
Anytime RRBT for Handling Uncertainty and Dynamic Objects

Hyunchul Yang1 Jongwoo Lim2 Sung-eui Yoon3

Abstract— We present an efficient anytime motion planner
for mobile robots that considers both other dynamic obsta-
cles and uncertainty caused by various sensors and low-level
controllers. Our planning algorithm, which is an anytime
extension of the Rapidly-exploring Random Belief Tree (RRBT),
maintains the best possible path throughout the robot execution,
and the generated path gets closer to the optimal one as more
computation resources are allocated. We propose a branch-and-
bound method to cull out unpromising areas by considering
path lengths and uncertainty. We also propose an uncertainty-
aware velocity obstacle as a simple local analysis to avoid
dynamic obstacles efficiently by finding a collision-free velocity.
We have tested our method with three benchmarks that have
non-linear measurement regions or potential collisions with
dynamic obstacles. By using the proposed methods, we achieve
up to five times faster performance given a fixed path cost.

I. INTRODUCTION

The mobile robot navigation problem in dynamic environ-
ments poses crucial challenges to motion planning research.
One of main issues is to predict potential collisions against
other dynamically moving objects and to find collision-
free paths in an efficient manner. Moreover, various noises
from low-level controllers and sensors are generated and
aggravated with external disturbances (e.g., friction) in the
real world. The motion planner, therefore, should take into
account the uncertainty. On top of these two issues of avoid-
ing collisions against other moving objects and considering
uncertainty, it is very important to compute an initial path
efficiently and to improve it to the optimal one as we have
more computational time.

Many prior techniques have been proposed for the motion
planning problem. Most recent ones are based on sam-
pling approaches such as RRT [1], PRM [2], and EST [3].
Recently, Rapidly-exploring Random Belief Tree (RRBT)
method has been proposed for handling uncertainty with
a useful feature of computing the optimal path [4]. While
RRBT has such useful features, it can generate an excessive
amount of belief nodes considering different paths and un-
certainty levels. As a result, it tends to be too slow to be
used in practice.

Main contributions. To address the aforementioned is-
sues, we propose a novel, anytime RRBT method that consid-
ers uncertainty and generates collision-free paths, which are
constantly improved toward the optimal one during execution
(Sec. IV-B). We also use an efficient branch-and-bound
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Fig. 1. Runtime results of our anytime RRBT method. This simulation
environment has the space of 5× 5(m2). We show an initially computed
path for the robot (a). (b), (c), and (d) show updated trajectories while
following the prior path. The robot can sense the environment only in the
green region. Dotted lines are committed trajectories, and the goal is shown
as the yellow region. The circles represent the uncertainty; bigger ones mean
higher uncertainty.

approach to cull out unpromising belief nodes to improve
the overall performance of our method, while preserving the
optimality. We also propose to use an Uncertainty-aware
Velocity Obstacle (UVO) as a simple but effective local
analysis for computing a collision-free velocity of our robot
against other dynamic obstacles.

To demonstrate the anytime and optimality properties of
our method, we have applied it to two different problems
in simulation environments. By using our branch-and-bound
method, our method achieves up to five times faster per-
formance over the prior RRBT method given a fixed path
length, since it can effectively cull out unpromising belief
nodes and focus more on exploring new areas. Furthermore,
our method with the proposed UVO achieves shorter paths in
a less computational time over our method w/o UVO, since a
velocity avoiding collisions against other moving objects can
be computed quickly. These results indicate that our anytime
RRBT takes one step forward towards efficient optimal path
planning considering uncertainty in dynamic environments.



II. RELATED WORK

In this section, we discuss prior work on sampling-based
motion planning, and its extensions to support anytime,
uncertainty, and dynamic environments.

A. Sampling-based Motion Planning

Sampling-based algorithms (e.g., RRT[1], PRM[2], and
EST[3]) have been used to solve motion planning prob-
lems in high-dimensional configuration spaces. Among these
techniques, Rapidly-exploring Random Tree (RRT) has re-
ceived much attention over the last decade. RRT operates
by growing a tree in the configuration space, takes random
samples iteratively, and then expands the tree towards the
new samples from the closest nodes in the tree.

RRT has many advantages including the probabilistic
completeness and scalability in high dimensional spaces.
These advantages triggered numerous extensions including
RRT∗ computing optimal solutions [5].

Anytime extension. RRT can find an initial solution
quickly, but it does not always find the optimal solution. To
overcome this issue, RRT∗[5], Cloud RRT∗[6], and RRT-X[7]
algorithms have been proposed. Furthermore, its anytime
extension has been proposed to support the real world robotic
systems. Notable examples are anytime RRT [8] and anytime
RRT∗ [9], which are execution-time replanning algorithms
for RRT and RRT∗, respectively. These studies, however,
are not designed for handling uncertainty arising from real
sensors and robot motions.

B. Uncertainty

The uncertainty arises due to various errors of control and
sensors. One of most popular methods is Linear Quadratic
Gaussian Motion Planning (LQG-MP) [10] that models un-
certainty of various system states using Gaussian noise and
propagates the uncertainty using the Kalman filter iteratively.
Patil et al. [11] improves accuracy in critical cases involved
with collisions based on a truncated Gaussian distribution
considering that a prior condition is collision-free. Xu et
al. [12] addressed trajectory planning of car-like robots using
the LQG framework. Liu et al. [13] combined RRT with
LQG-MP to handle uncertainty.

Recently, Bry et al. [4] extended the prior RRT method
to Rapidly-exploring Random Belief Tree (RRBT) consider-
ing uncertainty. RRBT contains multiple belief nodes with
different uncertainty level and path lengths in a graph. It
can preserve individual uncertainty estimates along multiple
trajectories passing a particular location. While this method
can handle many general scenarios, the benefit comes with
a cost; a slow reasoning speed. Motion planners considering
uncertainty and real-time performance together has been less
studied. Our method aims for handling both uncertainty
and dynamic objects based on the anytime extension and
uncertainty-aware velocity obstacle model.

C. Dynamic Environments

Different approaches in motion planning for handling
dynamic obstacles have been developed. To predict trajectory

of other moving robots, Gaussian-based ones [14], [15]
have been commonly used. These studies work well for
environments with many occluded zones. They, however,
tend to be slow, and do not consider to compute the velocity
of the robot avoiding collisions.

Velocity Obstacle (VO) [16] represents a robot using its
radius and velocity to avoid potential collisions. The VO
method has been applied to numerous applications such as
multiple robot planning and driver assistance [17], [18], [19].

The VO method has been extended into Reciprocal Ve-
locity Obstacle (RVO) [20] and Hybrid Reciprocal Velocity
Obstacle (HRVO) [21] for considering reciprocity between
robots. HRVO was adopted for recent motion planning [22],
[23], [24]. We also adopt its idea and apply to our RRBT
based planner to consider uncertainty and dynamic objects
in an efficient way.

III. BACKGROUND

In this section, we describe our problem formulation, and
a brief review on the RRBT algorithm [4].

A. Problem Description

Let S and U be the state space and control space, respec-
tively. The robot is described by a discrete time description
of its dynamics and sensors:

st = f (st−1,ut−1,qt), qt ∼ N(0,Qt) (1)

zt = h(st ,rt), rt ∼ N(0,Rt) (2)

where st ∈ S is the state of the robot, ut ∈U is the control
input, qt is a random process disturbance drawn from a
zero-mean Gaussian distribution with variance Qt , zt is the
measurement of the robot’s state, and rt is a measurement
noise drawn from a zero-mean Gaussian with variance Rt .
Let Sobs, Sgoal ⊂ S to represent obstacles and goal regions,
respectively. The obstacle free regions can be then denoted
by S f ree = S\Sobs.

The robot’s state can be described by st ∼ N(ŝt ,ΣRt ) at
time t, and then its initial state is given as follows:

s0 ∼ N(ŝ0,ΣR0), (3)

where ŝ and ΣR are the mean and covariance of s, respec-
tively.

The state of dynamic obstacles is described by

oi
t ∼ N(ôi

t ,Σ
i
ot ) (4)

where ôi and Σi
o are the mean and covariance of the i-th

obstacle, respectively.
Let π0:t denotes a path consisting of a series of states and

control inputs: (s0,u0, ...,st ,ut ). The optimal path planning
problem is then defined to minimize the following cost
function [10]:

E [cost(π0:T )] , (5)

P(sT /∈ Sgoal)< δ , P(st ∈ Sobs)< δ , ∀t ∈ [0,T ], (6)

where T is the total time to reach the goal and δ is a
user defined threshold for the chance-constraint [25]. As
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Fig. 2. Each vertex (e.g., g1) in our method can have multiple belief
nodes (e.g., n1,n2, and n3) depending on their uncertainty levels (drawn
in ellipses) and path distances. The red belief n1 has a low distance cost,
but with a high uncertainty. On the other hand, the blue belief has a long
distance cost, but with a low uncertainty value. The yellow belief node has
in-between values for the uncertainty and distance.

δ gets smaller, we try to find paths that have smaller
probability to have collisions. For our tests, we set δ to be
0.159, corresponding to the one sigma value of the normal
distribution. A cost function used in our method is discussed
later (Sec. IV-A).

B. Rapidly-exploring Random Belief Tree (RRBT)

RRBT is an incremental sampling based motion planning
algorithm that provably converges to the optimal path, taking
the uncertainty into consideration [4]. This algorithm incre-
mentally constructs a graph with random sample strategy.
The algorithm builds a graph with a set of vertices, G, and
each vertex can have multiple belief nodes. More precisely,
let g∈G denote a vertex, then g.s and g.N denote the state of
vertex and the set of belief nodes associated with the vertex
g, respectively. Each belief node n ∈ g.N stores its parent
belief node in the associated path.

A series of belief nodes in parent-child relationship defines
a path that starts from the initial vertex. Since a vertex can
have multiple belief nodes, different paths passing the vertex
can be defined. For example in Fig. 2 the vertex g1 has three
different belief nodes, n1,n2, and n3, representing different
uncertainty levels acquired from their associated trajectories
from the vertex g0.

RRBT can generate an excessive amount of belief nodes
to consider different uncertainty levels and path lengths, and
thus can be very slow. To ameliorate this issue, RRBT uses
a partial path ordering method:

na < nb⇔(na.Σ < nb.Σ)∧ (na.dist < nb.dist), (7)

where na and nb represent two different partial paths to the
same vertex associated with the node n. Σ and dist associated
with each belief node n are a state estimate of the covariance
and the trajectory distance, respectively. When na < nb, we
treat that the path passing na is better than the other, and we
can prune the other path passing nb.

This approach guarantees not to prune the optimal path.
It, however, has a low culling ratio, and can generate an
excessive number of belief nodes in the same vertex, result-
ing in unsuitable performance for real-time robotics systems.

Algorithm 1 Anytime RRBT
Require: Vertices G, State sinit , Belief ninit , State sgoal

1: ginit .s← sinit
2: ginit .N←{ninit}
3: G ← {ginit}
4: loop
5: [srobot , Σrobot , O] ← UpdateMeasurement()
6: if srobot ∈ sgoal then
7: return
8: end if
9: ReinitializeGraph(G, srobot , Σrobot , O)

10: gnew← RandomVertex(G, O)
11: Gnear← Near(G, gnew.s)
12: [G, Gnew] ← Wire(G, Gnear,{gnew})
13: [G, Gnew] ← Wire(G, Gnew, Gnear)
14: end loop

We propose anytime extensions with an effective branch-and-
bound method for RRBT to handle uncertainty in an efficient
way.

IV. THE PROPOSED METHOD

In this section, we explain our anytime RRBT method
with an efficient branch-and-bound method, followed by our
uncertainty-aware velocity obstacle method.

A. Cost Function

For path planning we need to define a cost function that
associates a cost with a path (e.g., Eq. 5). Various cost func-
tions that model observation and control uncertainty have
been studied in the field. Among available cost functions,
we focus on balancing between the travel distance of the
robot and the amount of uncertainty. In general, the robot
should move around in environments to collect sensor data.
We use a simple, monotonic form for our cost function:

cost(π0:t) = αDistance(π0:t)+β ||ΣRt ||2, (8)

where Distance(π0:t) is the travel distance following the
trajectory π0:t , ΣRt is the uncertainty at time t, and α and
β are the weights. We use the L2 norm of the covariance
matrix of ΣRt , since it has been known to return the maximum
variance among all the possible vector directions.

B. Anytime Extensions

We present an anytime RRBT method, inspired by anytime
RRT∗[9]. Our anytime RRBT finds the asymptotically opti-
mal path, and the planned path is constantly updated while a
robot is following the path. Our method has two extensions
over the prior RRBT. The first is a graph re-initializing
method for making the RRBT reusable. The second is a
branch-and-bound method for accelerating the estimation
process. A pseudocode of our anytime RRBT is shown in
Alg. 1.



1) Reinitialize the graph: Suppose that we compute a
trajectory π0:T up to the goal position at the last time of path
planning, tp, we maneuver our robot to follow the trajectory,
and are about to re-run our anytime RRBT at the current
time, tc. In this case, the portion in the planned trajectory up
to tc, π0:tc , is executed and already committed.

To accommodate dynamic changes occurred in-between
tp and tc, we first update estimates on states (e.g., positions
and velocities) of other dynamic obstacles using the Kalman
filter. We also delete already committed nodes and update
the underlying graph data structure to refine the trajectory.
We then make a new vertex and a belief node that represents
the robot’s current state, xtc , and connect it with the graph
as the new source in the graph for the planning process. We
also perform wire operations to compute better paths in the
similar manner to those of RRT∗ [9]. Finally, we update each
belief node starting from the new source and check whether it
collides with updated dynamic obstacles. When belief nodes
are in collisions, we prune them. Specifically, we use our
uncertainty-aware velocity obstacle for the collision checking
process (Sec. IV-C). We also perform our branch-and-bound
for each belief node, described in below.

2) Branch-and-bound: The branch-and-bound technique
has been used to accelerate various search problems includ-
ing graph and tree based search. We apply this concept to
our anytime RRBT. We define a CostToGo function like the
heuristic function of A∗ techniques [26].

Let n∗ be an arbitrary belief node, c∗ be the cost of the
optimal path of connecting n∗ and ngoal , which is a node
generated for the goal position. It has been proven that when
a heuristic function satisfies three admissibility conditions,
it is guaranteed that the A∗ algorithm finds the optimal
solution [27]. These admissibility conditions are that the
graph has finite edges, the heuristic function returns positive
values, and it is conservative; it returns a value that is equal
to or less than the optimal cost.

Unfortunately, when we designed our heuristic function to
be conservative, we found that it is ineffective in terms of
culling for our branch-and-bound method. This phenomenon
is occurred mainly when the heuristic function returns too
conservative values to the actual cost, as discussed in the
literature [27].

For achieving efficient performance, we propose to use the
following, approximate heuristic function:

CostToGo(n∗) = αEstDist(n∗,ngoal) +

β max(0, EstUncertain(n∗,ngoal)− ε),
(9)

where α and β are the same weights used in our cost function
(Eq. 8).

For the conservative estimation on maneuvering distance
of our robot, we assume that the robot moves toward the
goal straightly, and use the estimate distance for EstDist(·).
For the estimated uncertainty of EstUncertain(·), we also
assume that the robot follows the straight line and the uncer-
tainty associated with n∗ increases according to the Kalman
filter by following the straight line. To consider the non-linear
nature of uncertainty and design a conservative heuristic

Algorithm 2 RandomVertex
Require: Graph G, Obstacles O

1: repeat
2: srand ← RandomState()
3: gnst ← Nearest(G, srand)
4: for all n ∈ gnst .N do
5: [srand , nrand]← getCollisionFree(O, gnst .s, srand , n)
6: if nrand 6= nobelie f then
7: break
8: end if
9: end for

10: until nrand 6= nobelie f
11: return Vertex(snew, nnew)

Algorithm 3 getCollisionFree
Require: O, sa, sb, na

1: snew← sb
2: nnew← Propagate(sa, sb, na)
3: if nnew 6= nobelie f then
4: snew← UVOCheck(O, sb, nnew)
5: nnew← Propagate(sa, snew, na)
6: end if
7: return [snew,nnew]

function, EstUncertain(·) should return the zero uncertainty,
but this setting does not result in effective culling. Instead,
we choose to reduce the linearly increasing uncertainty with
a small, but randomly generated value, ε . We guarantee that
the randomly generated value can make EstUncertain(·) to
be zero in a probabilistic manner, to satisfy the admissibility
conditions [28].

We then cull out belief nodes which satisfy the following
condition:

N′ =
{

n ∈ N|Cost(n)+CostToGo(n)≥Cost(ngoal)
}
. (10)

Note that our final heuristic function is not conservative
always, but is conservative probabilistically. This guarantees
that our method can compute optimal paths in a probabilistic
sense. We found that this works well in practice, while
achieving high performance with the probabilistic optimal
guarantee.

We also tested different places to perform our branch-
and-bound method. We found that evaluating costs and
performing the branch-and-bound at the end of the reini-
tialization process shows the best performance in our tested
benchmarks.

C. Collision Checking using UVO

As we generate random samples and attempt to connect
them to nodes in the graph, we need to check collisions
along the computed path. Once we have collisions, we could
reject those random samples and try other samples. Instead of
this naive approach, we perform a simple local analysis and
compute a velocity for our robot avoiding collisions against
other dynamic objects within our anytime RRBT. As a simple
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Fig. 3. We generate a new vertex gnew that has a speed vnew represented
in its state snew, and try to connect the vertex to g∗. We use our UVO to
check collision and compute a new velocity v′new.

local analysis, we propose to use an Uncertainty-aware
Velocity Obstacle (UVO) method. Pseudocodes of generating
a random vertex, checking collisions, and updating velocities
are shown in Alg. 2 and 3.

During the process of our anytime RRBT, we generate a
new sample state, snew, that has random position and speed
(Fig. 3). Suppose that n∗ is chosen as a belief node that is
one of nearest neighbors to the new sample state. We then
attempt to connect the node n∗ to the state snew. For this,
we check whether the robot collides with static obstacles,
while propagating a belief from n∗ to the state snew using a
Propagate function. The Propagate function returns a new
belief node nnew at the state snew, while estimating the belief
using the Kalman filter. If the chance-constraint (Eq. 6) is
violated, the function then returns no belief node.

Once the propagation succeeds, we then check whether
the robot collides with dynamic obstacles (Fig. 3). Given i-
th dynamic object, oi, let Poi , roi , voi denote its measured
position, radius of a circle bounding the object, and velocity,
respectively. We estimate position and uncertainty of the
obstacle oi at time n∗.time using the Kalman filter. After
estimating the obstacle position, we use our UVO to check
whether there are collisions between the robot and oi until
the time of the propagation, nnew.time. Furthermore, when
there are collisions, we use UVO to compute a new, positive
velocity for the new sample state snew, instead of blindly
generating random states.

Velocity obstacle has been used for local collision avoid-
ance and navigation of a robot surrounded by multiple
moving obstacles in two dimensions [16]. Let R be a circle
bounding our robot and O be another circle bounding i-th
dynamic obstacle with radii rR and rO, respectively. Let PR
and PO denote the center points of those circles, respectively.
We also use vR and vO denote the velocities of the robot and
obstacle, respectively. The velocity obstacle for R induced
by O, VOR|O, is a set of velocities for the robot R that result
in collision with the obstacle O in near future (Fig. 4.(a)).

VOR|O
vO

vO

PR PO

vR

vnew

(a) Velocity obstacle

UVOR|O

vO

PO

|ΣPO-R|  +σrR+O

PR

|ΣvO|
vR vO

vnew

1/2| |2

1/2| |2

(b) Uncertainty-aware velocity obstacle

Fig. 4. The upper figure shows velocity obstacle VOR|O. The lower figure
shows that our uncertainty-aware velocity obstacle UVOR|O has a wider
region than the VOR|O for conservatively handling uncertainty. The robot R
will collide with the obstacle O in near future, because the velocity vR is
the UVO area. The new velocity vnewcalculated to avoid collision is shown.

Precisely, VOR|O is defined as follows:

VOR|O = {v|∃t > 0 : t(v− vO) ∈ Disc(PO−PR,rR + rO)} ,
(11)

where t represents a time, and Disc(P,r) is a disc of radius
r centered at P. This concept was extended for considering
both reciprocity and uncertainty [20]. For our purpose, we
do not need to consider the reciprocity, since we cannot
control trajectory of other dynamic obstacles. As a result,
we design our uncertainty-aware velocity obstacle tailored
to our problem.

The uncertainty-aware position, radius, and velocity of our
robot R and a dynamic obstacle O used for our method are
defined as the following:

PR ∼ N(P̂R,ΣPR), rR ∼ N(r̂R,σ
2
rR
), vR ∼ N(v̂R,ΣvR),

PO ∼ N(P̂O,ΣPO), rO ∼ N(r̂O,σ
2
rO
), vO ∼ N(v̂O,ΣvO),

(12)

where means, variances, and covariances (e.g., P̂O and ΣPO )
are acquired from sensors.

For simplicity and efficiency, we define the relative posi-
tion, PO−PR, and the relative radius, rO + rR, as follows:

PO−R ∼ N(P̂O− P̂R,ΣPO−R), rR+O ∼ N(r̂R + r̂O,σ
2
rR+O

). (13)

Our uncertainty-aware velocity obstacle, UVOR|O, is then
computed as the following:

UVOR|O = {v|∃t > 0 : t(v−Disc(v̂O, ||ΣvO ||
1/2
2 )) ∈

Disc(P̂O− P̂R, r̂R + r̂O + ||ΣPO−R ||
1/2
2 +σrR+O)}.

(14)
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Fig. 5. These graphs show the average results of our method w/ and w/o our
branch-and-bound method over 30 runs on the problem in Fig. 1. (a) shows
costs of solutions as a function of computation time. (b) shows the number
of generated vertices. (c) plots the number of attempts for propagation.

Fig. 4 shows visual illustration of velocity obstacle and our
uncertainty-aware velocity obstacle. As can be in the figure,
the region of velocity obstacle has the triangular shape,
while the region of our uncertainty-aware velocity obstacle
is an extended triangle for conservatively considering the
uncertainty. To avoid collision, we need to compute a new
velocity that is not in that region. In this case, we create a
new state, s′new, that has an adjusted velocity, v′new, at the same
position of snew, to avoid the collision. We finally append
the updated, new vertex g′new to the underlying graph of our
anytime RRBT.

Note that we achieve the optimality of our anytime RRBT
even with our UVO, since our method keeps to generate other
random samples that can avoid collisions. Our UVO method
generates samples avoiding collisions more effectively based
on its simple local analysis in terms of velocity. Nonetheless,
the UVO method applied only to dynamic obstacles can
violate the chance-constraints locally. This could be avoided
by expanding UVO more, but computing a tight bound is
desirable and requires further study.

V. EXPERIMENTAL RESULTS

The proposed algorithm is implemented and tested on a
system with a 3.4 GHz Intel Core i7 CPU and 16GB of mem-
ory running MAC OSX. To ensure that our approach applies
well to real robots, we use the V-REP simulator [29] for the
robot simulation, since it supports various dynamics related
to low-level controls (e.g,. motors), noisy environments (e.g.,
motor control errors), and asynchronous invocations of low-
level controller and our motion planning modules.

To demonstrate benefits of our methods, we design three
scenes with a disc-shape mobile robot. For all the exper-
iments, we set the weights α = 0.1, β = 0.9 in the cost
function Eq. 8. The distance value tends to be much bigger
than the uncertainty value, and we thus use a small alpha
value to balance them out. For ε used in our heuristic
function, we generate a random number uniformly in a range
between 0 and 0.01 that can make EstUncertain(·) zero
probabilistically in our tested settings.

A. Anytime Extension Experiments

We adopt robot dynamics with various errors in the 2-D
case, as suggested by Bry et al. [4],

xt = xt−1 +ut−1 +qt , qt ∼ N(0,0.01I) (15)

zt = xt + rt , rt ∼ N(0,R), (16)

where we use the same notations used for the problem
definition (Sec. III-A). The R is set according to locations
in the environment. We assume that the robot can update
sensor data only on the green region in Fig. 1. Therefore, R
is set 0.01 in the green regions, while R is set ∞ in the rest
of regions.

In Fig. 1, we plot committed and computed trajectories of
the robot. The robot starts with a high uncertainty on states.
To gather exact location information, the robot should visit
the green regions at least once. The robot starts to follow an
initial path after calculating the initial path. When the initial
path is computed, the robot starts following it, and thanks to
the anytime feature of our method, the robot computes better
paths while executing the prior path, and reaches the goal in
an efficient and effective way.

We measure benefits of our Branch-and-Bound (BB)
method accelerating our anytime RRBT method. To focus
on the BB method, the robot is kept static throughout the
planning process to exclude the effect of re-initialization for
the test; we let our planner to keep to generate samples and
improve paths without moving. Overall, our method w/ BB
culls out 15% belief nodes on average compared to those
generated w/o BB.

We then look at the cost of our method w/ and w/o BB
(Fig. 5-a)). We achieve lower costs given the same time
budget over our method w/o BB. In a different perspective,
our method w/ BB achieves less computational time given
a fixed cost over our method w/o BB, and its benefits are
getting bigger as we achieve lower costs. For example,
at the cost of 1.8, our method achieves two times faster
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Fig. 6. Intersection scene with 3× 3(m2) size. A purple obstacle moves
toward top direction straightly with the constant velocity. The robot en-
counters the obstacle after a few seconds, and finds paths to the goal region
(orange), while avoiding the obstacle. Our method w/o UVO avoids the
obstacle with zig-zag paths (a), while ours w/ UVO reduces the speed to
avoid collisions, resulting in smooth paths and better runtime performance
(b).

performance, while at the cost of 1.7, we achieve about five
times faster performance.

Since our BB method culls out belief nodes with higher
costs and uncertainty, our method focuses more on exploring
new space by generating more vertices, resulting in comput-
ing paths with lower costs. As you can see in Fig. 5-b), our
method w/ BB generates two times more vertices over our
method w/o BB. On the other hand, our method w/o BB
attempts to connect newly generated vertices with existing
belief nodes that may have high cost and uncertainty (Fig. 5-
c)), since we do not cull out such nodes. Overall, according
to the BB method, we are able to cull out unpromising paths
and explore new or promising paths in a more effective way.

B. UVO Experiments

To test our method w/ UVO, we use a 3× 3(m2) scene
with an intersection (Fig. 6). In this scene, our cyan-colored
robot has a 1 m range sensor that can measure the location,
velocity, and radius of other robots within the 1 m distance.
We set uncertainty parameters, ΣPO = 0.05I, σrO = 0.01
and ΣvO = 0.1I, for our UVO method (Eq. 12). A purple-
colored dynamic obstacle moves to the north straightly with
a constant velocity. Our robot aims to reach the orange goal
region, while avoiding the dynamic obstacle.

To demonstrate benefits of our method w/ UVO, we com-
pare it against our method w/o UVO. For clear demonstration
between these two different methods, we use a constant ve-
locity for our robot instead of randomly generating velocities
during our anytime RRBT; we achieve similar results by
using random velocities. Especially, we look at executed
trajectories of these two different methods (Fig. 6). Once we
have collisions, our method w/o UVO reject the sample with
the collision and continues to generate new random samples
avoiding such collisions. On the other hand, our method w/
UVO performs the local analysis and modifies the velocity
within the same sample to avoid collisions.

As a result, the UVO method returns an adjusted velocity,
and thus its computed trajectories tend to be more smooth
and shorter than those generated by our method w/o UVO
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Fig. 7. Histograms of path lengths in the scene of Fig. 6. Our method w/
UVO achieves shorter path lengths over our method w/o UVO.

(a)

(b)

Fig. 8. A scene with many moving humans. (a) shows randomly generated
paths for 20 agents in the simulator. (b) shows an example, robot trajectory
that successfully avoids multi-obstacles using our method. The magenta dots
are human with their current velocity vectors.

(Fig. 7). Furthermore, we compute such better paths in faster
performance. Specifically, our method w/ UVO makes 110
vertices per second on average with 100 trials, while our
method w/o UVO makes 93 vertices per second. Overall,
our method w/ UVO achieves better paths in faster running
performance.

C. Multi-Obstacles Scene

We also apply our method to a scene with 20 human
agents, where each human agent follows his or her own
path, which is generated randomly (Fig. 8). We use circles
of 0.3m radius as bounding disks for our UVO method. We
assume that our robot has a 5m range sensor, and uncertainty
parameters are same to ones reported in Sec. V-B. We run
this test 30 times, and our method is able to find collision-
free paths that avoid moving agents, while moving toward
the goal region in all the tested experiments. We show a
video segment of this test in the accompanying video



VI. CONCLUSION

We have presented a novel anytime RRBT method for
handling uncertainty and dynamic environments in an effi-
cient manner. Our method continuously improves collision-
free paths toward the optimal solution, as we get more
computational time. We have proposed an efficient branch-
and-bound technique based on our heuristic function. We
have also proposed our uncertainty-aware velocity obstacle
to effectively perform collision detection and find an adjusted
velocity avoiding collisions without rejecting samples. We
have tested our methods in three different benchmarks and
verified that our method has useful benefits, while effectively
handling uncertainty and dynamic objects.

There are many interesting avenues for future research
directions. While our method supports anytime replanning,
its performance may not be enough for robots with high
velocity. At a worse case, our robot may have collisions
against such fast moving objects, even if we consider un-
certainty within our anytime RRBT method. To achieve
better performance, we would like to design a massively
parallel version utilizing recent GPUs. We currently use 2D
circles to bound robots for our UVO analysis. This can be
applied to other shapes of robots and higher dimensions
by projecting them into 2D. Nonetheless, we would like to
design anisotropic shapes (e.g, ellipsis) to support elongated
robots and extend it to 3D cases for more accurate analysis.
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