its limit
value. To retain smoothness, we use a smooth projection
used by CHOMP (Zucker et al., 2013) during the update
process. The smooth projection uses the Riemannian metric
AAA−1. In other words, an updated trajectory, ξ̃ξξ , is defined as
ξ̃ξξ = ξξξ +αAAA−1vvv, where vvv is the vector of joint values, and α

is a scale constant. This process is repeated until there is no
violation.

For other constraints like the velocity limit, we check
them together while checking collisions. The velocity limit
for joints is checked by computing the velocities of joints
between qqqi−1 and qqqi for a given time interval, ∆ t. Another
constraint is the kinematic singularity that is a point where
the robot is unstable, and it can occur when the Jacobian
matrix loses full rank. To check kinematic singularities, we
use the manipulability measure (Yoshikawa, 1985) used by
RelaxedIK (Rakita et al., 2018). At a high level, it avoids
making the manipulability measure less than a certain value
that is computed by random samples. Note that our method
returns the lowest cost trajectory guaranteed through check-
ing constraints for constructing a feasible trajectory.

5 Experiments and Analysis

In this section, we provide various experiment results, and
discussions of our method and other prior works using three
different configurations of robots, Kuka 7-DoF, Fetch 7-
DoF, and Hubo 8-DoF. Furthermore, we test our method
with the real Fetch robot. The results are shown in the ac-
companying video.

We report the average performance by performing 20
tests with a machine that has 3.6 GHz Intel i7-9700 CPU
and 32 GB RAM. In this experiment, we compute the pose
error with target end-effector poses using a weighted sum
of the Euclidean distances of the translational and rotational
parts, which was used in the work of Holladay et al. (2019);
the adopted weight of the rotational distance over the trans-
lational distance is 0.17. In addition, we construct the target
end-effector poses for calculating the pose error by adding
one more between the poses used for planning. This is be-
cause the error calculation using only poses used for plan-
ning may not be precise in determining the concordance
rate with a given end-effector path, since our target robot, a
redundant manipulator, has various joint configurations for
one pose.

10 Mincheul Kang1, Sung-Eui Yoon1

(a) Square tracing with the table (b) “S” tracing with the table and
one box

(c) “S” tracing with two boxes (d) Circle tracing within a box

Pitch ±45˚

Yaw ±45˚

(e) Rotation task (f) Writing “hello”

Fig. 7 This shows six problems with three different robots, Kuka 7-
DoF, Fetch 7-DoF, and Hubo 8-DoF. Four problems, (a) to (d), include
external obstacles and two problems, (e) and (f), do not have external
obstacles. The red line represents the given end-effector path.

5.1 Experiment setting

We prepare six problems (Fig. 7) with external obstacles
and two non-obstacle problems to evaluate and compare our
method with prior methods, CHOMP (Zucker et al., 2013),
Trajopt (Schulman et al., 2013), RelaxedIK (Rakita et al.,
2018), Stampede (Rakita et al., 2019), and the work of Hol-
laday et al. (2019). In this section, we call the work of Hol-
laday et al. (2019) EIGS, taken from their paper title.

Four problems with obstacles are the square tracing with
the table, the “S” tracing with the table and blue box, the
“S” tracing with two boxes, and the circle tracing with sur-
rounding obstacles. At these problems, we do not test for
RelaxedIK and Stampede, since these prior methods did not
consider external obstacles.

To compare ours against those prior methods, we pre-
pare two non-obstacle problems, rotating±45 degrees in the
direction of pitch and yaw, and writing “hello”, by adapt-
ing problems used in those methods; we just change writing
“icra” to “hello”.

We used the code of RelaxedIK and Stampede that are
provided by authors through their websites. For RelaxedIK,

Stampede, and our method, the end-effector paths of all
problems are finely divided and are fed into all the tested
methods; in our experiment, the distance between two di-
vided end-effector poses is about 0.005m for translation
and 0.02rad for rotation, following the protocol adopted in
Rakita et al. (2019). On the other hand, EIGS initially splits
the end-effector path and gradually breaks down the path
during the planning.

In CHOMP and Trajopt, we modified their setting for
solving the existing constrained motion planning problem
(Sec. 2.3) to solve the path-wise problem. Their setting con-
siders various kinds of kinematic constraints, and we gave
the kinematic constraint on all transitional and rotational
axes with the finely divided end-effector poses. Also, we
set CHOMP and Trajopt to find a trajectory that minimizes
pose error while satisfying the constraints as in our method
(Sec. 4.5). In addition, we gave an initial trajectory com-
puted by our new trajectory generation method (Sec. 4.4),
since both planners cannot solve our problems mostly with-
out the initial trajectory.

We mainly evaluate whether the synthesized trajectory
accurately follows the given end-effector path. Note that re-
ported results were extracted from feasible trajectories sat-
isfying the given constraints (Sec. 4.5).

5.2 Comparison with prior methods

In four problems including external obstacles, we fix the
start configuration qqq0 located close to the obstacles in order
to see how well different methods can avoid external obsta-
cles (Fig. 7). For non-obstacle problems and two obstacle
problems, we do not fix qqq0 to see how different methods
handle qqq0 during the planning process.

Table 2 shows the overall results of different methods,
including three different robots. Fig. 8 shows the trajectory
quality of different methods, as we have more planning time
up to the maximum planning budget of 50 seconds. On the
other hand, Table 2 shows a snapshot result of the trajectory
computed at a specific planning time.

For the non-obstacle problems, the rotation task and
writing “hello”, we report results by the initial solution time
of Stampede, instead of 50 seconds; within 50 seconds,
Stampede computed only a single trajectory. Note that in
the case of RelaxedIK, a real-time planner, it quickly syn-
thesizes one trajectory at one execution, but its computed
trajectory tends to be low-quality.

CHOMP, Trajopt, and our method find an initial solution
faster than other methods in most problems (Table 2). This
is because these techniques set an initial trajectory using our
new trajectory generation method. It also supports that our
new trajectory generation method quickly synthesizes a po-
tentially good trajectory (Sec. 4.4).

Analysis and Acceleration of TORM: Optimization-based Planning for Path-wise Inverse Kinematics 11

Table 2 Results of different methods, CHOMP, Trajopt, EIGS, RelaxedIK, Stampede, and ours given an equal planning time. RelaxedIk is a
real-time planner and does not provide better trajectories with more planning time; we provide its results while it cannot be compared in the
equal-time comparison. RelaxedIK and Stampede experimented with non-obstacle problems since these methods only check self-collision. The
bold text indicates the smallest pose error, and the underline indicates the second smallest pose error.

PE: Pose error. SD: Standard Deviation. TL: Trajectory length (rad). NF: Number of failures. IST: Initial solution time (s). PT: Planning time (s).

Kuka 7-DoF Fetch 7-DoF Hubo 8-DoF

PE / SD TL NF IST PT PE / SD TL NF IST PT PE / SD TL NF IST PT

Square tracing
CHOMP 2.25e-2 / 7.9e-3 9.4 0 0.4

50

2.17e-2 / 3.3e-3 8.5 0 0.6

50

2.82e-2 / 1.3e-2 11.0 0 5.5

50with the table
Trajopt 3.33e-3 / 8.0e-3 7.9 0 3.4 1.46e-2 / 2.7e-3 10.3 1 4.5 7.80e-3 / 5.6e-3 11.1 5 7.3

(fixed qqq0)
EIGS 6.39e-3 / 1.3e-3 24.1 0 5.2 5.11e-3 / 1.2e-3 25.6 0 3.5 6.90e-3 / 1.1e-3 36.6 0 6.0

Ours 6.37e-6 / 1.3e-6 7.9 0 0.7 6.33e-6 / 1.0e-6 8.3 0 0.8 1.51e-5 / 6.9e-6 10.8 0 3.1

“S” tracing CHOMP 5.94e-3 / 8.3e-4 6.0 0 4.7

50

1.53e-2 / 2.7e-3 7.1 0 7.9

50

7.2e-2 / 4.6e-2 13.5 0 10.1

50
with the table Trajopt 4.61e-6 / 7.6e-6 5.9 0 3.3 5.70e-2 / 5.8e-2 8.7 2 3.8 9.05e-3 / 1.0e-2 10.0 7 8.3

and one box EIGS 5.50e-3 / 8.1e-4 25.1 0 3.6 4.51e-3 / 7.2e-4 21.6 0 2.9 8.50e-3 / 1.8e-3 29.2 0 5.2

(fixed qqq0) Ours 1.72e-6 / 6.4e-7 6.0 0 1.1 6.00e-6 / 2.1e-6 7.0 0 1.2 6.85e-5 / 4.7e-5 11.7 0 2.6

“S” tracing
CHOMP 3.66e-2 / 4.2e-2 7.6 0 4.3

50

7.52e-3 / 1.3e-3 6.1 0 6.8

50

2.31e-2 / 1.4e-2 9.8 1 6.9

50with the table
Trajopt 6.69e-6 / 5.3e-6 7.1 3 3.2 7.30e-6 / 3.9e-6 6.7 7 3.8 1.90e-3 / 4.9e-3 8.3 9 3.6

and one box
EIGS 4.64e-3 / 6.1e-4 24.0 0 3.9 5.02e-3 / 1.1e-3 18.8 0 3.2 8.34e-3 / 1.8e-3 31.4 0 6.2

Ours 1.80e-6 / 1.9e-6 5.6 0 1.2 1.35e-6 / 1.3e-6 5.7 0 1.4 1.85e-5 / 1.6e-5 8.4 0 3.7

“S” tracing
CHOMP 1.53e-2 / 3.4e-3 8.4 1 5.0

50

3.22e-2 / 1.3e-3 11.0 0 2.3

50

4.29e-2 / 2.0e-2 11.2 2 11.8

50with two boxes
Trajopt 2.21e-2 / 2.6e-2 9.4 4 1.2 8.54e-5 / 9.1e-5 10.8 6 2.9 5.16e-3 / 6.7e-3 10.2 9 3.4

(fixed qqq0)
EIGS 1.70e-2 / 1.0e-3 33.9 0 3.7 8.62e-3 / 5.4e-3 25.5 0 3.0 9.68e-3 / 1.2e-3 26.5 0 5.1

Ours 9.26e-6 / 2.9e-6 8.2 0 1.4 1.36e-5 / 2.6e-6 9.7 0 1.8 1.12e-4 / 7.1e-4 10.2 0 4.9

Circle tracing CHOMP 1.83e-2 / 7.4e-4 7.8 0 0.6

50

1.68e-2 / 7.6e-4 7.0 0 2.4

50

4.77e-2 / 2.5e-2 8.5 1 7.4

50
with surrounding Trajopt 3.54e-5 / 4.5e-5 7.5 0 3.4 2.26e-2 / 2.4e-2 8.7 8 1.8 1.15e-2 / 1.3e-2 7.8 6 15.7

obstacles EIGS 4.72e-3 / 1.0e-3 24.9 0 3.9 5.40e-3 / 1.2e-3 16.9 0 2.7 1.06e-2 / 4.2e-3 24.2 0 6.3

(fixed qqq0) Ours 7.20e-6 / 4.5e-7 7.8 0 0.7 7.27e-6 / 1.5e-6 7.5 0 1.3 1.10e-4 / 3.8e-4 7.8 0 6.3

Circle tracing
CHOMP 2.91e-2 / 1.5e-2 7.8 0 0.6

50

1.16e-2 / 3.0e-3 6.9 0 2.0

50

2.67e-2 / 2.0e-2 8.7 3 9.4

50with surrounding
Trajopt 8.53e-6 / 6.3e-6 7.7 3 4.3 2.89e-5 / 5.1e-5 6.9 9 2.3 1.91e-3 / 6.0e-3 7.9 8 5.7

obstacles
EIGS 5.34e-3 / 6.5e-4 23.1 0 4.2 6.05e-3 / 9.9e-4 14.8 0 2.9 6.93e-3 / 1.4e-3 19.4 0 5.9

Ours 4.96e-6 / 3.2e-6 7.4 0 0.8 2.30e-6 / 1.3e-6 6.8 0 0.8 1.13e-5 / 1.3e-5 8.0 0 5.5

RelaxedIK 3.93e-2 / 3.7e-3 8.9 0 - 6.3 7.31e-2 / 4.3e-3 12.1 0 - 6.1 8.29e-2 / 6.6e-3 8.9 0 - 7.3

Rotation task
Stampede 5.85e-5 / 1.8e-6 9.5 0 28.5 6.49e-5 / 1.9e-6 12.4 0 35.7 2.58e-4 / 8.2e-5 9.8 0 38.0

without
CHOMP 7.33e-3 / 3.3e-3 8.7 0 0.3 2.51e-2 / 7.8e-3 14.3 0 0.5 2.83e-2 / 1.1e-2 11.7 0 1.2

obstacles
Trajopt 2.85e-3 / 3.7e-3 6.6 0 1.1 28.5 5.85e-4 / 8.3e-4 12.6 0 2.0 35.7 1.49e-2 / 2.2e-2 10.7 4 6.3 38.0

EIGS 1.40e-2 / 4.2e-3 17.1 0 4.2 8.30e-3 / 1.5e-3 17.8 0 4.3 7.41e-3 / 1.6e-3 19.2 0 5.6

Ours 5.53e-5 / 3.3e-5 8.9 0 0.5 6.96e-5 / 3.8e-6 13.3 0 0.6 2.21e-4 / 1.3e-4 10.5 0 1.5

RelaxedIK 4.10e-2 / 2.1e-3 19.2 0 - 16.7 5.04e-2 / 4.6e-3 21.6 0 - 16.0 5.29e-2 / 8.7e-3 27.4 0 - 17.2

Writing “hello”
Stampede 3.28e-5 / 4.7e-5 20.3 0 30.4 4.71e-5 / 6.6e-5 24.8 0 38.3 9.10e-5 / 2.0e-4 29.7 0 45.1

without
CHOMP 1.27e-1 / 2.8e-2 36.0 0 1.1 3.76e-2 / 3.7e-3 26.3 0 1.2 6.43e-2 / 3.5e-2 32.5 0 4.5

obstacles
Trajopt 2.42e-3 / 2.6e-2 25.5 0 5.5 30.4 1.54e-3 / 5.9e-2 28.4 2 6.9 38.3 1.71e-2 / 6.0e-3 31.1 4 7.1 45.1

EIGS 2.23e-2 / 3.8e-3 49.2 0 11.7 1.7e-2 / 2.1e-3 36.9 0 11.4 1.7e-2 / 1.9e-3 49.0 0 13.2

Ours 3.13e-5 / 1.0e-5 22.5 0 1.5 4.36e-5 / 3.6e-6 26.0 0 1.3 3.3e-4 / 5.3e-4 31.8 0 5.2

Nonetheless, CHOMP shows the highest pose error in
most problems, even though it gradually reduces the pose
error over planning time. Our method is based on CHOMP,
but we achieved a highly-accurate solution thanks to the up-
date through our TSGD by combining the Jacobian-based
IK approach and CHOMP. In addition, Table 3 shows the
computational advantage of our TSGD combined with the
Jacobian-based IK approach compared to CHOMP consid-

ering various kinds of kinematic constraints; in CHOMP,
multiple matrix calculations are performed to take into
account various kinematic constraints (see Zucker et al.
(2013)).

Trajopt has the highest number of failures due to falling
into a local minimum, even though it had good results in
some problems, e.g., “S” tracing with two boxes using Fetch
7-DoF. Especially, there are many failures in the two prob-

12 Mincheul Kang1, Sung-Eui Yoon1

0 10 20 30 40 50
Planning time [s]

0

0.01

0.02

0.03

0.04

0.05

P
os

e
er

ro
r

CHOMP
Trajopt
EIGS
Ours

(a) Square tracing using the Kuka 7-DoF

0 10 20 30 40 50
Planning time [s]

0

0.02

0.04

0.06

0.08

P
os

e
er

ro
r

RelaxedIK
Stampede
CHOMP
Trajopt
EIGS
Ours

(b) Rotation task using the Fetch 7-DoF

0 10 20 30 40 50
Planning time [s]

0

0.02

0.04

0.06

0.08

0.1

P
os

e
er

ro
r

CHOMP
Trajopt
EIGS
Ours

(c) Circle tracing using the Hubo 8-DoF

Fig. 8 This shows the pose error over the planning time of different methods in three different problems. Since (a) and (c) include external
obstacles, RelaxedIK and Stampede are excluded from the experiments. Also, the start configurations of (a) and (c) are fixed. We visualize graphs
once an initial solution is computed.

Table 3 Results of the number of iterations and explorations during
50 seconds for optimization-based approaches, CHOMP, Trajopt, and
ours. Parenthesis indicates the time (s) for one update of its optimizer.
We regard one update of Trajopt as one execution of the quadratic
solver.

Circle tracing Writing “hello”

of iter. # of explor. # of iter. # of explor.

Kuka
CHOMP 751 (0.05) - 204 (0.23) -

7-DoF
Trajopt 13 (2.5) - 10 (4.3) -

Ours 542 (0.03) 61 392 (0.06) 29

Fetch
CHOMP 776 (0.05) - 208 (0.20) -

7-DoF
Trajopt 11 (3.0) - 8 (5.4) -

Ours 582 (0.03) 60 561 (0.06) 10

Hubo
CHOMP 256 (0.15) - 86 (0.43) -

8-DoF
Trajopt 8 (4.9) - 5 (7.8) -

Ours 173 (0.12) 14 115 (0.30) 7

lems, “S” tracing with two boxes and circle tracing, sur-
rounded by obstacles in the given end-effector path. This is
because Trajopt uses the second-order method, so the update
time is long, making it difficult to explore various trajecto-
ries during a given planning time. On the other hand, our
method did not record failures by exploring new trajectories
thanks to the very fast update of our TSGD based on gradi-
ent descent (Table 3).

From comparison with optimization-based motion plan-
ning considering geometric constraints, we can see that
our proposed method effectively optimizes the path-wise
IK problem to synthesize a highly-accurate solution while
avoiding local minima. In addition, although optimization-
based approaches generally have difficulty in changing a
start configuration qqq0 during the planning process, our
method is quite straightforward to change qqq0 thanks to adap-
tively exploring new trajectories including qqq0. As a result,
our method did not record failures in all problems.

EIGS refines a trajectory by progressively sampling new
waypoints and IK solutions. Nonetheless, our method im-
proves the quality of the trajectory over EIGS, as we have
more planning time (Fig. 8). This improvement is mainly

because our method incorporates the IK solving method into
the optimization process instead of simply using IK solu-
tions.

In Table 2, EIGS shows the longest length of the com-
puted trajectory on average for all problems; we measure the
length of a trajectory using the Euclidean distance. EIGS
does not consider the distance in C-space, since it only
checks the similarity measure of two curves using the dis-
crete Fréchet distance (Holladay et al., 2019). On the other
hand, other methods take into account the smoothness be-
tween joint configurations and thus generate shorter trajec-
tories than EIGS.

Stampede is also a sampling-based approach like EIGS,
but it generates a highly-accurate solution on average (Ta-
ble 2). Stampede does not deal with external obstacles, but
uses a neural network to check self-collision quickly. How-
ever, it takes a long time to get an initial solution, because
it has to samples IK solutions at all the end-effector poses
(Table 2). These results show that Stampede and EIGS have
different pros and cons.

RelaxedIK is a real-time planner, thus it quickly finds a
solution (Table 2). However, its accuracy is much lower than
other methods. In conclusion, RelaxedIK shows real-time
performance by quickly optimizing the joint configuration
for one pose, but it is difficult to obtain a highly-accurate
trajectory.

Overall, our method finds an initial solution quite
quickly with a high pose error, but improves its quality as
we have more planning time (Fig. 8). Also, our method has
a lower pose error with a lower standard deviation on aver-
age than other methods, as shown in Table 2. These results
support that our optimization process efficiently reduces the
pose error, while satisfying several constraints.

5.3 Analysis of our proposed methods

To see the benefits of components of our proposed method,
we conduct ablation study. We first substitute the two-stage

Analysis and Acceleration of TORM: Optimization-based Planning for Path-wise Inverse Kinematics 13

0 5 10 15
Planning time [s]

0

0.02

0.04

0.06

0.08

0.1

P
os

e
er

ro
r

SI + AE + PS
TSGD + IE + PS
TSGD + AE + 10 intervals
TSGD + AE + 50 intervals
TSGD + IE + 10 intervals
TSGD + AE + PS (Ours)

(a) Writing “hello” using the Fetch 7-DoF

0 10 20 30 40 50
Planning time [s]

0

0.05

0.1

0.15

P
os

e
er

ro
r

SI + AE + PS
TSGD + IE + PS
TSGD + AE + 10 intervals
TSGD + AE + 50 intervals
TSGD + IE + 10 intervals
TSGD + AE + PS (Ours)

(b) Writing “hello” using the Hubo 8-DoF

0 10 20 30 40
Planning time [s]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

P
os

e
er

ro
r

SI + AE + PS
TSGD + IE + PS
TSGD + AE + 10 intervals
TSGD + AE + 50 intervals
TSGD + IE + 10 intervals
TSGD + AE + PS (Ours)

(c) Square tracing using the Hubo 8-DoF

Fig. 9 This shows the pose error as a function of the planning time of various ablated methods. Our complete method contains two-stage
gradient descent (TSGD), adaptive exploration (AE), and path simplification (PS). We substitute them with the simple integration (SI), the iterative
exploration (IE) with the fixed number of iterations, and extracting sub-sampled poses at 10 and 50 intervals. The gray dotted lines represent the
results shown in Table 4.

Table 4 Analysis of components of our proposed method by substituting them to alternative methods, the simple integration (SI), iterative
exploration (IE), and extracting sub-sampled poses at 10 and 50 intervals. The last row shows the results of our complete method.

Problem Writing “hello” using Fetch 7-DoF Writing “hello” using Hubo 8-DoF Square tracing using Hubo 8-DoF

Method Pose error
TL IST PT

Pose error
TL IST PT

Pose error
TL IST PT

Update Exploration Extracting S Avg. Min. Max. Avg. Min. Max. Avg. Min. Max.

SI Adaptive PS 9.7e-3 2.9e-3 2.5e-2 28.4 1.4 3.2e-2 5.8e-3 1.3e-1 32.1 6.6 1.3e-2 4.8e-3 2.2e-2 13.3 5.4

TSGD Adaptive 50 intervals 1.2e-2 4.1e-5 8.7e-2 25.9 0.9 2.1e-2 4.7e-5 8.4e-2 25.8 3.6 1.5e-3 2.3e-6 2.3e-2 9.8 3.6

TSGD Iterative PS 1.6e-3 4.0e-5 3.2e-2 27.8 1.4
10

9.8e-3 5.2e-5 1.5e-1 31.7 4.9
40

7.6e-4 7.6e-6 1.5e-2 11.2 3.4
30

TSGD Adaptive 10 intervals 1.6e-3 6.7e-5 1.3e-2 34.7 2.5 3.2e-3 1.1e-4 2.7e-2 46.4 9.6 7.7e-4 8.6e-5 6.0e-3 31.4 5.5

TSGD Iterative 10 intervals 1.7e-3 8.1e-5 1.2e-2 33.1 2.4 4.1e-3 1.2e-4 2.4e-2 50.5 12.2 2.3e-3 9.9e-5 1.9e-2 31.8 6.4

TSGD Adaptive PS 5.6e-5 4.4e-5 1.0e-4 26.7 1.3 3.3e-4 5.1e-5 2.4e-3 31.8 5.2 2.6e-5 7.6e-6 1.1e-4 10.6 3.2

TL: Trajectory length (rad). IST: Initial solution time (s). PT: Planning time (s).

gradient descents (TSGD) to the simple integration (SI) up-
dating three functional gradients at once. Next, we test the
iterative exploration (IE) iterated a fixed number of update
instead of our adaptive exploration (AE). Finally, we com-
pare different ways of extracting sub-sampled poses, 10 and
50 intervals, and the chosen path simplification (PS). Note
that the IE and extracting sub-sampled poses at 10 intervals
were proposed in our earlier work, the conference version of
TORM (Kang et al., 2020).

Table 4 shows the results of aforementioned methods for
three different problems, writing “hello” using the Fetch 7-
DoF and the Hubo 8-DoF, and square tracing using the Hubo
8-DoF; the start configuration of the square tracing is fixed.
Fig. 9 also shows the results, as we have more planning time
up to the maximum planning budget of 50 seconds.

As shown in Fig. 9(a), it is hard to check the big differ-
ence between different methods due to its fast convergence
when we use the Fetch 7-DoF. On the other hand, we can
confirm the pros of proposed methods in experiments using
the Hubo 8-DoF (Fig. 9(b) and Fig. 9(c)). We analyze the
results for different configurations of robots in Sec. 5.4.

Using the SI has a higher pose error on average than
our full method, and it also has the highest min. pose error
among 20 tests, compared to other tested methods (Table 4).

These results demonstrate that the different functional gra-
dients conflict with each other. Therefore, the TSGD pre-
vents the competition of different functional gradients and
is useful to get a highly-accurate solution. Note that the SI
is different approach from CHOMP. The SI is the simple
integration of Fobs, Fsmooth, and Fpose, the objective of the
Jacobian-based IK, while CHOMP is a reconfiguration of
the original update rule to consider various kinds of kine-
matic constraints (Zucker et al., 2013); we set the kinematic
constraints on all transitional and rotational axes to match a
given end-effector path.

Our method shows the fast convergence rather than us-
ing the IE (see green and red lines with dots Fig. 9). In Ta-
ble 4, the max. pose errors of our method are also lower than
using the IE at a specific planning time. These results indi-
cate that the AE makes a good decision to stop the current
exploration based on the observation of optimization results.

Extracting sub-sampled poses S at 50 intervals shows
the fastest result of finding an initial solution in the prob-
lem of writing “hello”, while 10 intervals is the slowest. On
the other hand, extracting S at 10 intervals shows the better
performance than 50 intervals. The time of generating a tra-
jectory is reduced as having smaller sub-sampled poses, but
we can get a low-quality path if sub-sampled poses are too

14 Mincheul Kang1, Sung-Eui Yoon1

0 10 20 30 40 50
Planning time [s]

0

0.02

0.04

0.06

0.08

P
os

e
er

ro
r

CHOMP
Trajopt
EIGS
Ours

(a) Using Kuka 7-DoF

0 10 20 30 40 50
Planning time [s]

0

0.02

0.04

0.06

0.08

0.1

P
os

e
er

ro
r

CHOMP
Trajopt
EIGS
Ours

(b) Using Fetch 7-DoF

0 10 20 30 40 50
Planning time [s]

0

0.01

0.02

0.03

0.04

0.05

0.06

P
os

e
er

ro
r

CHOMP
Trajopt
EIGS
Ours

(c) Using Hubo 8-DoF

Fig. 10 This shows the pose error over the planning time of different methods with three different robots in “S” tracing with two boxes.

few. To generate a trajectory, 10 intervals, 50 intervals, and
the PS take 7.2, 3.8, and 2.1 seconds in the writing “hello”
problem using the Hubo 8-DoF. Although the generation
time of the PS is in the middle of 10 and 50 intervals, the
PS shows the better performance than others. These results
demonstrate that the PS strikes a good balance between the
generation time and trajectory quality.

In summary, these results show that our proposed
method synthesizes highly-accurate trajectories, while ef-
fectively getting out of local minima. Furthermore, we can
see that the proposed method is more accelerated, about 43
times faster on average across all the tested cases, than the
conference version of TORM (the green line with star dots
in Fig. 9).
Time analysis of our proposed methods. In our optimizer,
performing TSGD, generating new trajectories, and check-
ing constraints of our method take 70%, 26%, and 4% of the
overall running time on average; the TSGD is frequently it-
erated to refine the trajectory, as the main update operation.
The PS is executed once, and it is calculated very quickly in
about 0.25 seconds for the writing “hello” problem that has
the longest path in our problems.

5.4 Analysis with different robots

To analyze the results with different robots, we compare re-
sults in the problem of “S” tracing with two boxes by using
three different robots. It is difficult to directly compare them
even with the same problem, but we can see overall tendency
of the results. Fig. 10 shows the results of “S” tracing with
two boxes by using different robots, Kuka 7-DoF, Fetch 7-
DoF, and Hubo 8-DoF.

In Fig. 10, our method quickly minimizes the pose error,
as having more planning time. Within the given 50 seconds,
we also get highly-accurate results across different problems
(Table 2). In our method, nevertheless, using the Hubo 8-
DoF shows a slower convergence speed than using the Fetch
7-DoF and Kuka 7-DoF. One of main reasons is an increase
in DoF, which requires higher computational overhead of
the overall method. Other methods also show that using the

Hubo 8-DoF generally has worse performances compared to
using other robots (Table 2).

In our method, the biggest difference arises due to the
number of spheres approximating the robot model to get the
collision costs effectively. The Hubo 8-DoF has 163 spheres,
while the Fetch 7-DoF and Kuka 7-DoF have 41 and 27,
respectively. As a result, the computation time of the Hubo
8-DoF is 120ms, and the computation time of the Kuka 7-
DoF and the Fetch 7-DoF is approximately 20ms for one
trajectory (Eq. 4) in the problem of “S” tracing with two
boxes.

Even though the Fetch robot has torso, head, and lower
body in addition to an arm, we use only the arm of Fetch,
and thus other parts of the Fetch are treated to be fixed.
Since the fixed part can be regarded as a fixed obstacle, the
amount of calculation is reduced by constructing a distance
field in advance. On the other hand, the Hubo 8-DoF has
few fixed parts by using the torso; its fixed part is only the
lower body. Therefore, the Hubo 8-DoF has a higher compu-
tational amount of collision costs compared to other robots.

Although there is a difference in the amount of calcu-
lation depending on the robot configurations, abbreviating
the robot model to spheres is cost-effective. Accordingly,
our method can quickly avoid collisions with obstacles than
other prior methods, resulting in fast convergence.

6 Conclusion and Future work

In this paper, we have presented the trajectory optimization
of a redundant manipulator (TORM) that holistically incor-
porates three important properties into the trajectory opti-
mization process by integrating the Jacobian-based IK solv-
ing method and an optimization-based motion planning ap-
proach. Given different properties, we have suggested the
two-stage gradient descent to follow a given end-effector
path and to make a feasible trajectory. We have also per-
formed adaptive exploration to avoid local minima effec-
tively.

We have shown the benefits of our method over the five
prior techniques in environments w/ and w/o external obsta-

Analysis and Acceleration of TORM: Optimization-based Planning for Path-wise Inverse Kinematics 15

cles using three different types of robots. Our method has ro-
bustly minimized the pose error in a progressive manner and
achieved a highly-accurate trajectory at a reasonable time
compared to other methods. Further, we have verified the
feasibility of our synthesized trajectory using the real, Fetch
manipulator.

Even though our method efficiently avoids external ob-
stacles and the robot itself by using the model abbreviated as
spheres and signed distance field, a high amount of compu-
tation still exists, especially when the robot configuration is
complicated due to the high DoF robot. Moreover, our new
trajectory generation method is reasonably fast and effective
for our task, but it sometimes generates a poor trajectory due
to its randomness. Although we address the problem by ex-
ploring different trajectories, it would be more desirable to
reduce the randomness of the generation for certain tasks.

As future research directions, we would like to relieve
the aforementioned problems by applying deep learning to
our method. Recently, collision avoidance methods (Kew
et al., 2019; Li et al., 2021) using deep learning have been
used for motion planning, and these methods can be ex-
tended to our method to solve the problem of complexity
of robot configurations. We also believe that the trajectory
generation using deep learning will lead to improvement in
generation speed and mitigation of randomness.

Acknowledgements We appreciate the anonymous reviewers for con-
structive comments and insightful suggestions. This work was sup-
ported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. 2021R1A4A1032582
and No. 2019R1A2C3002833).

References

Beeson, Patrick, & Barrett Ames (2015). TRAC-IK: An
open-source library for improved solving of generic in-
verse kinematics. In Humanoids, pp 928–935. IEEE.

Berenson, Dmitry, Siddhartha S Srinivasa, Dave Ferguson,
& James J Kuffner (2009). Manipulation planning on con-
straint manifolds. In ICRA, pp 625–632. IEEE.

Bonalli, Riccardo, Abhishek Cauligi, Andrew Bylard, &
Marco Pavone (2019). GuSTO: Guaranteed sequential
trajectory optimization via sequential convex program-
ming. In 2019 International Conference on Robotics and
Automation (ICRA), pp 6741–6747. IEEE.

Boyd, Stephen, Stephen P Boyd, & Lieven Vandenberghe
(2004). Convex optimization. Cambridge university press.

Buss, Samuel R (2004). Introduction to inverse kinematics
with jacobian transpose, pseudoinverse and damped least
squares methods. IEEE Journal of Robotics and Automa-
tion, 17(1-19):16.

Chiacchio, Pasquale, Stefano Chiaverini, Lorenzo Sciav-
icco, & Bruno Siciliano (1991). Closed-loop inverse kine-

matics schemes for constrained redundant manipulators
with task space augmentation and task priority strategy.
IJRR, 10(4):410–425.

Chiaverini, Stefano (1997). Singularity-robust task-priority
redundancy resolution for real-time kinematic control of
robot manipulators. Transactions on Robotics and Au-
tomation, 13(3):398–410.

Diankov, Rosen (2010). Automated construction of robotic
manipulation programs.

Douglas, David H, & Thomas K Peucker (1973). Algo-
rithms for the reduction of the number of points required
to represent a digitized line or its caricature. Cartograph-
ica: The International Journal for Geographic Informa-
tion and Geovisualization, 10(2):112–122.

Flash, Tamar, & Renfrey B Potts (1988). Communication:
Discrete Trajectory Planning. IJRR, 7(5):48–57.

Frank, Marguerite, Philip Wolfe, et al. (1956). An algo-
rithm for quadratic programming. Naval research logis-
tics quarterly, 3(1-2):95–110.

Gupta, Harshit, Kyong Hwan Jin, Ha Q Nguyen, Michael T
McCann, & Michael Unser (2018). CNN-based projected
gradient descent for consistent CT image reconstruc-
tion. IEEE transactions on medical imaging, 37(6):1440–
1453.

Holladay, Rachel, Oren Salzman, & Siddhartha Srinivasa
(2019). Minimizing task-space fréchet error via efficient
incremental graph search. RA-L, 4(2):1999–2006.

Holladay, Rachel M, & Siddhartha S Srinivasa (2016). Dis-
tance metrics and algorithms for task space path optimiza-
tion. In IROS, pp 5533–5540. IEEE.

Jiang, Xiangyuan, & Shuai Li (2017). BAS: Beetle Anten-
nae Search Algorithm for Optimization Problems. ArXiv,
abs/1710.10724.

Joulin, Armand, Kevin Tang, & Li Fei-Fei (2014). Efficient
image and video co-localization with frank-wolfe algo-
rithm. In European Conference on Computer Vision, pp
253–268. Springer.

Kalakrishnan, Mrinal, Sachin Chitta, Evangelos Theodorou,
Peter Pastor, & Stefan Schaal (2011). STOMP: Stochastic
trajectory optimization for motion planning. In ICRA, pp
4569–4574. IEEE.

Kang, Mincheul, Heechan Shin, Donghyuk Kim, & Sung-
Eui Yoon (2020). TORM: Fast and Accurate Trajectory
Optimization of Redundant Manipulator given an End-
Effector Path. In IROS. IEEE.

Kanoun, Oussama, Florent Lamiraux, & Pierre-Brice
Wieber (2011). Kinematic control of redundant manip-
ulators: Generalizing the task-priority framework to in-
equality task. T-RO, 27(4):785–792.

Karaman, Sertac, Matthew R Walter, Alejandro Perez,
Emilio Frazzoli, & Seth Teller (2011). Anytime motion
planning using the RRT. In ICRA, pp 1478–1483. IEEE.

16 Mincheul Kang1, Sung-Eui Yoon1

Katyal, Kapil D, Christopher Y Brown, Steven A Hecht-
man, Matthew P Para, Timothy G McGee, Kevin C Wolfe,
Ryan J Murphy, Michael DM Kutzer, Edward W Tun-
stel, Michael P McLoughlin, et al. (2014). Approaches
to robotic teleoperation in a disaster scenario: From su-
pervised autonomy to direct control. In IROS, pp 1874–
1881. IEEE.

Kew, J Chase, Brian Ichter, Maryam Bandari, Tsang-
Wei Edward Lee, & Aleksandra Faust (2019). Neural Col-
lision Clearance Estimator for Fast Robot Motion Plan-
ning.

Khan, Ameer Tamoor, Shuai Li, & Xuefeng Zhou (2021).
Trajectory optimization of 5-link biped robot using bee-
tle antennae search. IEEE Transactions on Circuits and
Systems II: Express Briefs.

Kim, Beobkyoon, Terry Taewoong Um, Chansu Suh, &
Frank C Park (2016). Tangent bundle RRT: A random-
ized algorithm for constrained motion planning. Robot-
ica, 34(1):202.

Kim, Donghwan, & Jeffrey A Fessler (2018). Adaptive
restart of the optimized gradient method for convex op-
timization. Journal of Optimization Theory and Applica-
tions, 178(1):240–263.

Kingston, Zachary, Mark Moll, & Lydia E Kavraki (2019).
Exploring implicit spaces for constrained sampling-based
planning. IJRR, 38(10-11):1151–1178.

Kunz, Tobias, & Mike Stilman (2012). Manipulation plan-
ning with soft task constraints. In IROS, pp 1937–1942.
IEEE.

Li, Linjun, Yinglong Miao, Ahmed H Qureshi, & Michael C
Yip (2021). MPC-MPNet: Model-Predictive Motion
Planning Networks for Fast, Near-Optimal Planning un-
der Kinodynamic Constraints. RA-L, 6(3):4496–4503.

Long, Philip, Tarik Keleştemur, Aykut Özgün Önol, &
Taşkin Padir (2019). optimization-Based Human-in-the-
Loop Manipulation Using Joint Space Polytopes. In
ICRA, pp 204–210. IEEE.

Luo, Jingru, & Kris Hauser (2012). Interactive generation of
dynamically feasible robot trajectories from sketches us-
ing temporal mimicking. In ICRA, pp 3665–3670. IEEE.

O’donoghue, Brendan, & Emmanuel Candes (2015). Adap-
tive restart for accelerated gradient schemes. Foundations
of computational mathematics, 15(3):715–732.

Praveena, Pragathi, Daniel Rakita, Bilge Mutlu, & Michael
Gleicher (2019). User-Guided Offline Synthesis of Robot
Arm Motion from 6-DoF Paths. In ICRA, pp 8825–8831.
IEEE.

Rakita, Daniel, Bilge Mutlu, & Michael Gleicher (2018).
RelaxedIK: Real-time Synthesis of Accurate and Feasi-
ble Robot Arm Motion. In RSS.

Rakita, Daniel, Bilge Mutlu, & Michael Gleicher (2019).
STAMPEDE: A Discrete-Optimization Method for Solv-
ing Pathwise-Inverse Kinematics. In ICRA, pp 3507–

3513. IEEE.
Schulman, John, Jonathan Ho, Alex X Lee, Ibrahim Awwal,

Henry Bradlow, & Pieter Abbeel (2013). Finding Lo-
cally Optimal, Collision-Free Trajectories with Sequen-
tial Convex Optimization. In RSS, volume 9, pp 1–10.
Citeseer.

Sinha, Anirban, & Nilanjan Chakraborty (2019). Geomet-
ric Search-Based Inverse Kinematics of 7-DoF Redun-
dant Manipulator with Multiple Joint Offsets. In ICRA,
pp 5592–5598. IEEE.

Stilman, Mike (2007). Task constrained motion planning in
robot joint space. In IROS, pp 3074–3081. IEEE.

Tong, Hanghang, Christos Faloutsos, & Jia-Yu Pan (2006).
Fast random walk with restart and its applications. In
Sixth international conference on data mining, pp 613–
622. IEEE.

Traonmilin, Yann, Jean-François Aujol, & Arthur Leclaire
(2020). Projected gradient descent for non-convex
sparse spike estimation. IEEE Signal Processing Letters,
27:1110–1114.

Vahrenkamp, Nikolaus, Dmitry Berenson, Tamim Asfour,
James Kuffner, & Rüdiger Dillmann (2009). Hu-
manoid motion planning for dual-arm manipulation and
re-grasping tasks. In IROS, pp 2464–2470. IEEE.

Van Laarhoven, Peter JM, & Emile HL Aarts (1987). Simu-
lated annealing. In Simulated annealing: Theory and ap-
plications, pp 7–15. Springer.

Yoshikawa, Tsuneo (1985). Manipulability of robotic mech-
anisms. IJRR, 4(2):3–9.

Zhao, Yinghao, Li Yan, Yu Chen, Jicheng Dai, & Yuxuan
Liu (2021). Robust and Efficient Trajectory Replanning
Based on Guiding Path for Quadrotor Fast Autonomous
Flight. Remote Sensing, 13(5):972.

Zinkevich, Martin (2003). Online convex programming and
generalized infinitesimal gradient ascent. In Proceedings
of the 20th international conference on machine learning,
pp 928–936.

Zucker, Matt, Nathan Ratliff, Anca D Dragan, Mihail Piv-
toraiko, Matthew Klingensmith, Christopher M Dellin,
J Andrew Bagnell, & Siddhartha S Srinivasa (2013).
CHOMP: Covariant hamiltonian optimization for motion
planning. IJRR, 32(9-10):1164–1193.

	INTRODUCTION
	RELATED WORK
	Background
	Trajectory Optimization
	Experiments and Analysis
	Conclusion and Future work

