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Abstract— We present volumetric tree∗, a hybridization of
sampling-based and optimization-based motion planning. Volu-
metric tree∗ constructs an adaptive sparse graph with volumet-
ric vertices, hyper-spheres encoding free configurations, using
a sampling-based motion planner for a homotopy exploration.
The coarse-grained paths computed on the sparse graph are
refined by optimization-based planning during the execution,
while exploiting the probabilistic completeness of the sampling-
based planning for the initial path generation. We also suggest a
dropout technique probabilistically ensuring that the sampling-
based planner is capable of identifying all possible homotopies
of solution paths. We compare the proposed algorithm against
the state-of-the-art planners in both synthetic and practical
benchmarks with varying dimensions, and experimentally show
the benefit of the proposed algorithm.

I. INTRODUCTION

Path and motion planning problem is a fundamental re-
search area in robotics and has been widely studied for au-
tonomous systems with mobility and manipulability. Among
various categories of planning algorithms, sampling-based
approaches have attracted considerable attention thanks to its
probabilistic completeness [1], [2] and almost-sure asymp-
totic optimality [3]. Their key concept is to construct a
random geometric graph or tree to identify the connection
of feasible motions in the configuration-free (C-free) space.

It has been well-known that when applied to practical
problems, sampling-based motion planners require a consid-
erable amount of computation cost to check collision for ver-
tices and edges, especially for computing the optimal solu-
tion in high dimensions [4], [5]. To this end, there have been
a plethora of researches to alleviate the overhead of collision
checking. Hauser [4] proposed a lazy collision checking with
DSPT (Dynamic Shortest Path Tree [6]) to delay the explicit
checking until it is necessary, while preserving the asymp-
totic optimality and anytime properties. Bialkowski et al. [5]
presented a graph associated with safety certificates, i.e., a set
of collision-free balls to reduce the amortized complexity of
collision checking. Gammell et al. [7] combined sampling-
based motion planning and Lifelong Planning A∗ (LPA∗)
with a batch sampling technique. Their approach expands
the graph using LPA∗-style incremental search techniques,
performing graph expansion and collision checking on a
partial subset of graph components.

Meanwhile, optimization-based planners and the hy-
bridization of sampling and optimization also has been
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Fig. 1: A heatmap-style visualization of the vertex set V ,
constructed by a conventional planner (top, |V | = 14384)
and that of volumetric tree∗ (bottom, |V | = 540) in the same
time budget. We can observe the volumetric tree∗ constructs
a sparse graph, while capturing the samples around narrow
passages or boundaries. The vertices close to the obstacles
are encoded red; otherwise blue.

suggested to get synergy in various manner. CHOMP (Co-
variant Hamiltonian Optimization for Motion Planning) [8],
its variants [9], [10] and TrajOpt [11] formulate the trajectory
optimization as a convex problem to minimize the local
approximation of the objective function sequentially.

As a hybridization of sampling and optimization, Choud-
hury et al. [12] suggested RABIT∗ (Regionally Accelerated
Batch Informed Trees), where a sampling-based planner
runs as a global planner, and an optimization-based planner
takes over the local planning. Kim et al. [13] proposed
a similar hybridization, Dancing PRM∗, whose obstacle
potential computation is solely done in the configuration
space. It directly approximates the C-free space by utilizing
the empirical collisions found during the execution. Kuntz
et al. [14] presented another hybrid algorithm, which locally
refines solution paths using lazy interior point optimization
to compute high-quality solutions quickly.



When it comes to a scalability issue, recent researches
have also pointed out the significance of nearest-neighbor
search [15], [16]. Kleinbort et al. [15] analyzed the asymp-
totic computational bottleneck in sampling-based motion
planning. To be specific, the complexity of collision detec-
tion is proportional to that of the given workspace, while
nearest-neighbor search asymptotically dominates the entire
computation time as the number of samples goes to infinity.
Varricchio and Frazzoli [16] proposed pruning techniques
for the k-d tree to reduce the computational cost of nearest
neighbor search.
Main Contributions. In this work, we present Volumetric
Tree∗, a hybridization of sampling-based and optimization-
based motion planning for effectively exploring the homo-
topy class of solution paths and identifying local optimums
in each homotopy class (Sec. III-A). In volumetric tree∗,
the role of a sampling-based motion planner is used for
a homotopy exploration. To be specific, it is designed to
construct an adaptive sparse graph, where wide-open areas
are covered by a fewer number of volumetric vertices (hyper-
spheres) while maintaining fine-grained vertices around a
boundary of free space or narrow passage (Sec. III-B),
instead of constructing a dense graph. On top of that, we can
represent a set of paths homotopic to each other into a se-
quence of volumetric vertices as a compact representation. To
complement the coarse-grained paths computed on the sparse
graph, we combine an optimization-based motion planner
(Sec. III-C) to refine the solution paths with a dedicated
shortest path computation technique, dropout (Sec. III-D).
As a result, volumetric tree∗ efficiently identifies initial paths
in multiple homotopy classes in a sampling-based manner
for the optimization-based planning by complementing each
other.

According to conducted experiments, we observe up to
3 times speedup over other tested methods in terms of
convergence to the optimum on rigid body and manipula-
tion planning problems (Sec.IV). These results are mainly
obtained by the adaptive sparse graph integrated with the
optimization-based planning, which allows volumetric tree∗

to explore the configuration space efficiently.

II. ALGORITHMIC BACKGROUND

We first formulate the problem we would like to address
and review preliminaries of sampling-based motion planning.

A. Problem Definition

Let X = Rd be the configuration space, where d is the
dimension of a given problem. Let the configuration-obstacle
(C-obs) space be Xobs, which is a set of states in collision
with obstacles. The complement of Xobs, X f ree (= X \Xobs),
becomes the configuration-free (C-free) space. For a given
pair of an initial and goal configurations, xinit and xgoal ∈
X f ree, respectively, let σ ∈ Σ : [0,1]→ X f ree be a feasible
(e.g., collision-free) path, where Σ is a set of all possible
paths satisfying σ(0) = xinit and σ(1) = xgoal .

Fig. 2: The left figure illustrates two solution paths, shown
red and blue solid lines, in two different homotopy classes
with their local optimal paths (dotted). The right figure
shows a solution path (solid black) covered by a sequence
of collision-free balls and paths homotopic to the solution
path (red and blue). These observations suggest that such a
coarse-grained graph can be a sufficient representation if we
can optimize each path toward the local optimum.

The optimal motion planning problem then can be formu-
lated as:

σ
∗ = argmin

σ∈Σ

(c(σ)), (1)

where c(·) is a cost function such that c : Σ→ R≥0.
For a sampling-based planner, it is said to be almost-sure

asymptotic optimal if the probability that a path computed
by the planner at an iteration number i, σi, converges to the
optimal path is 1, as the number of iteration goes to infinity:

P
[

lim
i→∞

(
c(σi) = c(σ∗)

)]
= 1 (2)

B. Sampling-based Motion Planning

There have been proposed various optimal sampling-based
motion planning algorithm such as RRT∗, PRM∗ [3], and
BIT∗ [7]. They sample a set of configurations, Xsample ∈ X ,
to construct a search graph G= {V,E}, where each vertex v∈
V represents a collision-free configuration and e = (v,w)∈ E
is a feasible motion for a pair of configurations v and w∈V .

V is initialized with {xinit ,xgoal} and E is set to empty,
then we sample a random configuration at each iteration until
the termination condition is satisfied, e.g., time limit or a
maximum number of iterations.

For a sample configuration xsample, the edge connection
process is done with its near neighbors found by Near(·).
Near(x) returns a set of near vertices in V such that those
vertices lie inside of an implicit ball centered at x with
a connection radius r. This type of NN search is also
called ε-NN search. k-nearest neighbor search can be used
alternatively; in either case, both connection radius r and
k are determined proportionally to the cardinality of V
to achieve the almost-sure asymptotic optimality [3]. Each
vertex and edge is then checked for a collision, and only
valid components are inserted into G for the graph expansion.
Finally, a path connecting xinit and xgoal becomes a discrete
solution path σ ∈ Σ, and its cost c(σ) can be computed by
summing up the cost of all edges over the path.



III. ALGORITHM

A. Motivations

We would like to explain motivations of volumetric tree∗,
a hybridization of sampling and optimization-based planning,
with the following two aspects. Firstly, Fig. 2(a) shows two
exemplar paths shown in the solid lines that connect xinit and
xgoal in different homotopy classes. Once a solution path is
computed, we can apply a local optimal planner such as an
iterative optimization-based planners [8] to refine the path
toward the local optimal path (dotted lines in Fig. 2(a)) in the
same homotopy class. Based on this observation, we suggest
using a sampling-based motion planner, which guarantees
probabilistic completeness, for a homotopy exploration to
identify solution paths in all possible homotopy classes.
On top of that, an optimization-based planner then locally
optimizes the initial paths computed by the sampling-based
planner toward the local optimum.

Once we realize the hybridization of sampling-based and
optimization-based approaches, it is unnecessary to construct
a dense graph. This is mainly because the cost of an initial
path is not that important for the optimization-based plan-
ning. Instead, it is more important to find different homotopic
classes of initial paths. Moreover, constructing such a dense
graph would require a massive computational cost due to
graph manipulation operations such as NN-search. As a
result, the sparse representation of the given space can be
a reasonable choice for our objective.

In particular, we associate each vertex of a graph with a
collision-free hyper-sphere volume for locally representing
the C-free space, while rejecting samples inside volumes,
resulting in a sparse graph. The idea of using the hyper-
sphere volume is inspired by the previous literature [5], [13],
[17], [18]. Fig. 2(b) shows an exemplar solution path over a
sparse graph constructed in the proposed manner, where a set
of collision-free hyper-spheres are associated with vertices.

We then utilize the following observation. For a collision-
free hyper-sphere S, we can assume that any two given con-
figurations located within S can be connected directly without
having any collision. More importantly, it implies that for a
given discrete path σ = {v0, ...,vn−1} ∈ Σ, associated with
collision-free hyper-spheres Svi , centered at vi, we can then
expect any path through the same sequence of vertices
located in the hyper-spheres, σ ′ = {v′0 ∈ Sv0 , ...,v

′
n−1 ∈ Svn−1}

is homotopic to σ . We can hence represent plenty of paths
homotopic to each other into a single path over the adaptive
sparse graph. Our volumetric tree∗ utilizes this observation
for creating a sparse graph and computes the optimal paths
with the graph. Fig. 1 shows two different types of graphs,
a dense graph computed by the conventional approach and
ours in an example scene.

B. Adaptive Sparse Tree Construction

Volumetric tree∗ constructs a random geometric graph
G = {V,E}, where a vertex v ∈ V also encodes a collision-
free configuration; depending on the context, we can just use
v to denote its configuration, and at that case, v ∈ X f ree. An

Algorithm 1: VOLUMETRIC TREE∗

1 V ←{xinit ,xgoal};T ← {xinit}; E← /0
2 while Termination condition is not satis f ied do
3 xsample← Sample()
4 if IsCollisionFree(xsample) then
5 Vnear← Near(xsample,V )
6 if ¬IsInside(xsample,Vnear) then
7 Insert xsample to V
8 foreach vnear ∈Vnear do
9 Insert (vnear,xsample) to E

10 PropagateCFreeSpace(xsample,Vnear)
11 σnew←U pdateDSPT (xsample,T )

12 else
13 Vnear← Near(xsample,V )
14 U pdateCFreeSpace(Vnear,xsample)

15 if BetterPathFound(σnew) then
16 OptimizePath(T ,G)

17 return SolutionPath(T )

edge e = (v ∈V,w ∈V ) ∈ E represents a continuous motion
connecting two configurations. We also define Sv(∀v ∈ V )
to represent a hyper-sphere centered at a configuration v,
associated with a radius of rv, a distance to the closest
empirical collision ov ∈ Xobs. They are additionally stored
in each v.

Our hyper-sphere based representation is designed for
approximately encoding X f ree, and its construction is in-
spired by the approximate C-free representation proposed in
[13]. The main idea of C-free approximation is to associate
each vertex with the closest empirical collision found during
the execution, resulting in a set of approximate collision-
free hyper-spheres, reducing the approximation error over
iterations probabilistically.

For Near(·), we use a distance function specialized for
considering radii of vertices to measure a distance between
two hyper-spheres associated with those two vertices:

distNN(v ∈V,w ∈V ) = ‖v−w‖− rv− rw, (3)

where ‖·‖ is the Euclidean norm of a vector. The reason why
we use a specialized distNN(·) is to enable a vertex with
a large radius to be better connected to other samples for
Near(·), either r-NN or k-NN, during the graph expansion.
Note that the cost of an edge e = (v,w) is still defined as
conventional, i.e., c(e) = ‖v−w‖.

We can recognize that distNN(·) violates non-negativity
and triangle inequality, which should be held for the metric
space. For this reason, the conventional k-d tree or G-
NAT [19] can show sub-optimal performance for near neigh-
bor search in volumetric tree∗. We hence use NMSlib [20], a
proximity-graph based approximate near neighbor search li-
brary for generic non-metric spaces for efficient performance.

Fig. 1 shows an example of the constructed graph. We can
observe that the volumetric tree∗ covers X f ree adaptively with



a fewer number of vertices, while the conventional planner
maintains a set of tremendous vertices in the same time
budget. We further discuss the comparison of the cardinality
of graph components in Sec. IV with Table I.

We also maintain a subset of G, T = {VT ,ET ⊂E} for the
shortest path computation, where e∈ ET is a set of edges on
the shortest paths to all v ∈VT from xinit that is constructed
by DSPT (Dynmic Shortest Path Tree) [6]. The search tree
T consisting of volumetric vertices VT in the end contains
the solution path we are seeking, and is also used for the
homotopy exploration with the dropout technique explained
in Sec. III-D.
Overall process. The overall process is depicted in
Alg. 1. The proposed volumetric tree∗ is based on Danc-
ing PRM∗ [13] in terms of the graph construction and
configuration-free space approximation. To be specific, vol-
umetric tree∗ inherits the lazy collision checking with DSPT
and witness propagation with radius compensation from
Dancing PRM∗ for the precomputation-free approximation.
Accordingly, we allow G to have edges in collision to reduce
unnecessary edge collision checkings and check lazily if they
are necessary.

During the iteration in Alg. 1, a collision-free xsample
is checked for a inclusion test with its near neighbor set
Vnear, not to fall inside of the hyper-sphere volumes asso-
ciated with V (Alg. 1, Line: 6). On the other hand, for
a xsample ∈ Xobs, we exploit the sample to improve the
configuration-free approximation (Alg. 1, Line: 13-14). In
U pdatecFreeSpace, we update rvnear if

∥∥vnear− xsample
∥∥ is

smaller than rvnear to trim the volumes by updating oxsample .
Likewise, PropagateCFreeSpace(·) initializes rxsample to be
argminv∈Vnear

(
∥∥ov− xsample

∥∥) and then updates rv to be

min(
∥∥∥oxsample − vnear

∥∥∥ ,rvnear) for all v∈Vnear to propagate the
empirical collision information locally. For the details, refer
to the original work [13].

U pdateShortestPath(·) updates T to maintain shortest
paths for all possible destinations, i.e., (v∈VT ,xgoal) dynam-
ically. Finally, BetterPathFound (Alg. 1, Line: 15) checks
whether the cost of the best-so-far path c(σnew) is updated
in U pdateDSPT (·) at this iteration. If so, we lazily check
the feasibility of σnew and then OptimizePath(·) (Alg 1, Line:
16) refines the σnew towards the local optimal path, which is
discussed in the subsequent subsection.

C. Path Optimization

Our path optimization is based on CHOMP [8], which uses
gradient descent techniques to optimize a motion trajectory
iteratively.

The original objective function related to the obstacle
cost, fobs, contains so-called obstacle potential terms, which
can be expressed as a vector to the closest obstacle or
the obstacle proximity, usually obtained by the Euclidean
distance transformation in the workspace. It however requires
additional precomputation and model simplification such as
swept-sphere technique and kinematic Jacobian [8]. For this
reason, our objective function is designed to be free from

such dependencies to achieve a higher applicability and
seamless integration with existing sampling-based planners.

At a high level, our objective function used for volumetric
tree∗ is identical to the original form [8]:

U(ξ ) = fprior(ξ )+ fobs(ξ ), (4)

where ξ : [1,n ∈ N]→ X is a discrete path consisting of
n equidistant intermediate configurations along σnew, i.e.,
ξ ∈ Rn×d , and fprior is a sum of squared derivatives, i.e.,
1
2 ξ T Aξ +ξ T b. A ∈ Rn×n and b ∈ Rn×d are available in [8].

The obstacle cost for our work is formulated as follows:

fobs(ξ ) =
n

∑
i=1

ω(‖ξ ∗(i)−ξ (i)‖)
∥∥∥∥ d

dt
ξ (i)

∥∥∥∥ , (5)

where ω(·) is a user-defined weighting function; we simply
use the identify function ω(x) = x and ξ ∗(t) is the last
configuration of ξ (i) without collision. Unlike the problem
CHOMP and its variants aim to solve, we can assume that
the given initial path σnew is collision-free, and thus that
ξ ∗(i) exists by initializing ξ ∗ as σnew during the iteration;
therefore, ξ ∗(i) can be considered as the closest empirical
collision-free state of ξ (i).

The update rule follows the iterative quasi-Newton ap-
proach like CHOMP, which can be written as:

ξi+1 = ξi−∇U(ξi), (6)

where ∇U(·) ∈ Rn×d is:

∇U(ξ ) = ηA−1(λ (Aξ +B)+∇ fobs(ξ )). (7)

In the above equation, η is a user-defined convergence rate,
set to be 1, (Aξ +B) is ∇ fprior in the expanded form, and
λ is a trade-off parameter for the smoothness against the
obstacle avoidance, set to be n

2 , where n = 50 is the number
of intermediate nodes. The number of iterative optimization
of Eq. 6 is fixed to 50 in our implementation. Lastly, ∇ fobs
is formulated as:

∇ fobs(ξ (i)) =
∥∥ξ (i)′

∥∥(I− ξ̂ (i)′ξ̂ (i)′
T
)( ̂ξ (i)∗−ξ (i))

−‖ξ (i)∗−ξ (i)‖κ,
(8)

where ξ (i)′ is the derivative of ξ (i), ˆξ (i) stands for the
normalizing function, i.e., x̂ = ξ (i)

‖ξ (i)‖ , and κ is the curvature
of ξ at ξ (i). We also replace the obstacle potential terms
used for CHOMP with a function of ξ (i)∗−ξ (i), accordingly
to Eq. 5. The underlying meaning of Eq. 8 is that when
ξ (i) ∈ Xobs, we push ξ (i) with collision toward its last
empirical C-free state ξ (i)∗ as a roll-back. In CHOMP, this
type of approach is not applicable since a given initial path
is assumed in collision, which demands a local workspace
obstacle analysis in advance, e.g., the signed distance field,
to compute the obstacle potentials efficiently. Our approach,
therefore, gets rid of such dependencies and makes the opti-
mization process even intuitive, while combining sampling-
based and optimization-based planning seamlessly. Note that
ξ (i) ∈ X f ree makes ∇ fobs = 0.



(a) (b)

Fig. 3: Naı̈ve shortest path computation can miss to explore
a solution path even homotopic to the optimal solution path
(the blue dotted one), due to a sparse graph structure. We
address this issue by using the dropout of vertices in solution
paths observed during the execution. The dotted-filled ball in
the right figure stands for an excluded vertex, vdropout . The
search tree constructed without Vdropout allows our approach
to find other solution paths (the blue dotted one) that can be
homotopic to the optimal solution, the solid black line.

For feasibility of the updated path, it is necessary to check
ξ for collision and update ξ ∗ prior to performing the gradient
update in Eq. 6 at each iteration. For each ξ (i) ∈Xobs found
during the optimization process is also used to improve our
configuration-free space approximation (Sec. III-B). For a
set of vertices along the path, i.e., Vσ = {v|v ∈ σ}, we
perform U pdateCFreeSpace(Vσ ,ξ (i)) (Alg. 1, Line: 14),
which assures that each ov∈σ is set to the closest empirical
collision found locally.

D. Shortest Path Computation with Dropout

As the number of iteration increases, volumetric tree∗

attempts to optimize multiple best-so-far paths as this method
is also based on the sampling-based approach. Nonetheless,
we found a technical challenge that arises due to the sparse
graph structure with hyper-sphere volumes.

The left figure in Fig. 3 shows two different paths;
one containing a vertex associated with a large volume,
σblue (dotted blue), and the other, σred (dotted red), with
a relatively lower cost, i.e., c(σred)< c(σblue). If the σred is
found prior to the σblue, U pdateDSPT (·) (Alg. 1, Line: 14)
can fail to return σblue, which is homotopic to the optimal
solution path (the solid black line).

To ensure that volumetric tree∗ finds all possible homotopy
classes of solution paths given the aforementioned challenge,
we propose to use a path optimization with dropout, which is
a randomized vertex exclusion procedure. The core concept
is motivated by the Yen’s algorithm [21] designed for finding
the loop-less k-th shortest path for a graph.

Our dropout technique is summarized as follows:

1) Whenever a solution path σnew is to be optimized in
OptimizePath(·) (Alg. 1, Line: 16), insert σnew to Σnew,
a set of all solution paths found so far, and insert all
vertices in σnew to VΣnew , a set of all vertices in Σnew.

2) In U pdateDSPT (·) (Alg. 1, Line: 11), compute a set of
excluded vertices, Vdropout ⊂V , at a probability (Eq. 9)
from V prior to updating T .

3) Update T with V \Vdropout to compute a new shortest
path, σ ′new from xinit to xgoal .

4) With dropout, BetterPathFound(·) (Alg. 1, Line: 15)
behaves differently; it returns true if σ ′new has not been
observed previously, i.e., σ ′new /∈ Σnew.

5) Empty Vdropout and repeat the iteration.
Note that our approach is to find a solution paths in unre-

vealed homotopy classes, while the original Yen’s algorithm
is for finding the next, i.e., k+1-th shortest path by excluding
an edge in k-th shortest path.

Fig. 3(b) shows an example of the shortest path compu-
tation with dropout. Suppose that a vertex associated with
the dotted-filled ball is excluded out by dropout, which
allows the planner to find σnew as the blue dotted path.
Consequently, volumetric tree∗ with dropout is capable of
finding a solution path homotopic to the optimum even with
the coarse-grained search graph G.

To realize the dropout approach, we record vertices that
have been involved in any σnew previously found, and then
randomly exclude recorded ones, followed by updating our
search tree T with remaining vertices, The dropout proba-
bility for a vertex v can be defined as follows:

P[v ∈Vdropout ] =

{
cdropout

1
|VΣnew |

if v ∈VΣnew ,

0 otherwise,
(9)

where cdropout is a user-tuned dropping-out parameter and
set to be 1.

As an alternative to our dropout approach, one can con-
sider prioritizing a candidate path σ over G. However, this
alternative is difficult to be realized, since for an arbitrary
vertex v ∈V , both cost-to-come from xinit and cost-to-go to
xgoal are unknown in advance. Moreover, using an admissible
estimator, e.g., the Euclidean distance in the simplest form,
can require an excessive amount of computations due to its
weak bound.

IV. EXPERIMENT

We compare the performance of volumetric tree∗ against
the other almost-sure asymptotic optimal sampling-based
planners: RRT∗ [1], Lazy PRM∗ [4], BIT∗ [7], and Dancing
PRM∗ [13]. Volumetric tree∗ is implemented using OMPL
(Open Motion Planning Library) [22] including CHOMP-
based path optimizer and DSPT (Dynamic Shortest Path
Tree). Volumetric tree∗ uses NMSlib [20] for nearest neigh-
bor search (Sec. III-B). Other planners use G-NAT [19],
which is available in OMPL.

We test our method with a 2-DoF rigid body planning
(Fig. 4) and 6-DoF manipulation problem (Fig. 5) using V-
REP simulator [23]. We also perform evaluations in two syn-
thetic environments (R2 and R8) shown in Fig. 6 to illustrate
different behaviors clearly, and a real robot experiment using
Hubo with 7-DoF Manipulator [24], which can be found in
the video attachment to show the practical benefits.
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Fig. 4: A 2-DoF mobile robot planning problem in a conference room with narrow passages under the chairs, resulting in
difficult-to-sample homotopies and surrounding wide-open areas. xinit and xgoal are depicted in the green and red boxes,
respectively.
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Fig. 5: A 6-DoF manipulation planning problem. xgoal (in the red box) is a pose of grasping the cup in the middle of the
table, avoiding the other cups and the ceiling from xinit (in the green box).

Our results are averaged over 30 trials and the time budgets
are set to 5, 30, 1 and 10 seconds for 2-DoF rigid body, 6-
DoF manipulation problem, R2, and R8, respectively. The
detail of the problem settings can be seen in the attached
video.

Fig. 4 and 5 show 2-DoF rigid body and 6-DoF manipu-
lation planning problems, respectively. In these scenes, plan-
ners spend much time, 20% to 80% of the total computation,
on collision checking. For our method, collision checking
takes about 30% to 50% of the total computation time.
For the 2-DoF rigid body problem, the computation time
on optimization, T (OPT ), becomes the major computation
bottleneck in volumetric tree∗ due to a number of explicit
collision checkings during the optimizations. On the other
hand, for the 6-DoF manipulation problem, collision check-
ing, T (CC), becomes the main computation bottleneck for
all the planners, which is caused by the higher complexity
of workspace, i.e., the number of triangles.

Volumetric tree∗, nevertheless, outperforms the other plan-

ners by reducing the number of vertices (|V |) by an order of
magnitude. It can be interpreted as that our adaptive sparse
graph efficiently captures the homotopy of solution paths,
while achieving a better quality of solution paths by the
integration with optimization-based planning.

In 6-DoF manipulation planning (Fig. 5), the computa-
tional portion of T (NN) becomes comparable to T (CC)
in both Lazy PRM∗ and Dancing PRM∗, which also use
lazy collision checking. On the other hand, volumetric tree∗

achieves a noticeable improvement with the fewer number
of vertices and the reduced overhead of NN, despite its
higher T (OPT ). It is because that volumetric tree∗ efficiently
exploits the solution path using optimization-based planning
rather than constructing a dense graph to explore the con-
figuration space. Its benefit is expected to go higher as we
have a higher dimensional problem since it is required to
have denser graphs in that higher space for other methods.
Discussion. We also provide results with synthetic scenes for
in-depth analysis. The synthetic benchmarks are designed to



Fig. 6: 2D synthetic benchmark with 10 narrow gaps located
in the middle of the hyper-cube. In the left figure, green
squares indicate the obstacles and the black lines are the
optimal solution path. The right figure shows intermediate
configurations (colored differently) during the optimization
iterations. The dots indicate vertices of our sparse graph,
colored according to their radii (red for smaller values).

have the narrow passage with multiple homotopy classes of
the solution path. It can also be considered NN-sensitve [15];
the computational cost of nearest neighbor search is not
negligible, since that of collision checking is relatively lighter
due to the simple geometry. In both R2 and R8, xinit and
xgoal are set to [−1, ...−1]d and [1, ...,1]d , respectively, in a
hyper-cube of width 2, and the narrow gaps are equidistantly
located in the middle wall; the gap has a height of 1

6 and i-th
obstacle is defined by two diagonal points, [−0.15, i(gap+
gap
10 ),−1, . . . ,−1] and [0.15, i× (gap+ gap

10 ,1, . . . ,1)] ∈ Rd .
Fig. 7 shows the solution cost as a function of computation

time measured in synthetic benchmarks and the correspond-
ing statistics are organized in Table I. In R2, we can observe
some of the other planners outperform volumetric tree∗.
While volumetric tree∗ identifies the homotopy class of the
optimal solution path and optimizes solution paths toward
a local optimum within the finite number of optimization
iterations, it may result in near-optimal paths depending on
the optimizer parameters, yet the performance gap is <1%
in terms of the final solution cost. This issue can show a
slowdown for our method, especially for simple, lower di-
mensional problems. Adopting advanced optimization tech-
niques or automatically tuning the parameters depending on
the problem are left for future work.

For the case of R8, volumetric tree∗ shows exceptional
performance improvement. As we can observe in Table I,
volumetric tree∗ checks more vertices (|VC|), which can
provide a better understanding of the given space, while
keeping a fewer number of vertices thanks to our adaptive
sparse graph construction with C-free approximation. Fur-
thermore, the hybridization with optimization-based planning
allows volumetric tree∗ not to rely only on sampling for
the convergence of solution paths, resulting in a better
performance, especially in a higher dimensional problem.

V. CONCLUSION

In this work, we have presented a hybridization of
sampling-based and optimization-based planning named vol-
umetric tree∗. Our approach constructs a random geomet-
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Fig. 7: Performance comparison over computation time for
different algorithms in synthetic benchmarks.

ric graph, where each vertex is associated with a hyper-
sphere volume with the C-free approximation, while reject-
ing other samples falling into the space occupied by the
existing volumes, resulting in a sparse graph. Volumetric
tree∗ identifies all possible homotopy classes of solution
paths with the dropout technique and refines solution paths
found during the execution toward the local optimum using
optimization-based planning. Our experiment results have
shown meaningful performance improvement in most tested
environments, showing higher robustness compared to the
other tested methods.

There are many interesting research directions. When it
comes to sampling, volumetric tree∗ simply relies on the
sample rejection for the adaptive sparse graph construction,
which can be inefficient, especially in a higher dimensional
space [25]. For this reason, it is worth studying to design a
dedicated sampler that explores a promising area efficiently.
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